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Quantum interference effects for strongly localized electrons
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We examine the role of quantum interference phenomena for strongly localized electrons. The proba-
bility distribution for tunneling between two sites separated at a distance t is computed numerically and
analytically by summing all fonoard scattering paths. We find a uniuersal probability distribution that is

approximately log normal; its mean proportional to t, its variance growing as t ", with co depending on
the dimension d. Since the mean and variance of the distribution are independent, two parameters are
necessary to describe the tunneling probability. High moments of the distribution are, however,
nonuniversal, and dominated by exceptionally good samples. We also study the response of the system
to a magnetic field B, with and without spin-orbit (SO) scattering. Without SO a magnetic field leads to
a small (nonuniversal} increase in the localization length g sealing as B '~'. With SO there is still a posi-
tive magnetoconductance (initially scaling as B't', although there is no change in the localization
length). The above results, obtained from extensive numerical simulations, can be analytically explained

by a replica analysis of moments. They follow from properties of a bound state between replicas: the at-
traction factor is related to the symmetries of the underlying Hamiltonian. Our results are compared
and contrasted with current literature of the subject of strong localization.

I. INTRODUCTION AND SUMMARY

The past decade has witnessed great advances in the
understanding of quantum-mechanical effects on electron
transport in disordered systems. For noninteracting elec-
trons, disorder causes a metal-insulator transition by lo-
calizing the electronic states. The original ideas of An-
derson localization, ' and a heuristic scaling approach by
Thouless, were placed on a more rigorous footing by
perturbative renormalization-group studies. In addi-
tion to providing a systematic basis for the study of the
localization transition in d =2+ c. dimensions, the pertur-
bative approach also describes the role of quantum in-
terference effects in the weakly disordered metal. Such
weak-localization phenomena include the effects of mag-
netic fields, spin-orbit scattering (SO) (corresponding, re-
spectively, to perturbations breaking time-reversal and
spin space symmetries) on the conductivity, and also the
universal nature of conductance fluctuations. ' In the
absence SO, a magnetic Geld causes an increase in the 1o-
calization length, and a factor-of-2 decrease in the con-
ductance fluctuations; with SO, it has the opposite effect
of decreasing the localization length, while still reducing
the conductance fluctuations. ' These phenomena can
be traced to the quantum interference of time-reversed
paths in backscattering loops, and their suppression by
magnetic fields and SO." An alternative description of
these phenomena is based on the theory of random ma-
trices, ' where the only input is the symmetries of the un-

derlying Hamiltonian, and their modification by a mag-
netic field. Mesoscopic devices at low temperature have
provided many experimental verification of meak-
localization theory, "' and there are many excellent re-

views on the subject. ""
By contrast, there have been few studies of the behav-

ior of conductivity and its fluctuations for strongly local-
ized electrons. The theoretical perturbative approaches
to weak localization break down and are not appropriate
in this regime. On the experimental side, it is much more
difBcult to measure the variations in the much smaller
conductivities of insulators. The main mechanism for
conductivity in this regime is by thermally activated
quantum tunneling between the localized sites. Accord-
ing to Mott s description of variable-range hopping
(VRH), ' at lower temperatures T, the electron tunnels a
greater distance to find a localized site of closer energy.
Balancing the probabilities for hopping and thermal ac-
tivation, Mott concluded that in 1 dimensions the tunnel-

ing length scales with temperature as

t=g(T /T)' '"+",

where To is a characteristic temperature, and g is the lo-
calization radius of impurities at the Fermi level. In this
regime, the optimal hopping length is many times greater
than the localization length g. The localized sites are
then assumed to be connected by a classical random resis-
tor network. ' Since the individual resistors are taken
fram a very wide distribution, it is then argued' that the
resistance of the whole sample is governed by the critical
resistor that makes the network percolate. This leads to
a dependence

cr( T)=o oexp[ —( To /T)' ' +"],
for the conductivity. This behavior has been verified ex-
perimentally both in two and three dimensians. '
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How does a magnetic field influence the conductivity in
the VRH regime? The simplest picture is that a magnetic
field causes the impurity orbitals to shrink, leading to a
decrease in the tunneling probability, i.e., a negative mag-
netoconductance (MC). ' ' However, recent measure-
ments find a positive MC in Si-inversion layers,
GaAs, and In203 films. Furthermore, the observed
reproducible conductance fluctuations are quite sugges-
tive of quantum interference (QI) effects. Nguyen,
Spivak, and Shklovskii (NSS) (Ref. 27) have proposed a
model that accounts for QI of multiply scattered tunnel-

ing paths in the hopping probability: In between the
phonon-assisted tunneling events, the electron preserves
its phase memory. However, at low temperatures, it tun-
nels over very large distances according to Eq. (1.1},and
encounters many impurities. The overall tunneling am-
plitude is then obtained from the sum over all trajectories
between the initial and final sites. NSS emphasized that
since the contribution of each trajectory is exponentially
small in its length, the dominant contributions to the sum
come from the shortest or forward scatt-ering paths. The
traditional explanations of weak-localization phenomena
that rely on the QI of backscattering paths are therefore
inappropriate to this regime.

Indeed, the MC and fluctuations observed experimen-
tally, though qualitatively similar to those of a disordered
metal, have considerably larger magnitudes. There are
three relevant length scales in the problem that must be
discussed in order to make comparisons with experi-
ments: the lattice spacing a, the localization length g,
and the hopping length t. In all the experimental systems
that exhibit VRH, the localization length g is much
larger that the lattice spacing (g-10a at least), due to the
weak binding of the donated electron (or donated hole} to
the impurity center. This fact allows for localization only
over many lattice spacings, and renders the localization
phenomena relatively independent of the nature of the
dopants. In contrast, the ratio t/g is more variable, and
is (as we will discuss later) crucial in identifying the ap-
propriate regime of validity of the directed-path ap-
proach. We note that the condition for the NSS model to
give reasonable predictions is that the hopping length be
much larger than the localization radius. This condition
seems to be realized in the systems studied experimental-
ly: In203 „(Ref.23) at temperatures in the mK range
has t —5 —10(, while in the GaAs system t-5 —6g. '

This is also true of the Y„Si& „system in a recent study
where the condition t-8g can be reached for certain
samples. When the hopping length becomes of the order
of the localization length, the directed-path approxima-
tion is less appropriate, as backscattering becomes impor-
tant and weak-localization effects set in. A scenario has
been given by Zhao et al. that illustrates the interplay
between length scales: They suggest that one can divide
the region of tunneling into blobs of the size of the locali-
zation length and assume that backscattering is impor-
tant within each blob region, but not between blobs.
When there are many blobs to a hopping length, paths
connecting centers at the Fermi level are essentially
directed and backscattering is therefore less important.
On other hand, when the blob size is of the order of the

upper cutoff given by the hopping length, the coherence
region for VRH should be dominated by weak-
localization mechanisms.

Numerical simulations of forward-scattering paths in
small systems indeed indicated a positive MC in qualita-
tive agreement with the experiments. NSS also provided
a theoretical explanation of their results by regarding the
forward-scattering paths as independent random vari-
ables. This independent-path approach (IPA) was later
combined with a percolation analysis of the random net-
work, and also extended to include SO effects. ' Both
in the presence and absence of SO, the IPA predicts a
small positive MC (5o /o —1), but no change in the lo-
calization length. The actual MC observed in experi-
ments is much larger. A different approach to the prob-
lem extends the random matrix approach (RMA) to
strongly localized electrons. The RMA predicts that a
magnetic field leads to a doubling of the localization
length g (big, positive MC) without SO, but a halving of g
(big, negative MC) in the presence of SO. Yet a different
heuristic argument concludes that the factor-of-2 in-
crease in g is only valid for quasi-one-dimensional sys-
tems, and predicts a nonuniversal increase in higher di-
mensions. Clearly, these approaches lead to conflicting
predictions that we believe are due to inherent limitations
of the approximations involved. Over the past three
years we undertook extensive numerical studies of the
NSS model. We used a transfer-matrix procedure that al-
lowed exact summation of forward-scattering paths for
very large systems (t =10 —10 ), and obtained statistics
by averaging over many realizations ( =10 ) of random-
ness. These results, combined with some analytical in-
sights, provide a coherent description of the behavior of
strongly localized electrons. The main conclusions have
already appeared in three short papers, which give
only sketches of the numerical simulations, and the
essence of the theoretical arguments. The purpose of this
paper is to provide the details, fill in the gaps, and also to
report on a number of unreported new results.

To understand the general philosophy of this ap-
proach, it may be helpful to make a comparison to the
problem of phase transitions in Heisenberg magnets.
The weak-localization approach is similar to the lom-

temperature expansion for magnets. One starts with the
ordered phase (metal) and perturbatively includes fluctua-
tions (randomness). Both approaches yield a (potentially
exact) description of the correlations in the ordered
phase, a perturbative 2+ c estimate of the exponents asso-
ciated with the disordering transition, and are inapplic-
able to the disordered phase. To describe the correlation
functions in the disordered phase of the magnet, high-
temperature expansions have to be used. In such an ex-
pansion, the spin-spin-correlation function between two
points is dominated by the shortest paths between them,
and decays exponentially with their separation. This is
qualitatively the same as the decay of localized wave
functions, except that in the latter case there is an overall
disorder that makes the correlation function inhorno-
geneous. Thus one should instead consider the whole
probability distribution for the decay of the wave func-
tion. Indeed, different moments of the wave function
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may well decay with different "localization lengths. "The
goal of this paper is to study this more complicated be-
havior of correlation functions in the disordered phase of
a quenched random system. In the context of localiza-
tion, the appropriate tool is the locator expansion, which
starts with completely localized sites, and perturbatively
includes the wave-function overlaps. However, the struc-
ture of the series is similar to high-temperature expan-
sions for spin glasses and random-bond magnets. We
thus expect that the universal aspects of our results are
equally applicable to the disordered phase of all of these
systems. An outline of the conclusions is given below.

Section II introduces the NSS model, and explains the
locator expansion' for the tunneling amplitude +. The
transfer-matrix procedure is then introduced as an
efficient numerical algorithm to sum the contribution of
forward-scattering paths to O'. The results from many
realizations are then used to construct the probability dis-
tribution for tunneling P (4') as a function of the hopping
range t. We find that the probability distribution is very
broad, so that it is more appropriate to consider
P[ln+(t)]. The average (in+(t)) is proportional to t; its
prefactor can thus be used to define an inverse localiza-
tion length g '. The variance of in+(r) also grows with t,
but only as t "with co=0.33+0.05. An analytical inter-
pretation of these results is provided by examining the
moments (%(t)") of the tunneling amplitude, which de-
scribes n interacting forward-scattering paths. The odd
moments vanish by symmetry, while the even moments
are dominated by n paired paths forming a bound state,
implying

(%(t)")= (4'(t) )"exp[pn(n I)t] —. (1.3)

It follows from Eq. (1.3) that different moments have
different decay lengths. Equation (1.3) is the characteris-
tic function for ln+, and implies

(1.4)

The inverse localization length g
' is thus the sum of a

trivial part go
= —ln(%'(t) ) /t, originating in local over-

lap and geometrical factors, and a global part gs '=p
arising from the interference of all paths. From Eq. (1.3)
we further deduce the scaling of fluctuations as

(1.5)

in agreement with the numerical results. Section II con-
cludes with some recent numerical results on the question
of a possible sign transition in two dimensions —we find

no evidence for such a transition.
Section III examines the role of a magnetic field B on

tunneling. We first examine the resulting intriguing in-

terference patterns for tunneling under a regular lattice.
This can be regarded as the extension of Hofstadter's

work to localized states. With disorder, our numerical

results indicate that the form of the probability distribu-

tion in still the same as Eq. (1.3) but now the parameter p
depends on the magnetic field B. Increasing 8 leads to an

increase in the localization length (hence enhanced tun-

neling and a positive MC}, and a sharpening of the distri-

bution P[ln+(t)]. Both effects are consistent with a

reduction in p, which in turn is theoretically explained in
terms of the loosening of the bound state in replica space.
The initial increase of the localization length is found to
scale as 8', i.e.,

5(ln+(t, B)) —+B'i~t .

The new results in this section describe the behavior of
MC at very small magnetic fields, which may be more ap-
propriate to the experiments.

The effects of spin-orbit scattering are studied in Sec.
IV. As we are interested mostly in the universal proper-
ties, we examine the extreme limit of strong SO by ran-
domly rotating the spin at each impurity site. Switching
on the SO interactions leads to an immediate increase in
the localization length g (reduction of p), but the addition
of a magnetic field has no further effect on g. There is a
much smaller enhancement of tunneling due to an in-
crease in an overall prefactor to Eq. (1.3). Thus for both
with and without SO, there is a positive MC, the latter is
large and accompanied by an increase in g, while the
former is small and there is no change in g. For small
fields, the increase in MC, with SO, behaves as

ifB t (]
5(ln+(t, B))so-', Q 3const if B t &1 .

These results are clearly in conflict with the predictions
of IPA and RMA reported earlier. We comment on the
limitations of the approximations that lead to erroneous
conclusions. An appealing picture emerges from exam-
ination of moments (4 "(t,B)) in replica space: The im-
purity averaging collapses the 2n paths into n pairs.
Upon each intersection, the paired paths can exchange
partners leading to an exchange attraction. The ex-
change factors reflect the symmetries of the Hamiltonian:
3 for orthogonal symmetry (no SO, B =0), 2 for unitary
symmetry (no SO, large B), and —', for the symplectic case
(with SO). The exchange attraction then binds the n

pairs, and leads to the moments given in Eq. (1.3). The
observed MC trends then reflect the changes in the ex-
change attraction upon including a magnetic field.

As mentioned earlier, Eq. (1.3) describes the behavior
of moments of two-point correlation functions in the
disordered phase of many two-dimensional systems: it is
applicable to spin glasses, random-bond magnets, as well
as localization. However, it cannot be valid for arbitrary
large n, since it would imply an increase in correlations
for sufficiently large n. This point is addressed in Sec. V,
where we argue that the very high moments of the distri-
bution are actually nonuniversal, and simply reflect the
moments of local impurities. It is interesting that a sirni-
lar nonuniversality is also observed close to the localiza-
tion transition, in a weak-disorder expansion. We pro-
vide both heuristic arguments and results on a hierarchi-
cal lattice that support this nonuniversality in the strong-
ly disordered regime. All the results reported so far de-
scribe two-dimensional systems. Possible extensions and
implications in higher dimensions conclude Sec. V.

If we accept the standard expressions for Mott
variable-range hopping in Eqs. (1.1) and (1.2), then Eqs.
(1.5)—(1.7) make quantitative predictions for the varia-
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tions of conductivity with temperature and field. [For ex-
ample, Eq. (1.5) implies that for d =2, the fiuctuations in
log conductivity should grow as T ' upon reducing
temperature. ] Actually, both assumptions can be ques-
tioned. Equations (1.5)—(1.7) provide a correct descrip-
tion of macroscopic conductivity, if indeed the variations
in a single tunneling event (the critical resistor) dominate
the resistivity of the sample. It is more diScult to ac-
count for the overall behavior if the contributions of
many resistors are important. ' o'

.Equation (1.1} also
breaks down in the presence of Coulomb repulsions. '

Naively, one might expect to use the same results, but
with the dependence appropriate to the presence of a
Coulomb gap [e.g., t —T '~ in d =3 (Ref. 19}]. Howev-
er, interactions can also modify the universality classes in
ways that we have not explored. (They will most prob-
ably introduce a crossover length scale, associated with
phase breaking, beyond which the results are not valid. )

An even greater impediment is the asymptotic nature of
our results, which hold for t »g. This is far from the vi-
cinity of the metal-insulator transition where most mea-
surements are performed. Measuring the variations in
the small conductivities of strongly localized electrons
will certainly be a challenge for experiments. The most
important consequence of our results is providing a
theoretical understanding of the nature of correlations in
the strongly disordered phase.

II. QUANTUM INTERFERENCK
OF FORWARD-SCA'I LKRING PATHS

A. The NSS model

The object of this work is to investigate the possible
role of coherent QI effects in the VRH regime. This is
motivated by clear experimental observations of reprodu-
cible conductance fluctuations and positive MC, unex-
pected in the absence of interference phenomena. The
existence of long hops between phase randomizing (pho-
non scattering) events, extending over many intermediate
impurity sites, provides a source for such interference.
The hop is no longer a single event but a superposition of
many possible multiple-scattering paths between the ini-
tial and final sites; intermediate scattering being elastic
preserves the phase memory of the electrons (i.e., phase
changes are deterministic). The model that is the basis of
this work, as proposed by Nguyen, Spivak, and
Shklovskii, considers QI for a single resistor in the
Miller-Abrahams network, ' i.e., a single hop. As depict-
ed in Fig. 1, the impurities of this model are placed on a
regular lattice. The initial and final impurity sites are on
diagonally opposite corners of a square lattice; the inter-
mediate elastic scattering impurities are located at the
internal sites (the site model; for computational conveni-
ence, the impurities are sometimes located at the bonds in
a bond model). Electrons emerging from the initial site
may follow many possible trajectories that lead to the
final site. The overall probability amplitude is obtained
by the sum of all paths between the two paints and in-
cludes their quantum-mechanical interference. Quantita-
tively, the intermediate scattering is governed by an An-
derson tight-binding Hamiltonian

FIG. 1. The NSS geometry used in the simulations. Two
directed paths are indicated, connecting (0,0) to (0, t =2t').

%= ge;a;a;+ g V; a;a
i (ij)

(2.1)

V if i,j are nearest neighbors

0 otherwise .

We will generally assume p =
—,', but will briefly discuss

the effects of different p values, presumably emulating the
effects of changing the Fermi energy. To describe
strong localization, the Anderson parameter is taken to
be much smaller than one (V/8'« I), corresponding
physically to a lightly doped semiconductor. This param-
eter tells us that the width of the band (-2 V} centered
at energy W is much smaller than its energy difference to
the Fermi level.

Using this model, the situation deep in the insulating
regime is studied by performing a "locator" expansion
valid in the limit

~ VJ ~

= V&&(E —e;), where E is the
electron energy. Indeed, for V =0, the eigenfunctions are
just the single site states, and the localization length is
zero (no transfer term}. For V/(E —e;)«1, various
quantities can be obtained perturbatively around this
solution, as expressed by the I.ippman-Schwinger equa-
tion in the number representation

!++&=!e&+ . v)e+& .E —Ho+ i5

The bare Hamiltonian

Ho= ge;a, a;

(2.2)

has no nearest-neighbor coupling, while the perturbation

where e; are the site energies and V;. represent the
nearest-neighbor couplings or transfer terms. NSS fur-
ther simplify the problem by choosing site energies distri-
buted according to

+ 8' with probability p,
—8' with probability (1—p)

and a transfer term
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V= g V,,a,ta,
&ij &

describes the small transfer terms. ~4) represents the
state with a localized electron at the initial site (or in-
cident wave), ~%+ ) the state with a localized electron at
the final site. In the coordinate representation, the wave
functions are exponentially localized around the impurity
sites and there are no propagating waves, since electrons
can only tunnel under a potential barrier. (This situation
was first addressed in detail by Lifshits and Kirpichen-
ko. ') We can now iterate this implicit equation to ob-
tain an expansion in powers of the ratio V/(E —e; ) as

E H+—'5E Ho+i5
1 1

E —Ho+i 5 E Ho+—i 5

(2.3)

Acting with ( 4+
~

on the left and taking 5 to zero, we ob-
tain the overlap between the two states:

(e'le'&=&c+le)+(e+ v eE —Ho

directed
(2.6)

contribution, i.e., by a lattice random walk that is conver-
gent for z( V/W) &1, where z is the lattice coordinate
number. This provides a lower bound for the delocaliza-
tion transition, and the series is certainly convergent for
smaller values of V/8'. In the random-walker problem,
loops become important only after the transition, while
for values of ( V/W) &1/z there is a maximum size for
typical loops set by a finite correlation length g. For dis-
tances larger than g, it is sufficient to examine directed
paths. We expect a similar picture to hold for Eq. (2.5),
with g the localization length. With ( V/W) « 1, the lo-
calization length is less than a single lattice spacing, and
only directed (forward scatte-ring paths) need to be con-
sidered. Loops (backscattering paths) are irrelevant in the
renormalization-group sense. This reduction to shortest
paths is a considerable simplification and allows efticient
numerical study of the strongly localized regime. For
sites separated by a distance t along a diagonal of the
square lattice, Eq. (2.5) is now simplified to

(i IG(E)lf ) = J(r),

(2.4)

For a more general transfer term V connecting all sites,
the first term represents an electron starting from the ini-
tial site and ending at the final site without scattering (the
overlap (4+~4)); the second term represents electrons
scattering once off intermediate sites, the third, scattering
twice, etc. The operator V acting on ~4) produces a fac-
tor V for each segment crossed, and Ho acting on a par-
ticular site i results in e;, the noninteracting site energy.
Thus fina1ly we arrive at a simple expression for the am-
plitude or the Green's function between the initial and
final states as

(2.5)

Note that we have also introduced a magnetic vector po-
tential defined on the bonds; its effects are treated in the
next section.

The terms in the above perturbation series correspond
to all paths I connecting the end points; i ~ label the sites
along each path. In the NSS model the site energies are
e; =+8'with equal probability, while the initial and final
impurities have practically the same energy, equal to the
Fermi energy; hence without loss of generality we set
EF =E =0. All the energy denominators in Eq. (2.5) now
contribute the same magnitude 8', but random signs

=e; /8'. A path of length I now contributes an am-

plitude W( V/8') to the sum, as well as an overall sign.
In the localized regime, the sum is rapidly convergent,
dominated by its lowest-order terms. ' In general, the
sum is bounded by one in which all terms make a positive

the sum is now restricted to the subset I" of shortest
paths, two of which are indicated in Fig. 9 [corrections
are 8( V/e)'+ ]. All the interference information is now
contained in J(t). The geometry chosen by NSS maxim-
izes possible interference by having a large number of
shortest paths. For tunneling along the sides, rather than
the diagonal, of a square lattice, there is only one shortest
path. Then including longer paths with kinks is essential
to the interference phenomena. However, the analogy to
random walks suggest that the universal behavior is the
same in the two cases: the approach to asymptotic be-
havior is much slower in the latter. These issues will be
further discussed in Sec. V.

B. Numerical results

For each realization of randomness, the contribution of
forward-scattering paths to J(t) in Eq. (2.6) can be com-
puted exactly using a transfer matrix method-Let J(x,.r)
denote the sum over all such paths from (0,0) to (x, t) (see
Fig. 1), including the random sign g~„,~. Clearly
J(x,t+1) only depends on J(x —l, t), J(x+1,t), and
the random sign g[,+», and hence can be constructed
recursively using

J(x, r +1)=g(,+,)[J(x +1,t)+J(x —l, t)] . (2.7)

Although the number of paths contributing to J(t)
=J(0, r),

t large
JV=

/2
—2',

grows exponentially with t, the transfer-matrix procedure
calculates the sum is polynomial time. The computation
time increases approximately as the volume of the sys-
tem, since the above recursion relation is invoked once
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for each lattice site. Ultimately, the results have to be
averaged over many realizations of randomness.

We typically performed numerical computations on
systems of up to size t =2000, and averaged over 2000
realizations of randomness, on a VaxStation II. The ran-
dom numbers (+1 or —1) were obtained from a well-
tested random-number generator, with shufHer. Since J
grows exponentially in t, lnl Jl has a well-defined proba-
bility distribution; we examined its mean ( ln l J ( t) l ) and
variance ( ln

l
J ( t) l ) —( ln

l
J ( t) l ) for p =

—,
' (both signs

equally probable). We also computed the typical excur-
sions of the paths in the lateral direction as defined by

I

C4

C

10.

(2.8) 10 10 10

and

(2.9)

FIG. 2. Standard deviation of the logarithm of the sum over
directed paths vs the path length t. The dashed line has a slope
of co= —,'. (Disorder averaging is denoted by the angular brack-

ets. )

Here ( ) represents averaging over realizations of ran-
domness, while [ ],„

is an average over the lateral coordi-
nate at a fixed t, using a weight l J(x, t) l

. (The lateral ex-
cursions where computed on a open geometry. )

The quantity lnl J(t) l is similar to a quenched average
free energy, and we confirmed that as any extensive quan-
tity it grows linearly with t [(lnl J(t)l )
=(0.322+0.001)t]. Typical fluctuations for lnl J(t) l,
plotted in Fig. 2, show a power-law growth as t" with
co =0.33+0.05 (fitting the asymptotic region). For
several choices of t we also checked in detail that J(t) is
positive or negative with the equal probability, and that
histograms of lnl J(t)l (the whole probability distribution)
are well fitted to Gaussian forms whose average and fluc-
tuations conform with the previous results. For lateral
excursions, Fig. 3, we obtained good data from simula-
tions with t =4000, and with 200 realizations of random-
ness [reasonable data for fluctuations of lnl J(t) l

are only
obtained from higher averaging]. The results for
([x2],„)and ([x]~„)seem to converge to a common
asymptotic limit; our fit corresponds (dashed line in Fig.
3) to a power law t "with v=0. 68+0.05. The diff'erence

between the latter quantities is also depicted, and
(( [x ] ) —( [x ] ) )'~ grows as t '~, a subleading power
law.

We interpret these results as due to a distribution of
lJ(x, t)l with a width growing as t', while its center
fluctuates as t". As discussed in the next section, this be-
havior is reminiscent of the fluctuation of directed poly-
mers in random media. ' For directed polymers, fluc-
tuations of the "center" can be visualized as stretchings
of a coarse-grained path length by x /t. The associated
energy cost of stretching is tolerated if sufficient free-
energy fluctuations are available. As the free-energy
fluctuations increase like t, this implies the exponent
identity 2v —1=co, consistent with our numerical re-
sults; co= —,

' and v= —', . However, using a similar pro-
cedure, Zhang concluded from fits to his numerical re-
sults a value of v=0. 74+0.01. Using a variety of
theoretical arguments, he suggests co= —,

' and v= —', . The
value of co= —,

' is clearly consistent with our data, while

v= —,
' can be obtained if one fits only to ( [x],„).More re-

cently, Gelfand has resolved this conflict by performing
highly averaged simulations on smaller lattices. The
most important ingredient of his analysis is the inclusion
of corrections to leading scaling. The results of Gelfand
are completely consistent with our estimates, and again
rule out the proposed values of Zhang.

1O'

104

1O' I-

102

101

1O'

1O' 1O' 10 10 10

t
FIG. 3. Transverse fluctuations measured by ([x ],„)and

([x],„)vs the path length t. The dashed line has slope 2v= —.
The difference between the two curves appears to grow linearly
in t. The dashed-dotted line has a slope of 2.

C. Analytical results

Analytic information about the probability distribution
can be extracted by examining the moments (J") and
the related characteristic function for ln

l
J ( t) l. As each

term in J describes a path traversing the random medi-
um, terms in J" correspond to the product of contribu-
tions from n independent paths. Upon averaging, if m
paths cross a particular bond (O~m &n), we obtain a
factor of [1+(—1) ]l2, which is 0 or 1 depending on
the parity of m. For odd n there must be bonds with m
odd, and hence ( J2"+ ' ) =0; which, of course, implies
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and follows from the symmetry P (J)=P ( —J). For even
moments (J "), the only configurations that survive
averaging are those in which the 2n replicated paths are
arranged such that each bond is crossed an even number
of times. The simplest configurations satisfying this con-
straint correspond to drawing n independent paths be-
tween the end points and assigning two replica indices to
each. The above constraint is also satisfied by forming
groups of four or higher even numbers, but such
configurations are entropically unlikely, and we shall
henceforth consider only paired paths. There is an im-
portant subtlety in calculating (J ") from the n paired
paths: After two such paths cross, the outgoing paths
can either carry the same replica pair labels as the ingo-
ing ones, or they can exchange one label [e.g.,
(12)(34)~(12)(34), (13)(24},or (14}(23)].Therefore, there
is a multiplicity of three per crossing of paths, which
means that such intersections are statistically favored.
This can be regarded as an attraction between paired
paths induced by the exchange of a replica partner.

Calculating (J ") is now reduced to finding the sum
over n paired paths attracted to each other by a factor of
3 per crossing. Its functional form is most easily calculat-
ed in a continuum limit by regarding the paths as world
lines of n attracting particles in one dimension described
by a Hamiltonian

n Q2—&„=nln2+y g +0 g 5(x —xp) .
a=1 ~+a P) a

(2.10)

t ~large

(J ")=Tr[exp( %„t}] = —exp( E„t), —(2.11)

where e„is the n-body ground-state energy (the largest
transfer-matrix eigenvalue), which dominates the long-t
statistics. In order to obtain the ground-state energy, we
need the ground-state wave function which for this sys-
tem is given by the well-known Bethe Ansatz

The first term describes the choice of two directions per
step; the second term is a kinetic-energy term from parti-
cle motion, and y is an eff'ective line tension (in the NSS
model it is entropically generated from the light cone
constraints). The last term describes the contact attrac-
tion between replicas due to partner exchange. The n-

body partition function is then computed as

—:exp g—C,.[lnJ(t) ]i! (2.14)

C, is the average, (inJ(t) ), while the absence of an n2

term in Eq. (2.13) indicates no second cumulant at order
of t (It d. oes not rule out a subleading power of t for the
variance. ) The n term refiects a third cumulant scal-
ing as t, i.e.,

(lnJ(t) ) =[ln2 —p]t,
C2[lnJ(t) ]=0 (to order t),
C3[lnJ(t) ]=6pt .

(2.15)

Hence 1n~J~ is approximately normally distributed: Its
average increasing as t, and fluctuations growing as t '

i.e., co =—
„

in agreement with numerical simulations. Due
to the usual dii5culties of mappings between discrete and
continuum theories, it is not easy to estimate the parame-
ters y, o. , and hence p in general. Based on the reduced
value of ( ln~ J(t)

~ ), we can estimate po=0. 053+0.002 for
the NSS model in zero field. As noted earlier, the above
arguments are almost identical to those presented for
directed polymers in a random potential. The concep-
tual difference is in the origin of the attraction between
paths, which in this case is purely a statistical exchange
effect. The averaging also introduces multiparticle in-
teractions in Eq. (2.10). In the continuum limit l' »a,
these interactions should be unimportant, although
Zhang has questioned this assumption. They certainly
do not modify the results for the directed polymer prob-
lem.

The final expression for the full Green's function [Eq.
(2.5)] is

&»l(ilGlf ) f') = ——pt, — (2.16)

moments of J grow faster than n!, thus violating the con-
ditions for attaining a unique probability distribution;
this does not necessarily mean that a universal distribu-
tion does not exist, as discussed in Sec. V.) However, by
definition, cumulants C; of the characteristic function for
lnJ are obtained from the powers of n in the expression

(J(t) ")= (exp[n lnJ(t) ] )

2.12) whereVo=C exp ——g ~x —
xi'~

P)a

where C is a normalization constant. To ensure that %0
is an eigenfunction of %„,we have to match its discon-
tinuities when two particles cross to the strength of the
attractive interaction. This requires 4yv= 0. , and intro-
duces a transverse length scale I*=~ ' =4y/cr . For the
continuum approximation to hold, we need l* ))a,
where a is the lattice spacing. Substituting %'0 in the ei-
genvalue equation yields

~K—e =n ln2+ ' n (n —1),n 6
(2.13}

&zw
V

go= 2 ln (2.17}

is the local contribution to the localization length involv-
ing only the Anderson parameter. There is also a global
contribution gg =p from the quantum interference in-
formation. For the NSS model kg=20, and indeed the
asymptotic behaviors in Figs. 2 and 3 only become ap-
parent beyond this scale. It is g that parametrizes the
universal aspects of the distribution, and its variations as
discussed in the following sections, in particular

1/3

where ya. /6—=p is a positive constant. Hence, for large

r, (J(r) ")-2"'e~"'" '", as in Eq. (1.3). (Note that the
51 [n(i(G(f ) f— (2.18)



QUANTUM INTERFERENCE EFFECTS FOR STRONGLY. . . 9991

D. The "sign" tran~ition

We have focused so far on the symmetric case ofp =
—,'.

In their original paper, NSS (Ref. 27) also raise the possi-
bility of a "sign" transition as a function of p: For small
concentrations p of negative signs, the "sign" information
is maintained, while for p )p, positive and negative J are
equally likely. The experimental consequence of this sign
transition is a change in the frequency of Aharonov-
Bohm oscillations from hc/e to hc/2e. NSS were led to
this conclusion from numerical results on systems of size
t &200, with over 2000 realizations of randomness,
which exhibit a continuous change of the "order parame-
ter" b,P=P(J &0)—P(J (0) for impurity concentra-
tions close to p =0.05. In this section we briefly review
the arguments for and against such a transition, and
point out the difficulties of settling this question numeri-
cally.

To support the "sign" transition, NSS proposed a sim-
ple explanation based on an independent path ap-proach
(IPA). The mean value ofJ is easily calculated as

(2.19)

The first term is just the number of paths, while the
second comes from (ri, ) =(1—2p) for each bond along
the path. Similarly, the second moment is given by

&z'&=(
a

=2'+ g (J Jp) =2'+2'(2' —1)(J Jp) . (2.20)
aAP

In the IPA approximation, the paths are treated as in-
dependent variables. Hence, (J J&)=(J, )z, so that the
fluctuations ofJ are

(2.21)

NSS argue that (J ) is the extent to which "positive"
paths exceed "negative" ones in the sum, and that its rel-
ative magnitude compared to the fluctuations gives a
characterization of the phases: If the phase is dominated
by one sign, we expect the average to win out over the
fluctuations, and the ratio (J ) /5J to diverge with the
size t. On the other hand, if both signs are equally prob-
able, the fluctuations will win over the average, and
(J ) /5J vanishes. The boundary between the two behav-
iors occurs for 2(1—2p)=v'2, i.e., at a p, =0.14 (com-
pared to the numerical estimate ofp, =0.05).

Shapir and Wang were the first to criticize the as-
sumption of independent paths. They showed, by com-
puting (J J&) more carefully, that corrections to IPA
invalidate the argument in that the corrected fluctuations
exceed the average for all values ofp. They thus conclud-
ed the absence of a phase-preserving sign information,
and the associated hc/e periodicity in oscillations. This
is again due to the correlations between paths that lead to
the formation of bound states in the computation of mo-
ments (J"(t)). We can repeat the analysis of the previ-
ous section for general p: As a result of averaging, we ob-

1.0 —~
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t =400
t =600

0.6—

04—

0.2—
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FIG. 4. The dependence of hP=P(J )0)—P(J &0) on p,
the probability of —signs, for t up to 600.

tain a factor of (1—2p) for any odd number of paths
through a particular site. Thus for pA —,

' double occupa-
tion is no longer absolutely necessary, although the re-
duced factor of 1 —2p for p%0 attracts the paths togeth-
er. For small p we again expect a bound state in which
the n replicas appear on the same footing. The result
(J (t)) »(J(t)) merely reflects the formation of the
two-particle bound state. However, at p =

—,', we have a
bound state of pairs, i.e., a dimerization occurs some-
where between p =0 and —,'. We currently cannot answer
whether this is a true phase transition (possibly a
reflection of the "sign" transition, or a crossover). A re-
cent study by Wang et al. employs an exact enumera-
tion of all impurity configurations, and seems to suggest
the absence of a transition. However, such an approach
is necessarily limited to small sizes, and the results for
t ~ 10 may not necessarily reflect the true asymptotics.

We performed simulations of the NSS model close to
the proposed transition. We generated systems of size
300X300 (t =600), performing 100 realizations of ran-
domness for both the random-site and random-bond
models. As the NSS simulations concern the site model,
we will also focus on the former. The results for hP
versus p in Fig. 4 are qualitatively similar to those of NSS
for small t. However, the figure clearly indicates that the
asymptotic limit does not set in for these sizes. A transi-
tion, if one occurs at all, takes place below p =0.05. Fig-
ure 5 shows a rapid decay of the "order parameter" hP
with size above p =0.02 The characteristic length for
these decays becomes progressively larger as p is de-
creased. A study of much larger systems, and a careful
finite-size scaling analysis, is necessary to distinguish be-
tween a crossover and a second-order transition with
p, =0.02. Further work is in progress.

The observation of only hc/2e oscillations in experi-
ments seems to support the absence of a phase transi-
tion. An interesting percolation study by Xie and Das-
Sarma ' shows that the change in frequency of the oscil-
lations from hc/e to hc/2e associated with the sign tran-
sition only occurs for finite-size Aharonov-Bohm rings.



9992 ERNESTO MEDINA AND MEHRAN KARDAR 46

1.0 I—

0.8 I—

O. 4 [
0.2 'r

0

100 200 300 400 500 600

FIG. 5. AP vs size t for difkrent values of p. The very slow
decay (nonexistent within numerical resolution) for
p =0.01-0.02 leaves open the possibility of a phase transition.

III. MAGNETIC-FIELD RESPONSE

As the rings increase in size, the critical concentration
decreases, approaching zero, with, again, a somewhat
slow convergence. Actually, an analytical argument of
"mean-field" flavor, and hence probably correct for di-
mensions d &4, by Obukhov, does support the ex-
istence of a "sign" transition. Its absence in our numeri-
cal simulations may indicate that the lower critical di-
mension for this transition must exceed two.

the generalized Bloch states in a magnetic field. In this
section we consider a different regime of the same prob-
lem. A state localized near an impurity site, with an en-
ergy deep in the gap of the bulk spectrum. For a gap
state, one expects an exponential decay of the wave func-
tion into the bulk, but we shall demonstrate that the de-
cay of the wave function exhibits an interesting depen-
dence on the field.

We again start with the NSS model, but this time all
the intermediate energies are equal (e; =+ W for all i, ex-
cept for the initial site, which has zero energy). A mag-
netic field is introduced through the phase of the overlap
terms, i.e., V—+ Ve', where A is the gauge potential. We
chose the "diagonal staggered gauge" as depicted in Fig.
6 with 3 (r) =+ar/2, where a =2~a(I!/(t!o is the fractional
flux per plaquette. With this choice, the transfer matrix
has no x dependence, but depends on t. Equation (2.7)
can now be generalized, and written in matrix form as
J(r+ l)=T(r)J(r), with a transfer matrix

& x
I
T(r) Ix' & =exp l 0,'7

x,x +1

l CXT+exp 5„,.

As Fig. 7 indicates, the amplitude for tunneling a dis-
20 ! !

(a) (I)/q, = o. 6

A. Tunneling under a pure potential

Before describing the effects of a magnetic field on lo-
calized electrons, we briefly describe its influence on tun-

neling under a uniform lattice potential. The intriguing
behavior of electrons on a lattice subject to an external
magnetic field has captured the attention of many physi-
cists. Many of the unusual behaviors originate in the in-

commensurability of the magnetic length with the lattice
spacing. ' Hofstadter, for example, describes in great
detail the band structure of noninteracting electrons, and

0—

—20
0 100 200 300 400 500

X

0.5—

-0.S!-

(x, 7 -1)

(x-l, x )

-10 I-

0 100 200 300 400

FIG. 6. NSS geometry in a magnetic field, and the "diagonal
staggered gauge. " Directed paths of length t are paired by the
randomness averaging. Right- (left-) pointing arrows indicate
paths from J (J*).

FIG. 7. Behavior of J(B,t) for large fields. The Aux per pla-
quette is (a) rational, P/go=0. 6, and (h) irrational,
blgo = (&5—i ) /2 (the golden mean).
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tance t is very sensitive to the commensurability of the
fiux per plaquette. For rational values of P/Po, J(t) ex-
hibits a regular pattern, and is in fact very large at special
values of t O. n the other hand, for an irrational P/(I)o it
seems to randomly fluctuate between —1 and +1.

The diagonal staggered gauge also has the advantage
that the transfer matrices at difFerent ~ slices commute
([T(r),T(r')]=0), and are hence simultaneously di-
agonalizable. This is accomplished in a Fourier basis,
and the eigenvalues are

a7
A,~(a, r)=2cos —p (3.2}

where p labels the transverse momentum channels. Fi-
nally, we obtain

Z, (x, ))=(x tt T(r) 0
v=1

and

a7= g g2cos —p exp( ipx—}
P 7.=1

(3.3}

J(B,t) =J&(0, t) = g—g 2cos —p
p &=1

(3.4)

(p —ar/2)

p 7

= +exp
1 (p —ar/2)

In the continuum limit we arrive at

J=f dp exp ——p t — +1 q apt a t
2 2 12

The sum is dominated by its saddle point at p"=at/4,
which implies

which is, of course, an exact sum of forward scattering-
paths in the nonrandom problem. From Eq. (3.4} we can
identify a number of distinct behaviors: For small fields
such that less than one Aux goes through the entire "sam-
ple" (between the hopping end points), the arguments of
the cosines are small (focusing on small p values), and

(3.6)

This is completely consistent with the observed behavior
for P/(}I)o= —', in Fig. 7(a). We can currently make no
statements about the nature of the correlations for irra-
tional Pleo as in Fig. 7(b). The patterns are random in

appearance, but certainly deterministic.
There is an important point that needs to be addressed

here. It is well known from the solution of the
Schrodinger equation in a magnetic field that, far from an
impurity site, the electron wave function decays with a
Gaussian tail, and not as an exponential. (This is due to
the harmonic well created by the field. } We do not know
if a similar result holds on a lattice. The above exact
summation of forward-scattering paths certainly implies
an envelope with exponential decay. If it is indeed the
case that the true envelope must have a Gaussian decay
on a lattice, then the correct answer must require the ad-
dition of loops and backscattering. Would this also in-
validate the results of the next section, which sum only
forward-scattering paths, but in a random potential? Ac-
tually, this question has been considered by Shklovskii
and Efros, 5 who conclude that the decay should be a
simple exponential due to the "shifting" of the quadratic
potential created by the field at each of the impurities
elastically scattering the electron. Further work is need-
ed to clarify these crucial points.

B. Numerical results

With disorder, we used the procedures outlined in Sec.
IB to construct histograms for P[~l n( J(B,t)~]. Note that
as J becomes complex in a field, we use its absolute mag-
nitude. A typical histogram is plotted in Fig. 8. In the
presence of the magnetic field the distribution becomes
sharper, while its tnean is increased (indicating enhanced
tunneling and a positive MC). We also find that for a
field B, P[ln)J(B, t))] maintains its functional form in
that its mean scales linearly with t and fluctuations grow
as t ' . This implies that a magnetic field causes an in-
crease in the localization length. This is more apparent

200

150—atlnJ(B) = — — Bt—
96

(3.5)

This is the well-known harmonic shrinkage of the wave
function. ' The t dependence can be justified since typi-
cal forward-scattering paths are random walks with
transverse fluctuations 6x -t ' . Hence, the relevant flux
grows as Bt3r . As noted earlier, the behavior of J(B,t)
for large fields (when many fiux units penetrate the sam-
ple) is more complicated and crucially dependent on
whether or not the Aux per plaquette is rational. In the
rational case, a=2mp/q, there is a periodicity in the
sense that a segment of length ht =4q is repeated except
for a scaling factor. From Eq. (3.4) it can be shown that
the scale factor grows as

100—
ttt
Sha
IL

50—

290 300 310 320

In)J(B,t) )

330 340 350

FIG. 8. Histograms for the variable lnlJ(B, t}~. A magnetic
field increases the average of the probability distribution. The
fluctuations decrease while still scaling as t' for any fixed field.
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' =p(B)=(0.053+0.02)—(0. 15+0.03)($/$ )'i

(3.7)

This suggests the possibility of collapsing the numerical
results for different values of t and B by using a universal
scaling function J(B,t) =f (Bt ) This colla. pse is clearly
seen in Fig. 11 for small fields (P &&(()o). The physical im-

plication is that the characteristic area relevant to this re-
gime scales as t, rather than a portion of it. The latter
was suggested by NSS, who proposed a scaling Bt as
in Eq. (3.5) based on the "cigar-shaped" area covered by
random walks. The B ' dependence was recently repro-
duced by Zhao et al. , who also confirmed its universali-
ty by changing the relative probabilities of the random
signs and shifts in the Fermi level.
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in Fig. 9, where as a measure of MC we have plotted
6(ln(J(B, t)()—:(in[J(B, t)() —(in)J(0, t)(). The slope
of the linear increase in t reflects the change in the locali-
zation length [p(8)=g ']. There are actually subleading
corrections to the linear scaling of 6(in~ J(B,t)~ ) which
are apparent from our data for small sizes. One expects
on general grounds ' that the leading dependence of
this quantity is linear (i.e., extensive), while the first sub-
leading term grows as t'; the exponent found for the
scaling of the third cumulant. This was suggested by
Bouchaud and Orland, who generalized the Bethe An-
satz arguments of Sec. II C to include gapless excitations
of the bound-state center of mass. Figure 10 shows a
large simulation (t =4000 and 1000 realizations of ran-
domness) for the quantity b, (ln

~
J(8, t)

~
) with 8 = 10

A very good fit is achieved in the range t & 200 using the
t ' correction. This is an additional indication that the
NSS model and the classical directed polymer problem
with positive randomness are in the same universality
class.

The observed behavior is consistent with a reduction in
the parameter p in Eq. (2.15), hence an increase in the
global contribution to the localization length. The nu-
merical results in fact indicate

10 p

Cl

C
Cl

0. 1

O. oi &-
10 10 10t

FIG. 10. A fit to the magnetoconductance 6(lnIJ(B, t)I ) (for
B =10 ), taking into account the subleading scaling as de-
scribed in the text (b =at+Pt'~3) Th. e parameters used,
a =0.0074 and P=0.04, are field dependent.

8 = IxlO
0

0

! ! ! ! ! !

The field values leading to the results reported above
are much larger than typical experimental values. It is
also interesting to inquire at what fields the B ' depen-
dence breaks down. (Because of the B~ Bsy—mmetry,
and the required analyticity of a finite t system, a B
dependence at very small fields is expected. ) We there-
fore performed simulations in the very-low-field regime
(10 —10 fiux quanta per plaquette and 1 —10 for
the whole system). Reliable results required the very
high averaging of around 10000 realizations of random-
ness, and appear to be quite sensitive to finite-size effects.
Figure 12(a) shows data obtained for samples of 50, 200,
and 400X400, and exhibits three well-defined regions.
The highest-field values correspond to the above B'
scaling, there is an intermediate region scaling almost
linearly, and finally an incipient B dependence emerges.
With increased size t, the B ' regime extends into small-
er fields while the B region almost disappears. We
found that the low-field data can best be collapsed by
plotting bln~J(B, t)~ versus Bt, and that a crossover
occurs for Bt =1. Clearly this collapse does not work
at higher fields where bin~ J(B,t) ~8' t We attem. pted
to collapse the data in both regimes using a single homo-
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QVp
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FIG. 9. The magnetoconductance (log-averaged value of the
sum of directed paths relative to B =0) versus the length t. All
6elds are measured in units of elementary quantum Aux per pla-
quette.
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FIG. 11. Data collapse of MC for different fields and sizes in-

dicating a scaling of the form J (B,t) =f(Bt~)
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geneous function of the form b ln
~
J(B,t )

~

~ t "P(Bt ), with
x+y/2=1 for the correct large B-limit. We found no
satisfactory collapse of this form, indicating that there
may be other relevant length scales. More effort in this
direction is in progress.

For a single realization of randomness, the NSS model
shows the type of reproducible conductance fluctuations
first seen in the VRH regime by Poyarkov et al. and
Orlov and Savchenkov and confirmed since by oth-
ers. ' By studying the autocorrelation function as sug-
gested by NSS

f ($B)=/[in[ J(B +$B,r)[ln[ J(B,t)(]—[ln[J(B,t}[]2,

(3.8)

one can obtain the characteristic period of the fluctua-
tions along the field axis B„andhence the effective area
directly. Is this area the whole sample, or a fraction of it
enclosed by dominant paths? Milliken and Ovadyahu
seem to confirm the B,-t scaling proposed by
NSS. We also numerically examined these fluctuations

by computing autocorrelation functions for small systems
of up to t =162, and 1000 realizations of randomness
(these are extremely time consuming due to the Fourier-
transform operation for each realization). The results de-
picted in Fig. 13 show two distinct regions: The data at
the larger fields show autocorrelations decaying as B
for at least two decades, while the data at lower fields
cannot be fitted to a power law and may be nonuniversal.
The characteristic field scale for this crossover can again
be determined by collapsing the various curves after ap-
propriate scaling. The best collapse, shown in Fig. 13(b),
was achieved by scaling the Fourier-transform amplitude
by t, and the abscissa by Bt . Translating the latter
variable to temperature dependence, using Eq. (1.1), we
find good agreement with the experimental findings of
Milliken and Ovadyahu. It is, however, quite likely
that the larger fields in Fig. 13 still correspond to the in-
termediate fields in Fig. 12, and that another crossover
occurs for larger fields.

C. Analytical results
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0

The usual explanation for a positive MC, close to the
localization transition, relies on the decreased weight of
backscattering paths. '" Since our formulation explicitly
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FIG. 12. (a) Highly averaged runs revealing various power-
law dependencies of MC on the field. For 8 approaching 10
quantum fluxes per plaquette, the B' dependence is regained.
(b) Data collapse for 20 different field values (from 8 =10 to
10 ') using the scaling variable x =Bt . %'hile the low-field
data scale very well, the higher-field data are less well described.
Only systems of sizes t & 20 are included.
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FIG. 13. Top: the Fourier transform of the autocorrelation
function. The straight line represents B '. Bottom: collapse
of the same data.
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6p/p=26o. /o. = —4
(BA )

3
(3.9)

excludes such paths, an alternative explanation is neces-
sary. Such explanations have been offered in the context
of forward-scattering paths ' using an independent-
path approach. As we shall describe later, the IPA ap-
proximation leads only to an overall increase in MC by a
factor of 2 and no change in the localization length, in
clear contrast to the results in Fig. 9. In the previous sec-
tion, we established that to properly understand the nu-

merically measured shape of P[ln~ J(0, t)
~ ], it is essential

to keep track of the correlations between paths. In this
section we extend the replica analysis that achieved this
goal to include magnetic-field effects.

In a magnetic field; the sum J becomes complex due to
the gauge phase factors, and tunneling probability de-
pends on

~
J

~
. Hence, we examine the moments

((JJ')"), which form the appropriate generating func-
tion for the cumulants of ln

~
J(8, t )

~

. ( (JJ"}"}describes
configurations of 2n paths, n from J and n from J', la-
beled, respectively, in Fig. 6 by arrows pointing to the
right and left. Averaging over the random-site energies
again pairs up the paths, but two types of pairings can
now be distinguished (see Fig. 6): (i) Partners are taken,
one from J and one from J'. Such pairs (referred to as
neutral) do not feel the field, since the phase factors of e'"
picked up by one member on each bond are canceled by
the conjugate factors e ' collected by its partner, result-
ing in no pet coupling to the field. (ii) Both partners are
taken from J or from J". Such paths (referred to as
charged) feel a strong interference from the field corre-
sponding to gauge factors of e* '" (like particles of
charge +2e). It is reasonable to assume that because of
their strong self-interference, charged path of long length
do not contribute appreciably to ((JJ')"} and that dom-
inant contributions come from neutral paths [this can be
readily justified by invoking Eq. (3.4)]. However, between
successive intersections of two neutral paths, short seg-
ments of charged paths can be present, as indicated in
Fig. 6. The intermediate (hatched) loop in this figure can
be labeled by the four replica indices in six possible ways,
two of which correspond to charged paths. At zero field
all six configurations are equally likely, resulting in an ex-
change multiplicity of 3 (two intersections). For 8%0, if
the area enclosed between intersections is A, the relative
contribution of the charged paths is smaller by
cos(28A), leading to an overall multiplicity factor of
2+cos(2BA) per crossing. This is a decrease in the at-
traction from its value in the absence of a magnetic field.
The net effect of integrating out charged segments is thus
to reduce the effective attraction between neutral pairs.
This leads to a reduction in the binding energy p in Eq.
(1.3), simultaneously increasing the mean, and decreasing
fiuctuations as in Eq. (2.15). In fact, since Eq. (1.3)
represents a one-parameter distribution, the changes in
mean and variance should be perfectly correlated. This
has indeed been tested numerically, as will be described
in the next section.

According to the Bethe Ansatz calculations of the pre-
vious section, the binding energy p is proportional to the
square of the attraction cr =2+cos(2BA). Hence, for
small fields,
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FIG. 14. Numerical demonstration of the field independence

of the log-conductance in the presence of random phases. This

case corresponds to a Hamiltonian of unitary symmetry due to

magnetic impurities.

To proceed further, we need an estimate of the typical
area A. The only B-dependent intrinsic length in the
problem is the magnetic length L~ ~B ' . The choice
of A ~ Lz is probably valid at large B, and describes sat-
uration with p independent of B. At smaller fields,
another possibility is A ~Lz ~B ", i.e., the area
covered by typical random walks of length L~. This
choice, inserted in Eq. (3.9), leads to the observed field

dependence in Eq. (3.7). As noted earlier, the 8'~~ in-

crease of the localization length has recently been
confirmed by Zhao et a/. They also argue that Lz is

the only relevant length scale, subdivide the system in

units of size Lz, and propose an increase of tunneling per
each unit. Although, this explanation also leads to the
correct conclusion, we emphasize that a complete argu-
ment must simultaneously account for the scaling of MC
and its fluctuations Sinc. e Zhao et ai. argue that the
B ' dependence breaks down for Bt —1, the low-field re-
sults of Fig. 12 provide another test for such arguments.

A finite magnetic field breaks time-reversal symmetry

by introducing complex phases for each path. An ex-
treme limit of this breakdown can be achieved by replac-
ing the sign (+) randomness with phase randomness (e'
with 0 (0 (2m picked from a uniform distribution). We
also simulated the latter model and found that, as expect-
ed, it shows no MC (Fig. 14}. This result is easily ex-
plained in the replica language: In calculating ((J"J)"),
only the neutral paths survive the averaging over 0, since
e&(9[~ —~'l=5 ., and such paths do not couple to the
magnetic field. The charged bubbles, as in Fig. 6, are
now totally eliminated and the exchange attraction is re-
duced to 2 [since (ll")(22')~(11')(22') or (12')(21*)].
The random-phase model describes a Hamiltonian with
lower unitary symmetry (as opposed to the orthogonal
symmetry of the original model in zero field). It may de-
scribe magnetic impurities that break time-reversal sym-
metry.

The tunneling problem in a magnetic field thus interpo-
lates between the orthogonal and unitary symmetries, but
it is never fully equivalent to the latter, as implicitly as-
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sumed in the random-matrix approaches. ' ' This is be-
cause the information in the phase of the tunneling am-
plitude can be used to reconstruct the positions of the im-
purities. With impurity energies at ke, it is clear that the
average (J (B,t}& represents configurations of a paired
path of charge 2e in a uniform system, i.e.,
(J (B,t) & =Jt (2B,t), where in Jt, all impurities have the
same energy e. This identity was tested numerically for
the NSS model as depicted in Fig. 15. We observe that
the oscillations of J(B,t) reported in Sec. III A, for tun-
neling under a uniform potential, can actually be seen for
the random system, but only after suScient averaging.

We conclude this section by discussion the shortcom-
ings of the IPA (Refs. 27 and 30) in calculating the MC.
As each contribution to J is treated as independent, P [J]
is Gaussian in this approximation. The number of in-
dependent elements of J (real or imaginary) changes in a
magnetic field. This hypothesis leads to a quadratic-
field dependence for small fields (less than 0.1 flux quan-
tum through the whole system) and a saturation at high
fields to a typical value of ~J~ larger by a factor of 2.
This approach predicts no change in the localization
length, which we believe is due to its neglect of correla-
tions between paths. To emphasize this point, we shall
rederive the IPA result using a replica analysis of
((J'J)"&. Since the paired paths are regarded as in-

dependent, this average in the IPA is siinply A (n)2"',
where A (n ) is the number of possible pairings. (Intersec-
tions between paths are thus ignored. ) All pairings of 2n
paths contribute equally at B =0 so that A (n)
= 1 X 3 X . . X (2n —1)= (2n —1)!!.Only neutral paths
survive at finite field and A (n}=n X(n —1)X. . . =n!
From this information, the log-averaged MC is obtained
as

&h~lJ(B&~$~ —
in~/ J(o)~$~) =iim I&~l'"(&)—Is~I'"(0)

ln~0 n

n!—(2n —1)!!= lim "=ln2,
n~0 n

(3.10)

the increase calculated by Sivan, Entin-Wohlman, and
Imry. We thus see that it is precisely the intersection
factors, representing the correlations between paths, that
are responsible for the global contribution to the localiza-
tion length gg, and its variations in a field.

IV. SPIN-ORBIT SCATTERING

A. Numerical results

In the weakly localized regime, spin orbit (SO-) scatter-
ing has antilocalizing effects, " as its destructive interfer-
ence may dominate the coherent backscattering. In this
section we assess the effect of SO in the strongly localized
regime by generalizing the NSS model to include (SO) im-

purity scattering in addition to the underlying potential
scattering (+ randomness). The starting point is the
Hamiltonian

-2—

l. 5 2.0

&= +cia;Oa;~+ g Vij. «a;~ai~ .
i, cr &ij ),(ra'

(4.1)

I

0.5

I
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I
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1
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The constant nearest-neighbor-only hopping elements V
in Eq. (2.1) are no longer diagonal in spin space. Instead,
each is multiplied by U;J, a randomly chosen SU(2) ma-

trix, which describes the spin rotation due to strong SO
scatterers on each bond. ' ' Equation (2.5) for the over-
lap of wave functions at the two end points must now in-
clude the initia1 and final spins, and the locator expansion
now reads

(4.2}

ta 0-

(i 5 l.0
t

2.0 (tS
I

l.0 LS
I

2.0

Each bond along the path contributes a random spin ro-
tation U, and a phase factor from the magnetic vector po-
tential A. The NSS random energies e; =+8'again sim-

plify the energy denominators, and Eq. (2.6) for the sum
of directed paths generalizes to

FIG. 15. Numerical verification of the relation
(J (B,t)&=JP(2B,t) derived from replica theory Jt describ. es
tunneling under a uniform potential as in Fig. 7. $0 is the ele-
mentary flux quantum and P the flux per plaquette. The curves
correspond to values of t =2 (top), 4 (middle), and 6 (bottom).
The results for (J }where obtained by averaging about 50 real-
izations of randomness.

A = &i~lG(0}lfa'&= W(VyW)'J(t),

J(t}=ggg; e'"U.
I" i~,

(4.3}

After averaging over the initial spin, and summing over
the final spin, the tunneling probability is
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T= —,'Tr(A A )= W ( V/W} 'I(i),
I (t)= ,'T—r(JtJ ) .

(4.4)

We numerically studied the statistical properties of
I (r} using a transfer-matrix method to exactly calculate I
up to t =1000 for over 2000 realizations of the random
Hamiltonian. As in Sec. II A, we found that the distribu-
tion is broad (almost log-normal), and that the appropri-
ate variable to consider is lnI (t). Variations of the mean
(lnI (t) ) versus t are plotted in Fig. 16, with and without
SO and at various magnetic fields. In all cases, the
asymptotic slope gives the change in the global contribu-
tion to the inverse localization length g '. The first set of
curves in the bottom of Fig. 16 are results from the previ-
ous section, included for the sake of comparison. The
larger slopes in higher magnetic fields indicate the in-
crease in the localization length that saturates at the lim-
iting value corresponding to the random-phase Hamil-
tonian. Turning on the SO interactions is accompanied
by a significant increase in slope beyond this limit. How-
ever, in the presence of SO, addition of the magnetic field
leads to no further increase in slope. In fact, there is a
much smaller enhancement of tunneling that is not ob-

S
servable at the scale of the bottom figure. The MC 'the w1
0 1s thus plotted separately in the top part of Fig. 16.

The curves appear to asymptotically approach a con-
stant, indicating a t-independent MC, and no change in
the localization length.

We also studied the scaling properties of the MC with
SO by collapsing the data in Fig. 16. The appropriate
scaling axis, as indicated in Fig. 17, is Bt, and the scal-
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ing function behaves as

cBt ifBt &1
(lnI(t, B)—lnI(t, O)) = '

C=0.25 if B t &1 .

This is to be contrasted to the Bt scaling of Fig. 11 in
the absence of SO. The efFected area in this case appears
to be bounded by typical random walks.

(4.5)

B. Analytical results

FIG; 17. Scaling of MC with B and t in the presence of SO,
obtained by collapsing the data in the previous figure.
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We can gain some analytic understanding of the distri-
bution function for I(t,B) by examining the moments
(I(t}").From Eqs. (4.3) and Eq. (4.4) we see that each
I(t)=(1/2)Tr(J J) represents a forward path from i to
f, and a time reversed path from f to i (see replica argu-
ments in Sec. III). For (I(t)"),we have to average over
the contributions of n such pairs of paths. First, averag-
ing over the random signs of the site energies forces a
pairing of the 2n paths (since any site crossed by an odd
number of paths leads to a zero contribution). Next, we
must average over the random SO matrices on each bond.
Again, a bond crossed only once gives zero average
(( U~~) =0). From the orthogonality relation for group
representations, we have

FIG. 16. Log-averaged tunneling probability vs t, with and
without SO, and at various magnetic fields. Bottom: increase in

tunneling (MC) without SO (solid lines) at fields indicated to the
right. Saturated behavior in a strong magnetic field ( + ) is simu-
lated by replacing the gauge potential with random phases on
bonds. Addition of SO in zero field leads to the curve (+) la-
beled Iso. Top: since MC with SO is small, the increase is plot-
ted at enlarged scale.

where I "(g);1 is the ij matrix element of a representation
of the group element g, and W(a&, . . . ,a„)is an ap-

propriate weight function so that the matrix space is sam-

pled uniformly as the continuous parameters a&, . . . , a.
„

vary [e.g., Euler angles for a representation of SU(2)]. Fi-
nally, A, k is the order of the representation k. Choosing
the Euler angle parametrization of SU(2), it can be shown
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that only the following paired averages are nonzero:

&U pU B&= '-&UttUil&=-' &Uti tt&=

(4.7)
Uik Ukm

and their complex conjugates. Thus two classes of paired
paths survive the averaging: (i) Neutral paths, in which
one member is selected from J and the other from J .
Such paths are forced to have parallel spins and do not
couple to the magnetic field. (ii) Charged paths, in which
both elements are taken from J or from J~. Such pairs
must have antiparallel spins and couple to the magnetic
field, like particles of charge +2e.

Since the factor of —,
' from the bond averages in Eq.

(4.7) cancels with the choice of two spin directions at
each site, & I(t) & still asymptotically scales as 2'. To cal-
culate higher moments &I(t)"&, we must first compute
the exchange factors at each intersection. With SO, this
involves also taking into account the allowed spin ex-
changes. Two neutral paths entering the interaction can
have indices (aa), (aa} or (aa), (PP); there are two pos-
sibilities for the first (a= f or $ ) and two for the second.
In the former case, however, there are two exchanges
preserving neutrality, while in the latter only one ex-
change is possible satisfying this constraint. Hence an
overall multiplicity of (2X2+2X1)X(—,') =

—,
' is ob-

tained, where the last factor comes from the averages in
Eq. (4.7). Thus the intersection of two paired paths result
in an exchange attraction of —,', a signature of the sym-

plectic symmetry. The sum over n attracting paths, as in
Eq. (2.13), then leads to

&I (t)"&
= A (n)2"'exp[pn (n 1)t]—, (4.8)

where we have also included an overall n-dependent am-
plitude as in Sec. III C. [We confirmed numerically that
SO interactions do indeed belong to this universality by
numerically checking the —,

' exponent for the growth of
fluctuations in lnI (t) required by Eq. (2.15).]

We can now appreciate the trends in Fig. 16, as the
slopes are indicative of the statistical attraction factors.
Without SO, the magnetic field gradually reduces the at-
traction factor from 3 to 2, leading to the increase in
slope. Addition of SO to the Hamiltonian has the similar
effect of suddenly decreasing the attraction to —,'. Why
does the addition of the magnetic field lead to no further
change in p in the presence of SO? Without SO, the ori-
gin of the continuous change in the attraction factor is
the type of exchange indicated in Fig. 6, whereby a
charged bubble appears in the intersection of two neutral
paths (see Sec. III). In the presence of SO, from the aver-
ages in Eq. (4.7) we find the contribution of such
configurations to be zero: Such a generic bubble is de-
picted in Fig. 18. To produce intermediate charged paths
(with their antiparallel spins}, the entering pair must have
indices of the type (ii ), (ii ) (where I, = f, and t = 1 ).
Within the bubble we can have intermediate sites labeled
(jj) and (kk ), which must be summed over due to matrix
contractions. It is easy to check that, independent of the
choice of j, if the incoming and outgoing spins (i and m )

are the same on a branch, it contributes a positive sign,

m

m

Uw Uk„-

X

Uk

FIG. 18. Top: generic bubble diagram labeled with spin in-
dices. Any choice of spins gives a positive contribution. Bot-
tom: paths extending through the whole system are required to
have the same initial and final indices due to the trace opera-
tion.

while if they are opposite the overall sign is negative.
(Thus all possible sets of labels i, j, k, and m of Fig. 18
give a positive sign. ) However, for any choice of i and m,
one may choose similar (e.g., i ~m on both branches), or
opposite (e.g., i —+m on top and i ~m on lower branch)
connections. The difference in sign between the two
choices thus cancels their overall contributions. Thus the
neutral paths traverse the system without being affected
by charged segments, and hence the magnetic field; their
attraction factor stays at —,', and p= ( ' is unchanged.

The smaller positive MC observed in the simulations is
due to changes in the amplitude A (n) in Eq. (4.8). Un-
like the random-phase Hamiltonian, considered in Sec.
III C, charged paths do contribute to the tunneling. In
fact, the operation of the trace in Eq. (4.4) insures a posi-
tive contribution, as indicated in Fig. 18. However, due
to their lack of interactions, we may treat the charged
and neutral paths as independent. At zero field, any of
the pairings into charged and neutral paths is acceptable,
while at finite fields only neutral pairs survive. As dis-
cussed in Sec. III C, this leads to a reduction in the ampli-
tude A (n) for n ~2, but an increase in lnI (a positive
MC). The typical value of lnI thus increases by a t-
independent amount. This behavior is similar to the pre-
dictions of the IPA, and is indeed due to the indepen-
dence of charged and neutral paths. Since according to
Eq. (3.5) the typical scale of decay for charged paths de-
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pends on the combination Bt, we can explain the scal-
ing obtained numerically in Fig. 17.

It is conceptually interesting to generalize the problem
to higher "spins, " using SU(n) random matrices in Eq.
(4.1}. All the relevant averages in replica space now in-
volve direct products of two SU(n) matrices. For neutral
paths, we can compute all the direct products of the form
U j Uki as before, using the orthogonality relations in Eq.
(4.6), and

(4.9)

For the "charged" averages of the form U,"Uki, we resort
to the Clebsch-Gordan (CG) decomposition in order to
write these products as a sum of irreducible representa-
tions of SU(n). This decomposition is very well known
and it has the general form

n(n+1) n(n —1)nn=
2

6
2

(4.10)

U g U~=U +~ (4.11)

where a and P label the representation of the form
U =exp(iae). For a,P) 0 the trivial direct product for
charged paths does not yield the identity in the CG ex-
pansion, and thus there is no MC with U(1) impurities
present.

The exchange attraction between neutral paths can
also be computed for SU(n} impurities, and equals

For n =2 this relation yields the decomposition 3 1, i.e.,
the familiar triplet and the singlet states. As can be seen
from the general formula, no other direct product of the
above form yields the identity representation except
n =2. The identity yields the only nonzero contribution
when the average is performed, so that the only group in
which charged paths survive is SU(2). No other continu-
ous group exhibits an MC. This trivially includes the
case of random phases, i.e., the group U(1), since

nal symmetry, exchange attraction 3). Introduction of a
field gradually reduces p until saturated at the limit of
random phases (unitary symmetry, exchange attraction
2}. SO scattering reduces p further (symplectic symme-
try, exchange attraction —,'}. The final point corresponds
to independent paths with p=0. An interesting observa-
tion based on Fig. 19 is that the relative attractions for the
three symmetries are ( —' —1):(2—1):(3—1)=1:2:4. If the
bound-state energy p=gg ' were simply proportional to
the attraction, we would conclude the ratios 1:2:4for the
global localization lengths g

' at these points. These are
precisely the ratios predicted by the RMA. Unfor-
tunately at least for the NSS model, p is a nonlinear func-
tion of this relative attraction. The projected ratios along
the horizontal axis in Fig. 19 for gg are approximately
1:2.2:5.7.

C. Comparison with other work

The independent-path approach has been recently ex-
tended by Meir et al 'to in. clude SO effects. While the
predictions of IPA are in contradiction with our results
in the absence of SO, for reasons explained in the previ-
ous section, they are close to the mark when the SO in-
teractions are turned on. Meir et al. predict a universal
increase of C= —,

' —ln2-0. 14 in (lnI) for sufficiently

strong fields. The numerical results in Fig. 17 actually
give a saturation value C=0.25. However, we believe
that this increase is nonuniversal, as the limiting value
changed upon reducing the concentration of SO impuri-
ties.

The random matrix ap-proach (RMA) takes as its input
only the symmetries of the transfer matrix M of an N-
channel elastic-scattering system. The two-probe Lan-
dauer formula is then used to relate the conductance g
to the eigenvalues of the matrix
X = [(M+M )+(M+M) ' 2I)/4 via—

(4.13)

n+1A'=
n

(4.12)
I I

This reproduces 2 for U(1) or random phases, and —,'for
SU(2) or SO scattering. The attraction vanishes in the
n ~ Oo limit, which must then correspond to the IPA ap-
proximation. We thus find that the statistical exchange
factors are universal numbers, simply related to the sym-
metries of the underlying Hamiltonian. The attractions
in turn are responsible for the formation of bound states
in replica space, and the universal scaling of the moments
in Eq. (4.8). Although the parameter p=gs ' reflects the
variations in the exchange attraction, it is not by itself
universal, but model dependent. In fact, since the single
parameter p completely characterizes the distribution,
the variations in the mean and variance of the NSS model
should be perfectly correlated. This can be tested numer-
ically by examining, respectively, coeScients of the mean
and the variance from Eq. (2.15) for the different cases
studied. The results plotted in Fig. 19 do indeed fall on a
single line, parametrized by p. The largest value corre-
sponds to the NSS model for B =0 and no SO (orthogo-
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FIG. 19. Complete hierarchy of the exchange attractions be-
tween paired paths, rejecting the various Hamiltonian sym-
metries. Diamond, orthogonal case; triangle, the unitary limit;
square, symplectic case; circle, the noninteracting limit corre-
sponding to the IPA, and also to SU(n) with n —+(x). Small
squares correspond to finite magnetic fields but no SO.
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The distribution for g is then obtained from the joint
probability distribution of eigenvalues P ( I A,, ] ). There is
also an underlying assumption of a single-parameter scal-
ing, which is strongly supported only in the weakly local-
ized regime. Recent work by Pichard et al. extends the
RMA to the strongly localized regime. It predicts that
the magnetic field results in a doubling of the localization
length g in the absence of SO, and a halving of g with SO,
in clear contradiction to our results. The RMA approach
includes both forward-scattering and backscattering
paths, yet despite its simplicity and generality, it suffers
from a number of shortcomings. First, it is assumed at
the outset that a single parameter is suScient for charac-
terizing the problem. However, Eq. (2.16) demonstrates
that, in the strongly localized regime, the localization
length (obtained from the tunneling probability) involves
both a global and a local factor. Hence variations in g
cannot be universal. Second, by considering the most
general random matrices, the approach loses all informa-
tion on spacial connectivity and dimensionality. (All
channels are treated equivalently. ) The equivalent ap-
proximation for spin problems allows any spin in one lay-
er to interact with a/I spins in neighboring layers. Thus it
has the flavors of both one-dimensional and infinite-range
models. (Using heuristic arguments, Bouchaud also
concludes that a factor-of-2 increase in g is only valid for
quasi-one-dimensional systems. ) The correct approach is
to consider the ensemble of sparse random matrices in
which only elements close to the diagonal are nonzero '

(see also Ref. 60). Finally, we note there is no change in g
with SO. The latter is due to the form of the Hamiltoni-
an that excludes Zeeman-splitting term. s. Such terms are
certainly allowed by symmetry, but involve a much
higher energy cost. The RMA cannot account for such
subtleties.

We know of only three experimental measurements of
SO effects on materials exhibiting VRH, * ' and they
present conflicting results. The work by Shapir and Ova-
dyahu was done on In203

„

films doped with Au, a
heavy element giving rise to SO scattering in the samples.
These samples exhibit well-defined two-dimensional VRH
behavior {o=Ooexp[ —(To/T)'~ ] from Eq. (1.2)} and
can be prepared to have widely varying conductances so
that they are at a "controlled distance" from the metal-
insulator transition. Samples with resistance less than 1

MQ exhibit a behavior similar to metallic samples, i.e., a
regime of negative MC, changing to positive MC at a
well-defined field H*. This is attributed to an interplay
between weak-localization effects (causing negative MC
with SO) at scales less than g, and strong-localization
effects (positive MC) at scales larger than g. The samples
with higher resistivity, on the other hand, are surprising-
ly insensitive to the presence of SO, showing only a posi-
tive MC, virtually indistinguishable from undoped sam-
ples with similar zero-field resistivity. It is worth noting
that positive MC effects are seen for the samples where
the ratio t/g is the largest (from t/g 6to 14), wh-ile me-
talliclike effects are seen when t/g-1. This is also evi-
dent in another experimental system discussed below.

The insensitivity to SO is certainly in conflict with re-
sults of Fig. 16 at high concentrations of such impurities.

Actually, Shklovskii and Spivak' have recently suggest-
ed such insensitivity in the directed-path approximation.
They maintain that the scattering matrix element,
U ~ (I i—ek Xk'. o }, is particularly small in forward
scattering, since k and k' are almost parallel. Although
even such small random rotations should asymptotically
produce the same behavior, due to long crossover effects,
a more-dilute SO concentration may well reproduce the
experimental findings of Ref. 57. We do note, however,
that the sign of MC at small fields and low temperatures
cannot be changed by such microscopic details. The mi-
croscopic details can only modify the local contribution
to (lnT ) in Eq. (4.4). Such local factors must be analytic
in B, and hence their contribution to MC scales as B t.
Meanwhile, the global contributions scale as B t [from
Eq. (4.5}] with SO, or as B'~ t without [from Eq. (3.7)].
Therefore, there is always a positive MC at low fields at
sufficiently large t (it may cross over to a negative MC at
higher fields}. Numerical simulations ' at the scale of g
are in agreement with such a picture. A positive MC in
the localized regime can only be reconciled with the neg-
ative MC, predicted by the weak-localization theories
with strong SO, through a possible phase transition. It
is possible that the observed change of sign in the experi-
ments is a finite-temperature manifestation of such a
zero-temperature phase transition. It would be very in-
teresting to clarify this possibility by further theoretical
and experimental studies.

The other experimental work is from the Saclay group
of Pichard, Sanquer, Slevin, and Debray and more re-
cently Hernandez and Sanquer. In the first work they
study both samples with (amorphous Y„Sii „alloy) and
without (GaAs/Si doping) SO scattering which exhibit
three-dimensional Mott hopping behavior. They are in-
terested in observing changes between (a) orthogonal and
unitary Hamiltonians by submitting GaAs to a strong
magnetic field, and (b) symplectic and unitary systems by
again applying the field to Y„Si&„.In case (a) random-
matrix theory predicts a positive MC due to a doubling of
the localization length, while for (b) it predicts a large
negative MC due to the halving of g. [They extract g
from the characteristic temperature, To —I/n(Ef)g in
Eq. (1.2)]. They obtain results in qualitative agreement
with the RMA. However, especially in light of the
findings of Shapir and Ovadyahu, it not clear how far
the Y„Sii „system is from the metal-insulator transi-
tion. In this work, the estimated hopping length t is of
the same size as the localization length f, making weak-
localization effects quite important (see discussion in the
Introduction). On the other hand, the "distance" from
the metal-insulator transition is a central issue in the
work by Hernandez and Sanquer, where a careful ex-
perimental study was conducted with Y Si, samples
exhibiting various t /g ratios. Different regimes are
found; a weak insulating range (t/g-1), close to the'
transition, where weak-localization effects are apparent
and thus a negative MC is found, and the strong-
localization limit (t/g »1), where a positive MC is mea-
sured as predicted by the directed-path approach. As
discussed in the Introduction, higher t/g ratios corre-
spond more closely to the domain of validity of the ap-
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proximations used in this work. In view of the fact that
weak-localization effects are observed in the less strongly
insulating samples, it is possible that the RMA treatment
is indeed more appropriate to this regime. Further
theoretical and experimental work is necessary to provide
a more coherent and unified picture of the rich variety of
MC behaviors occurring in disordered insulators.

U. THE PROBABILITY DISTRIBUTION
FOR TUNNELING

A. Nonuniversality of high moments

The issue of how many parameters govern the scaling
theory of localization is still a controversial topic even
ten years after the introduction of the one-parameter
scaling hypothesis. The situation seems clear for metal-
lic systems of dimensionality d & 2, far from the localiza-
tion transition. In this regime, single-parameter scaling
seems to hold, as shown by a number of ap-
proaches. ' ' However, the nature of the distribution
function for the conductance changes quite dramatically
on approaching the localization transition, and for the in-

sulating state. We first brieQy review some interesting
work by Altshuler, Kravtsov, and Lerner (AKL) (Ref. 39)
and Shapiro pertaining to this issue. To study the con-
ductance probability distribution, AKL computed its mo-
ments in the framework of an extended nonlinear 0 mod-
el. In the weakly localized regime, they find a probabil-
ity distribution that is close to a Gaussian except for long
log-normal tails. These long tails carry information
about high nonuniversal cumulants and disappear in the
limit L ))g, where I. is the sample size. In this case, the
nonuniversal tails are associated with finite-size effects,
and the limiting distribution is described by a single pa-
rameter. On the other hand, at the transition in 2+@ di-
mensions, these tails cause sufficiently large moments to
diverge in L; i.e., nonuniversal features remain in the
large-L limit. AKL conjecture a log-normal distribution
on the insulating side, although the analytical results can-
not be extended to this regime. Shapiro has pointed out
that the nonuniversality of the moments is not incon-
sistent with a universal conductance distribution at the
transition, and proposes such a distribution that repro-
duces the moments of AKL. The key is that, for distri-
butions with power-law tails large enough, moments are
divergent. (Conversely, if the nth moment increases fas-
ter than n!, the probability distribution cannot be unique-
ly inferred. )

On the basis of simple arguments, and a Migdal-
Kadanoff rescaling approximation, Shapiro and Cohen,
Roth, and Shapiro confirm the validity of single-
parameter scaling in the weak-disorder regime, but find a
two-parameter scaling for strongly localized electrons.
They note that such behavior emerges quite naturally for
one-dimensional systems in which the conductance g is
log-normally distributed. Except in the weak-scattering
limit, the mean and variance of 1ng are independent, giv-
ing the two parameters of the theory. The results of the
previous chapters are in qualitative agreement with such
two-parameter scaling. The computation of the 1ocaliza-

tion length based on the tunneling amplitude involves
both a loca/ factor go '=2[in(V2W/V)] and a globa!
factor gs '=p. The former is the main contribution to
the decay of the wave function, while the latter also con-
trols the fluctuations. In fact, according to Eq. (4.8), p
completely controls the asymptotic behavior of the mo-
ments, and hence the distribution function. Indeed, nu-
merical simulations confirm the universal nature of the
distribution in the sense that the scaling of the Auctua-
tions is not changed by introducing a field, turning on SO
interaction, or changing the concentration of the impuri-
ties.

We note, however, that Eq. (4.8) cannot be valid for
large moments. Since J(t) is bounded by 2' (from a uni-
form configuration with positive site energies), we must
have ( ~

J
~

")(2 "'. Therefore, at large n, the exponent in
Eq. (4.8) must increase at most linearly in n, and not as
n . [Using p=0. 053 indicates that deviations from Eq.
(4.8) must already appear for n =4. ] The breakdown of
this equation can again be traced to the nonuniversality
of the high moments, as illustrated by the following argu-
ment. Equations (4.8) and (2.13) are obtained from a con-
tinuum description of the problem in Eq. (2.10). To un-
derstand the origin of the n dependence, we resort to the
following scaling argument, valid for large n. We can es-
timate the size R of the bound state of the Hamiltonian
by estimating the energy of n particles confined to a size
R as

yn o. nE'„= (5.1)

Minimizing this expression with respect to R gives
R 0-1'/n and e„~n /gs [I"~y/0 ~(yes)' ]. Thus,
as n increases, the particles become more tightly bound,
and eventually the continuum approximation breaks
down when R approaches the lattice spacing. (Using

( =20, we again estimate that this collapse occurs for
n =4 in the NSS model. ) In this limit, the n replicas fol-
low the same trajectory and hence feel the corresponding
moment of the local distribution chosen for the bonds.
This clearly leads to a nonuniversality of the high mo-
ments that does not go away as the size I; is increased.
Thus size-dependent tails calculated by AKL for rno-
ments of g at the transition are similarly present for the
tunneling probability of localized electrons.

Does the breakdown of continuum description for
n =I' invalidate the scaling of cumulants predicted in

Eq. (2.15)? (After all, the —,
' exponent for fluctuations is

numerically verified. ) The answer is the identification of
cumulants from Eq. (2.14) relies on an expansion around
n ~0. Although it is hard to visualize such a limit of an
n-particle system, mathematically the continuum limit

should work well as n ~0, since R ~1*/n ~ Oo. In gen-

eral, for the problem on the lattice, the ground-state ener-

gy e„is a complicated function of n. However, we expect

lim„oe„=pn(n —1}; while lim„„e„=CO(n},where

Co(n) is related to the nth moment of the local impurity
distribution. [For the NSS model Co(n)~n ln2. ] Pre-
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dictably, the behavior of large moments is almost com-
pletely determined by those very rare configurations that
allow maximum tunneling (with lowest impurity}. Since
the tunneling probability is exponentially dependent on
the length t, the t dependence is a natural part of the scal-
ing of the moments (unlike the metallic case, where it
vanishes in the large-size limit). Going back to Fig. 8, the
mean and fluctuations of the distribution are correctly
described by Eqs. (2.15), while the tails are nonuniversal,
and model dependent, even in the large-t limit. Replica
treatments that only focus on the large-n behavior of mo-
ments may well lead to incorrect conclusions.

We recently verified the nonuniversality of high mo-
ments for the related problem of directed polymers, for
which the random signs ri; =+ in Eq. (2.6} are replaced
by positive random weights w;. A position-space RG
scheme, exact on a hierarchical lattice, developed by Der-
rida and Griffiths was used to follow the scaling of the
overall sum over directed paths. On these lattices, the
problem is reduced to determining the stable laws for
combining random variables in a nonlinear way. We fo-
cused on the evolution of the characteristic function

f(n)—:ln(w"). Details of the procedure are left for fu-
ture publications, and only the pertinent results are sum-
marized here. We find that after suScient iteration, the
distribution converges to a stable limit. For small n, the
limiting behavior of f (n) is independent of the initial
random distribution, while for large n it is completely
determined by the initial fo(n). A typical set of results is
presented in Fig. 20.

B. Higher dimensions

All of the discussion so far has centered on two-
dimensional systems. In this section we address what
happens in other dimensions d. Actually, the simplest ex-
ample of a one-dimensional system already qualitatively
exhibits most of the features found in d =2. Consider a
strip of width w and length t. For co=t, the two-

dimensional behavior should be recovered, while t &&w
corresponds effectively to d =1. We simulated the NSS
model on such strips to investigate the crossover between
d =2 and 1 behavior. Summation of forward-scattering
paths again leads to wide distributions that are approxi-
mately log-normal, with (ln~J(to, t)~) increasing as t.
However, as indicated in Fig. 21, the variance of
in~J(w, t)~ depends on to/t. Wide strips (w =400, and
for r ~ 1000) show the scaling t', characteristic of two
dimensions, while narrow strips at suSciently large t ex-
hibit a variance proportional to t. The one-dimensional
behavior is quite easy to interpret: the strip can be subdi-
vided into roughly r/w segments of width w, each with a
tunneling amplitude A; (the multiplicity of channels does
not substantially modify the argument). The overall am-
plitude for tunneling is J=g; A;. Clearly, In

~ J~
=g;in~ A; ~, and since the A; are independent for
different segments, the central-limit theorem can be used
to deduce that in~ J~ is Gaussian distributed, with mean
and variance scaling as t in agreement with Fig. 21.

The above calculation of the tunneling probability
based on the summation of forward-scattering paths sug-
gests that the mean and variance of ln~ J~, although pro-
portional, may have different amplitudes. Thus two pa-
rameters are necessary to specify the probability distribu-
tion. However, the conductivity of the one-dimensional
Anderson chain can be calculated fully without the
forward-scattering approximation This . approach also
gives an approximately log-normal distribution for the
resistivity, but the mean and variance of the distribution
are correlated, i.e., the distribution can be specified by
one parameter. The random-matrix approach' ' ' is
quite suited to quasi-one-dimensional systems and also
gives a one-parameter distribution. However, Cohen,
Roth, and Shapiro have emphasized that in both cases
this conclusion arises from a weak-disorder assumption,
and that two parameters are necessary to describe the
strong-disorder limit. It is precisely in this limit that the
approximation to forward-scattering paths is expected to
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FIG. 20. Stable moment dependences generated from three
difFerent initial distributions of randomness: circles,fo(n) =0.15n; squares, fo(n) =0.03n '; triangles,
fo(n) =0.005n . The renormalized f (n) starts out with a linear
dependence, and then crosses over to the same form as fo(n).

FIG. 21. Numerical calculation of the NSS model on strips.
As the strip width is increased from four lattice spacings to 100,
scaling of fluctuations in in

~ J~ makes a crossover from the d = I
exponent co=

2 to the d =2 exponent of co= 3. (The intermedi-
ate strips have widths 10 and 20.)
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be valid. Finally, the addition of a magnetic field or SO
scattering to the strips is expected to lead to changes in
the tunneling probability. We did not pursue this direc-
tion, but note that again in the forward-scattering ap-
proximation the changes in the localization length will
not be universal. This is again at variance with the RMA
predictions of doubling or halving of g. It would certain-
ly be interesting to find out to what extent the predictions
of the RMA can be extended to the strong-scattering lim-
it. Studies of simple one-dimensional systems may thus
provide a bridge between these two approaches.

For the two-parameter log-normal distribution in
d = 1, the moments scale as

100
p

10

l50

1

10 100 1000

( ~J(r)~~" &
= 3 (n)( ~J(t)~ & "exp[pn(n —1)~], (5.2}

qualitatively similar to Eq. (4.8). The nonuniversality of
high moments is also present in d =1: It is well known
that the characteristic function for the sum of t-

independent random variables is t times the characteristic
function for one variable. The terms in Eq. (5.2} are just
the first two terms in an expansion of the characteristic
function in powers of n. Again, the behavior at very
large n (for fixed t) is completely determined by the large
moments of individual random variables; physically,
these moments are dominated by exceptionally "good"
realizations.

The replica (moment) analysis of Sec. IIC can be ex-
tended to higher dimensions d: In calculating ((J'J)"&,

the averaging over the + potential disorder pairs up the
paths. The n paired paths are subject to precisely the
same exchange attraction factors for intersection calcu-
lated earlier —3 for orthogonal, 2 for unitary, and —,

' for
symplectic Hamiltonian symmetry. These attracting
paths can be regarded as world lines of n particles in
d'=d —1 dimensions. Calculating ((J*J)"

&

=exp( —e„t)now reduces to finding the ground-state en-

ergy of n particles with a short-range attraction. [In par-
ticular, in order to identify the cumulants through the
small-n expansion of Eq. (2.14), the form of e„mstube
extendable to n ~0.] Unfortunately, the ground-state is
only known exactly in d'=1. However, it is possible to
draw a number of important conclusions for higher d'. It
is known that in d' 2 any attractive potential will al-
ways lead to formation of a bound state. This implies
that in three dimensions the localization length [g defined
through Eq. (2.16)] has both a local and a global contri-
bution. Again, the introduction of a magnetic field
should lead to a nonuniversal increase in g in the absence
of SO. With SO, there will be a smaller positive MC, but
no change in g. Presumably, the scaling forms of previ-
ous chapters are still applicable to d =3. To specify the
distribution function for ln

~
J ( t ) ~

completely, we also
need the dependence of its fluctuations on t. In the ab-
sence of the correct energy, we can make no exact state-
ments about this dependence. However, the analogy to
the problem of directed polymers mentioned earlier al-
lows us to take advantage of the large body of numerical
work on this, and a related interface growth, problem.
The numerical studies in d =3 suggest fluctuations in
1n

~
J ( t ) ~

scaling as t, with co =0.2 —0.25. '~ Figure 22

FIG. 22. Preliminary data for the three-dimensional NSS
model showing convergence to an exponent of co= —,'.

shows some preliminary numerical results for the NSS
model in d =3 for system sizes of 300X300X300. The
observed exponent, co= —,', is close to the lower values in
this range.

Three is a critical dimension of the theory in that for
d &3 the strongly localized regime can exhibit a phase
transition between two distinct behaviors. This follows
from above the mapping to attracting quantum particles:
For d') 2, a critical amount of attraction is necessary to
form a bound state. The phase in which the particles do
form a bound state has properties similar to those de-
scribed in d =2 and 3. Current numerical estimates,
based on the analogy to directed polymers, suggest Auc-
tuations in 1n~ J(t}~ growing as t '~ +'. This is consistent
with generalizing the small-n-moment behaviors in Eqs.
(5.2) and (4.8) to

(5.3)

The applicability of this suggestive form certainly re-
quires further analysis. For d &3, there is also a new
phase in which the particles do not form a bound state.
In this case the intersections between paths are asyrnptot-
ically irrelevant, and hence the assumptions of the
independent-path approach ' ' ' are justified. The prob-
ability distribution for tunneling in this case is indeed a
sharp Gaussian (the variance of J grows exponentially
with the number of paths). One can imagine a transition
between the two phases upon changing impurity scatter-
ing, or by a magnetic field. In particular, the effective
line tension for the paths is connected to g, and is ex-
pected to vanish at the localization transition. A smaller
line tension actually favors the formation of the bound
state. Thus the most likely scenario is that, immediately
after the localizing transition, the system shows anoma-
lous fluctuations described by Eq. (5.3), and shows the
type of response to magnetic fields and SO described ear-
lier. Upon further localization, it may then make a tran-
sition to the type of phase correctly describable by IPA.
As noted in the Introduction, the general arguments of
this section should be equally applicable to describing the
disordered phase of spin glasses and magnets with impur-
ities.
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