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Intrinsic integer quantum Hall effect in a quantum wire
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Self-consistent calculations are made of the electrostatic Hall potential (EHP), local chemical
potential (LCP), and current density in a 100-nm-wide wire containing two-dimensional electrons in
a perpendicular magnetic field B when either one or two subbands are occupied. The corresponding
Hall resistances, REHp and Ri,cp, are also calculated. The former is nearly linear in B in spite of
subband depopulation. The latter is quantized but the quantization steps are rounded because of
overlap of the forward and backward wave functions.

Since the discovery of the integer quantum Hall ef-
fect (I@HE) by von Klitzing, Dorda, and Pepper, ~ much
attention has been devoted to the transport properties
of a two-dimensional electron gas (2DEG) in a mag-
netic field. 2 Rapid technological development has made
possible the study of very-small-scale structures based
on high-mobility GaAs-Al Gay As heterostructures. s A
number of studies of the magnetic transport properties
of a 2DEG in a ballistic quantum wire have been made
by both experimentalists and theoreticians from
different points of view. Explanations of the four-
terminally measured electronic transport properties have
been given successfully using the Landauer-Buttiker
formulas. These formulas apply only when conduct-
ing channels are set up between the reservoirs and the
detecting probes and give the terminal behavior due to
all the different parts of the whole system. Here we go
further and ask what the behavior of the 2DEG in a
two-terminal ballistic wire actually is and how will non-
invasive measurements of Hall potential differences differ
from what is measured when four terminals are used.
We suppose that it is possible to measure the intrinsic
physical quantities of a two-terminal quantum wire by
using weakly coupled probes as discussed by Engquist
and Anderson and Landauer. Very recently, for ex-
ample, Shepard, Roukes, and Van der Gaag have mea-
sured quantum Hall resistance behavior in this limit.

The I@HE of an interacting 2DEG was investigated
by MacDonald, Rice, and Brinkman22 with the assump-
tion of a slowly varying potential which is appropriate
to high magnetic fields. The redistribution of charge in
real space, which generates the electrostatic Hall poten-
tial (EHP), is given as well as the Hall current density
distribution. The I@HE of a 2DEG confined in a quan-
tum wire is quite different from that of its unconfined
counterpart. First, there is no energy gap; and second,
each Landau level (i.e. , each subband) is always only par-
tially occupied. The conductivity is finite even without
impurities because of the finite width of the wire. Li and
Thouless study this problem for a GaAs wire in a weak
magnetic field when only the lowest subband is occupied
and give results for the EHP. They do not include more
subbands because of a numerical instability which they
argue is due to the assumed hard-wall confining poten-
tial. These calculations do not yield a quantized integer
Hall resistance. This is not only because the Fermi level

lies below the excited subbands. More importantly, these
authors concentrate on the EHP and, as we show here,
the corresponding Hall resistance is aLtmays nearly linear
in the magnetic field.

In this paper we present numerical I@HE results for
a 2DEG in a ballistic two-terminal wire subjected to a
perpendicular magnetic field when either one or two sub-
bands are occupied. Electrostatic interactions between
electrons within the same subband and among different
subbands are included self-consistently. Spin degeneracy
is also taken into account. We distinguish two kinds of
intrinsic Hall potential, EHP and local chemical poten-
tial (LCP), which depend differently on magnetic field
and correspond to different measurements. Both EHP
and LCP differences and the two kinds of intrinsic Hall
resistance associated with them are investigated. We
demonstrate that quantization occurs only for the Hall
resistance connected with the LCP. We also find that the
leading edges of the quantization steps are rounded off at
low B because of the overlap of wave functions propagat-
ing in opposite directions along the wire. Furthermore,
we show that the resistance associated with the EHP
retains the classical linear dependence on the magnetic
field. Distributions of EHP, LCP, and current density
across the wire when one or two subbands are occupied
are also calculated and shown.

Let us consider a 2DEG with an electron density n,
which is conB.ned in a space of width W in the x-y plane
by infinite potential barriers at y = kW/2. We suppose
that a uniform magnetic field B is applied in the z di-
rection and describe it in the Landau gauge by writing
the vector potential as A = ( By, 0, 0). Follow—ing pre-
vious authors2 we also introduce an EHP V(y) which
is induced by the external magnetic Beld. The normal-
ized eigenfunctions of the Schrodinger equation are then
of the form L~ e'" y„ I, (y), where L is the length
of the wire. y„ I, (y) satisfies the equation

where m* is the effective mass and n is the index of the
subbands. The EHP, which must be determined self-
consistently, can be expressed as
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where we consider the electrostatic interactions between
electrons as homogeneous in the x direction. The redis-
tribution of the electron charge density as a result of the
external magnetic field is

which is a reasonable first approximation in a model cal-
culation for a GaAs system. To complete the calculation,
we need to constrain E~ in the Fermi wave numbers so
as to yield the given electron density n, for fixed b„ i.e. ,

(n)

dk. [ Ix,~. (y) I' 2~~ )~[ x, EF+a/2 z, EF ——b./2]' (4)

n, a —~, E& —b, /2k

—Ix",g. (y) I'] (3)

where A: E +& 2 and A: E & 2 are the Fermi wave(n) (n)
x,Ep+D 2 x,Ep

numbers of subband n for the positive and the negative
x directions, respectively, 6 is the chemical potential dif-
ference between the two terminals, and o. is the spin label.
We make 4 small enough to ensure that we stay in the
linear transport regime. The functions X„& (y) are the
eigenfunctions of the Schrodinger equation, Eq. (1), in
the absence of a magnetic field. With these definitions,
we know that the EHP is related to the applied magnetic
field and describes a kind of Hall effect and we have hard-
wall, square-well confinement when B = 0. Furthermore,
from Eqs. (2) and (3), we can see the spin degeneracy is
important. The up and down spins give the same con-
tribution to the EHP if we ignore the Zeeman splitting

I

Then charge neutrality is ensured by the normalization
of the wave functions.

Solving Eqs. (1)—(3) self-consistently with the con-
straint Eq. (4), we obtain the wave functions and the
charge density redistribution as well as the self-consistent
EHP. The current density distribution across the wire can
also be calculated from

n, )
, EF +b, /2

dk k, ——yl
n)O' —x, Rp —D/2A:

xx„,v. (y)

where t~ ——(5/eB) / is the magnetic length. Since the
total current is I~ = J dy j~(y), the longitudinal resis-
tance can be calculated straightforwardly.

In addition to the EHP we may also calculate the LCP
U(y) from the formula~s

) [vilx, A:. , ~ +~„(y)I +s&Ix,& ., ~ &„(y)I ]/~~
nicT

) .[Ix,~, „(y)l'+ Ix,~ .,
„(y)l']/&

n, o

where p, i (pq) is the chemical potential of the reservoir
connected at the left (right) end of the wire, X„,A,.~(y)
and X„A, .~(y) are the right- and left-going electron
wave functions, respectively, and v„ is the velocity at
Fermi level. When the external magnetic field vanishes
we may use the symmetry of the electron wave functions
to show that the LCP is a constant everywhere. The
difference of the LCP across the wire when B g 0 gives
another kind of Hall effect.

The EHP is the electrostatic potential response when
the electron density redistributes to balance the Lorentz
force. It describes the real-space potential which the elec-
trons in the wire experience. On the other hand, the
LCP characterizes the local electron energy distribution
and is determined by the overlap of wave functions prop-
agating in opposite directions along the wire. By using
Eqs. (2), (6), and (5), we can calculate both these po-
tential distributions and current density distribution in
the wire. We can also calculate two kinds of intrinsic
Hall resistance, BpHp and Bj-.gp from the EHP and the
LCP, respectively. Previous authors have suggested ways
to simulate or measure intrinsic Hall potentials. We
believe that contacted probes give the LCP differences

in the weak-coupling limit (when the measurement does
not change the detected system) while the noncontacted-
probe method proposed by Li and Thouless gives the
EHP differences across the wire.

In our numerical calculation, we use the parameters of
a GaAs wire with R' = 100 nm and n, = 2 x 10~4 and 4 x
10 m . Our results are very sensitive to the accuracy
of the self-consistent EHP and the Fermi wave numbers
and, contrary to the experience of Li and Thouless,
we get stable solutions for multisubband occupancy in a
hard-wall, square-well confining potential.

Figure l(a) shows the current density distribution
when B = 0.25 T and n, = 4x10 m and two
subbands are occupied; Fig. 1(b) is the corresponding
result when B = 1.25 T and only one subband is oc-
cupied. Figures 1(c) and 1(d) show the distributions of
the EHP when B = 0.25 and 1.25 T, respectively, and
Figs. 1(e) and l(f) show the corresponding distributions
of the LCP. The LCP in Fig. 1(f) is shifted down for
convenience. The offset is 0.458 mV as marked in the
picture. Comparing Figs. 1(a) and 1(b), we can see that
the current density for the case of two occupied subbands
spreads in the wire more than for the case of one occupied
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subband since B is increased and the Fermi wave num-
bers of each occupied subband in the former case are both
smaller than the one in the latter case. For the same rea-
son, the amplitude of the EHP, V(y), in Fig. 1(d) and
the difference of the LCP across the wire in Fig. 1(f) are
larger than that in Figs. 1(c) and 1(e), respectively. We
note that there is a kink of the LCP in Fig. 1(e) because
there are two subbands being occupied and no such kink
in Fig. 1(f) for the case of one occupied subband.

Figure 2 exhibits the different behavior of the two kinds
of intrinsic Hall resistance. In Fig. 2(b), the Rr,cp (cir-
cles) shows the steplike behavior which is characteristic of
the IQHE and the value of resistance at the Nth plateau
is h/2e N except on the "last plateau" (Q & I3 & 0.5 T).
This quenching behavior of the IQHE is due to the over-

lap of opposite-going wave functions of the same subband
and we will discuss the details of it in another paper.
We note that the leading edge of the Rggp step is not
as sharp as that of the longitudinal resistance (crosses).
The curvature arises from the overlap between the right-
and left-going waves in our 100-nm wire. Calculations
for larger values of B show that the higher quantization
steps in the RLcp are sharper because the opposite-going'
waves are more separated. We can easily show from Eq.
(6) that, if there is no overlap, then the LCP between
the two edges is equal to that between the two terminals
of the wire and the quantization steps of Bz,gp become
identical to those of the longitudinal resistance. Over-

lap is significant when the Aux through an area W is in
the order of, or less than, h/e. In Fig. 2(b), the results
for REHp (squares) show, in complete contrast to RLcp,
nearly linear dependence on B despite the subband de-
population which occurs at B = 0.5 T. The slope of the
line delineated by these squares is less than that appropri-
ate to an unconfined 2DEG (dashed line) because of the
finite width of the wire and the electrostatic interactions
between electrons. Further calculations have shown that
failure to achieve self-consistency leads to spurious jumps
in REHp associated with the subbands depopulation and
a larger slope which increases when the number of occu-
pied subbands decreases. We see that quantization of the
IQHE is seen only when differences of chemical potential
are measured. The longitudinal resistance is exhibited
by the crosses in Fig. 2. It is exactly quantized because
it is again the result of measuring differences of chemical
potential.

In summary, we distinguish two kinds of potential re-
sponses to a magnetic field and find that they reveal dif-
ferent aspects of the intrinsic quantum Hall effect in a
quantum wire. The two corresponding intrinsic Hall re-
sistances are calculated when one or two subbands are
occupied. Quantization is found for the Hall resistance
associated with local chemical potential in a large mag-
netic field. The overlap of oppositely propagating wave
functions rounds off the front edge of the quantization
steps at lower fields. To a very good approximation the
Hall resistance associated with the electrostatic poten-
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FIG. 1. Current density j(y): (a) B = 0.25 T and

Ij(y)l „=0.3354 A/m and (b) B = 1.25 T and Ij(y)I
1.6968 A/m; EHP V(y): (c) B = 0.25 T and (d) B = 1.25 T;
and LCP U(y): (e) B = 0.25 T and (f) B = 1.25 T. The off-

set to the LCP in (f) is 0.458 mV. Wire width is W = 100 nm
and electron charge density is n, = 4 x 10 m

I IG. 2. Plots vs B of the two kinds of intrinsic Hall resis-
tance, REHp (squares) and RLcp (circles), and the longitudi-
nal resistance (crosses) for a quantum wire of width 100 nm
for the electron densities (a) n, = 2 x 10 m and (b)
n, = 4 x 10 m . The dashed lines in (a) and (b) are the
corresponding Hall resistances for an unconfined 2DEG.
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tial is linearly proportional to the magnetic field (as in
classical systems) despite the occurrence of subband de-
population. Distributions of electrostatic Hall potential,
local chemical potential, and current density are given.
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