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Ground states of large icosahedral fullerenes
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The ground states for large icosahedral fullerenes and for Ceo
"molecular ions (—6 & n & +1) are

treated starting from full rotational symmetry and the use of Hund's rule. Treating the icosahedral
symmetry as a subgroup of the full rotational group, the icosahedral symmetry of these molecular
states is introduced. A method to calculate the electronic structures for the icosahedral molecules
and ions is formulated for large fullerenes using a spherical harmonic expansion on a sphere, and the
calculated results for C60 are compared with molecular orbital calculations.

The molecular nature of the Raman and infrared spec-
tra of Csp and its doped phases stimulates this investi-
gation of the nature of the ground states for the class
of neutral icosahedral fullerenes and for the various ions
that are prepared either by ionization from the gas phase
or by intercalation of Csp in the solid phase by alkali met-
als. In this paper we present a general approach based
on group-theoretical arguments to find the symmetries of
the ground states for general (including large) icosahe-
dral fullerenes and for Csp

"+ molecular ions. In this ap-
proach we consider the fullerenes to be of approximately
spherical shape, allowing the use of spherical harmonics
to classify the electronic configurations. Hund's rule is
applied to find the quantum numbers for 8, L, and J
for the ground-state configurations allowed by the Pauli
principle. The icosahedral symmetry is then introduced
as a symmetry-lowering effect, treating the icosahedral
groups Ih and I as subgroups of the full rotational group.
Two limiting cases are considered explicitly depending
on whether the icosahedral perturbation is small or large
compared with the electron-electron interaction. Using
this general approach it is possible to identify fullerenes
that are especially stable because they are already stable
before the icosahedral symmetry-lowering perturbation is
applied. We also show which ground states should have
the largest magnetic moments, and compare predictions
to experimental findings. ~ ~

For this group-theoretical treatment, it is more con-
vergent to calculate the electronic structure of a large
molecule by a spherical harmonic expansion than by lo-
calized atomic orbitals. The comparison between the
spherical harmonic method for C60 x-electron states is
made with the first principles calculations of Saito, Os-
hiyama, and Miyamoto using norm-conserving pseudo-
potential molecular orbital (MO) calculations with Gaus-
sian basis functions. s 4

Consider first the various icosahedral fullerenes C~
that can be constructed (see Table I).s Since each ver-

tex on a fullerene connects a carbon atom (having
four valence electrons) to three other carbon atoms,
we can assign one available vr electron to each car-
bon atom. We can then form electronic configura-
tions from these x electrons as shown in Table I, by
assigning 2(28+ 1) of these electrons to each angular
momentum state and using the conventional notation
s, p, d, f, g, h, i, k, l, rn, n, o, q, r, t, . . . for angular momen-
tum states 8 = 0, 1,2, . . .. For each of the electronic con-
figurations, we then apply Hund's rule to get the ground-
state quantum numbers 8, L, J listed in Table I. Of par-
ticular interest are the special fullerenes C60, Cqso, and
C42p which form J = 0 ground states even when we only
consider spherical symmetry. The high stability of these
J = 0 molecules is further enhanced by the symmetry-
lowering effect, yielding highly stable molecules. In the
icosahedral fullerenes, closed shells for E = l,„occur
very rarely as indicated in the footnote of Table I.

Open-shell structures may be easily distorted by
symmetry-lowering interactions. The relative magni-
tudes of the configurational interaction and the icosa-
hedral (or other symmetry-lowering) splitting determine
the most convergent approach to calculations of the elec-
tronic structure. If the icosahedral perturbation is large
and the electron-electron interactions are small, then the
most appropriate scheme is the application of the icosa-
hedral perturbation first to split the large E values and
then to formulate the many-electron levels from the icosa-
hedrally split states (low spin state in Table II). If, on
the other hand, the electron correlation eKects are much
larger than the icosahedral splittings, then one should
form the multiplet states first and then apply the weak
icosahedral perturbation later (high spin state in Ta-
ble II). We illustrate both of these approaches in Table II
which lists the levels of the various C60 "+ molecular ions
formed from C60.

We form the various entries in Table II for the C60"
molecular ions for —6 & n & +1. On the left side
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TABLE I. Spherical ball approximation for the x molecular orbitals for icosahedral fullerenes.

C2o
C6o
C80
C140
C180
C240
C260

(m, n)
(1,0)
(1, 1)
(2, 0)
(2, 1)
(3 o)
(2, 2)
(3 1)

Sym.

Ia
4
I

Ih,
I

&m~ b

3
5
6
8
9
10
11

C&tot

32
72
96
162
200
242
288

n a

2
10
8
12
18
40
18

Full configuration
2 6dlO f2
2 6dlOf14 18I 10

2 6d10 h22~8

82 6g10 k30)12
2 6F10 )34 18

2 6d10 38 40

8 8 '''A 0

S'
1
5
4
6
9
1
9

Le

5
5

20
30
9

19
45

Je
4
0

16
24
0

20
36

Icosahedral symmetry

Gg, Hg
Ag

Ag 2F1g F2g 2Gg 3'
A) 2F1, 2F2, 4G, 4H
Ag
Ag 2F1g 2F2g 2Gg 4'
2A) 4F1, 3F2, 5G, 6H

~Note that icosahedral symmetry requires N = 20(n + m + nm) where n, m are integers (Ref. 5). From the (m, n) values,
the symmetries are I& (for m = n, or mn = 0) snd I [for sll other (m, n)j. Group theory notation is from Ref. 6.

represents the maximum value of the angular momentum for the HOMO.
'n l~ ——2(E,„+1) is the number of electrons needed for s filled shell.

n represents the number of valence electrons. The smallest possible N, „for a C~ „icosahedral fuQerene with a closed-shell

configuration, l.e., n„= 0 (S = 0, L = 0, J = 0), hss N, = 275467380; (m, n) = (2192,2093), snd I. , = 11735.
'S, L, J values for the ground state are given according to Hund's rule.

of Table II we list the configurations in full rotational
symmetry, the ground state S, L, and J from Hund's
rule and the irreducible representations of the icosahe-
dral group corresponding to each ground-state J value.
On the right-hand side of the table we list the electronic
configuration in icosahedral symmetry for the HOMO-
LUMO levels, give the term symmetries and J values
for the ground states, and in the last column we list the
corresponding icosahedral irreducible representations of
all the J values of the multiplet. The hyperfine-split
state corresponding to Hund's rule is explicitly flagged.
Since the spin-orbit coupling for carbon is very smalis
such hyperfine structure could only be observed in high-
resolution experiments.

Recent measurements of the magnetic properties of Cs-

doped Csp (Ref. 1) show anomalous behavior which im-
plies that the molecular ions have magnetic dipole mo-
ments. The maximum magnetic moment is observed at
Csp 4 (z = 4 for Cs~Csp), which is consistent with the
molecular ion ground states listed on the right-hand side
of Table II where the maximum J = 2 also occurs at
Csp 4 . For acceptor-doped Csp, maximum J value oc-
curs for the +3 ion (not shown in the table).

In the case of the Csp solid, the band width of the
F „lb adn( 0.4 eV) (Ref. 3) is compatible with the
electron-electron interaction in a molecule ( 0.5 eV).
The competition between the itinerant and localized na-
ture of electrons in doped M Csp depends on x, and up
to z = 1 the metallic nature of the itinerant electrons
will be dominant, as is observed in the maximum Pauli

TABLE II. Various Pauli-allowed states associated with the ground-state configurations for the icosahedral C60 ions.

0

1+

8
3

7/2
4

9/2

11/2
5

9/2

15

14

12

High spin state
JS
18a

35/2
16

27/26

10'

11/26
0d

9/2

Icosahedral symmetry

Ag ) F1g) 2F2g) 3Gg )3'
r, , r, , 2r, , 4r,
Ag 2F]g F2g 2Gg 3'

r, , 2r, , 3r,

Ag, F1g, F2g, Gg, 2Hg

r, , r, , r,
Ag

r, , r,

Config.

glOf4

hlpf 8

hlOf2

glOf 1

h10

h„

Low spin state
Ih, state'
'A (J = 0)6

Fl„(J= 3/2)

Ag
8F18(J= 2)6

4A„(J = 3/2) 6
2 F1u
H„
Ag
F (J=O)

Fl„(J= 1/2)6
A (J=O)
H„(J= 5/2)

Hyperfine structure

A d

Ag
a

Ag, F1g, Hg
H~

r, , r,
r, , r,
Ag

Ag, F1g, Hg
Hg

r, ,'r,

r, , r, '
'We list only the state S = n/2 of maximum spin multiplicity, snd L snd S for the Hund'8 rule ground state.

The notation for the irreducible representations is from Ref. 6 and for the double-group representations is that of Ref. 7.
'A11 Pauli-allowed states are listed in terms of irreducible representations of Ih, and the spin degeneracy. J values for Hund s
rule are listed explicitly.

Hund's rule ground state.
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susceptibility at 2: = l.
In C60 the crystal-fjeld splitting between the H„and

Fi„ levels ( 1.9 eV) is much larger than the electron-
electron interaction and thus low spin states are appro-
priate .However, in a large fullerene, the atomic poten-
tial modulation is expanded to high E values and the
energy gap decreases with increasing radius. Thus the
high-spin state would be expected to be the preferred
representation for the large fullerenes. In both cases,
n electrons in fullerenes are well represented by a large
wave-function amplitude on a ball. Following the group-
theoretical treatment of symmetry lowering from spheri-
cal to icosahedral symmetry, we have developed a spheri-
cal harmonic expansion for a surface with spherical sym-
metry and for icosahedral symmetry. Although we only
show the one-electron states of Cso, the same procedure
can be applied to larger fullerenes and their multiplet
structure. ~p

First we solve the model quantum-mechanical problem
for the Csp z-electrons treating them as free electrons
bounded in a spherical square-well potential V(r) written

—Vp ((To —
T~ ( T~/2)

0 otherwise.

(3)

in which Bq denotes the repulsive potential associated

Here Vo, ro, and r are the depth, center, and width
of the spherical well. Connecting analytical solutions
of real and imaginary spherical Bessel functions of Eth
order for angular momentum E at the boundary of the
well, we obtain the bound states in the well. Using
reasonable choices of the parameters for Cso, that is,
Vo ——10 eV, ro ——4.05 A, and r = 3.5 A. , we find
that nodeless radial wave functions up to E = 8 have a
lower energy than the corresponding excited states whose
radial functions have nodes. All irreducible represen-
tations of the m-electron MO's of Cso in Ig symmetry
(Ag +Fis+ Fgs +2Git y 3' +2Fi„+2Fz„+2G„+2II„)
are included in the spherical harmonics through E = 8.
Thus it is sufficient to consider only nodeless wave func-
tions for the electronic states. In this case the angular
part of the wave function, which is expressed in spheri-
cal harmonics, has a special meaning, which corresponds
to determining the molecular-orbital coefficients in the
tight-binding approximation. Considering only the node-
less radial wave functions which are localized in the well,
the energy-level differences corresponding to difFerent E

values come mainly from the centrifugal force of the an-
gular momentum and are proportional to E(E+1)/r&~. The
spherical approximation improves with increasing radius
Tp ~

The phenomenological one-electron Hamiltonian for
icosahedral molecules can be simplified by introducing
the angular momentum operator. The Hamiltonian con-
sists of a spherical term 'Mo and an icosahedral perturba-
tion 'Ri„, which is suggested by Harter and Reimerii for
obtaining the rotational and vibrational states of Cso,

Hj = HQ+ Rih ~ (2)
Here '80 is approximated by

'Mo = Bp+ B)E +

with the angular momentum and has the approximate
value of ~ (5 /2m)E(E+ 1)jroz. The icosahedral pertur-
bation 'Rl„ is expanded in terms of the Ig-invariant, ir-
reducible tensor form of sixth and tenth rank,

RI, = tsT~s& + tMT~iO& + (4)
where T~~& is given by

T"' = T'+ (T' —T' ) (5)

where the minus sign arises from the attractive poten-
tial and S&~& is defined by substituting S~ for T~ in

Eqs. (5) and (6) since the same nonzero S~~ and T~" ap-

pear in the Ig invariant form. In Table III we show for
comparison the coefficients S&s&, S& 0&, and the higher-
order coefficient S&iz& for the icosahedral fullerenes Cso,
C80, and C14p. The parameter Bq is estimated to be

(5 /2m) [E(E+ 1)/r&~], where rN denotes the radius of
CN. The absolute value of the perturbation 'Rl„ is the
only parameter to be determined when we fix the ratio
of the S|~~ terms. From Table III, we see that the per-
turbation of tenth order is dominant in Csp (Ref. 13)

and

T(io& Q3 x 13 x 19 ]0 +11 x 19+

/3 x ll x 17(Ti0 Tio ) (6)

where T~~ is the mth component of the irreducible ten-
sor operator T~~& of Eth rank. When we only consider
the splitting of the energy levels in a space of (E=const),
Ti~& can be expressed by operators of angular momentum
called equivalent operators. i~ However, since the icosahe-
dral perturbation 'Ri, mixes spaces for difFerent E's, we
directly calculate the matrix elements of Ti"& as shown
below. For basis functions, we use spherical harmonics,
Yp~. The basis function in the space (E=const) is easily
decomposed into irreducible representations of the icosa
hedral group by solving an eigenvalue problem of equiva-
lent operators of Tis& in (E=const). Icosahedrally invari-
ant tensors for higher rank E appear for E = 12, 16, 18, . . .
whose coefficients are the same as those of the basis func-
tions of E in the As irreducible representation. Thus an
invariant tensor of any rank can be generated from Tis&.

To get explicit solutions we have diagonalized the phe-
nomenological Hamiltonian equation (2) numerically in

the space of E & 8. The parameters Bo and Bq and ts
and bio are fitted to reproduce low E states in the first-
principles MO calculation by Saito and Oshiyama. 4 The
parameters Bo and B2 are most sensitive to the E = 0, 1,
and 2 states since the Ig perturbation does not act within
the space of (E = const) for E = 0, 1, and 2. The expan-
sion of Eq. (6) in T~~& is performed using the potential of
the molecule. Here we roughly estimate the ratio tio/ts
by calculating the E and m components of the structure
factor of the atomic coordinates r, , e, , P, for iI = 1, . . . , N
as an approximation

N

S„'=-) Y, (e, , y),
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TABLE III. Values of Sl (dimensionless) for C~ icosa-
hedral fullerenes.

Parameter
$'(6)

~(~o)
~(z2)

N =60
2.44

—19.44
—7.09

N =80
2.05
9.72

—25.71

N = 140
5.04
1.31
8.07

and of twelfth order is dominant for Csp. On the other
hand, the higher-order terms, T(zt&, do not affect the elec-
tronic states within the same E space that have smaller
l values. Thus the electronic properties will eventually
become free-electron-like, i.e., solutions of 'Rp, when the
radius of the icosahedral molecule becomes very large.

It is interesting to compare I, in Table I and the
dominant 8, in the expansion of T(t) denoted as El„.
In the case of Er„) 2E ~, the splitting of the valence
states becomes small. Since Er„ increases more quickly
than / g(N//2) —1 with increasing N in C~, high
spin states could occur for larger icosahedral fullerenes, if
the electron-electron interaction is larger than the energy
level splitting.

Finally we show the calculated results for Csp using
this method and show the agreement obtained with MO
calculations. For E & sz, all matrix elements of Rl„ in the
space of (I=const) vanish since the icosahedral splitting
does not appear until / = 3 is reached. There is, however,
a small interaction between E and E + 6 through T(s),
which gives rise to a perturbation in the energy levels
having the form B2l(f, + 1).

The diagonalization of this Hamiltonian gives the
eigenvalues listed in Table IV, using the fitting param-
eters of Bp = —7.40 eV, B2 = 0.27 eV, ts = —1.25 eV
and tip is determined by the ratio of S(ip)/S(s) from Ta
ble III. The comparison between the calculated results
of the molecular orbital calculation by Saito, Oshiyama,
and Miyamotos and the present work is shown in Ta-
ble IV. The calculated results reproduce the sequence
of irreducible representations and their energy positions
well. The only difference in the sequence of irreducible
representation between the two calculations occurs for
h„(E = 7) and gs(E = 6). The numerical inaccuracy
arises from the limited space of E & 8 terms, neglect of
the effect of T(is& in Eq. (5) and use of tip/ts obtained

TABLE IV. m-electron energy states of the C60 Hamilto-
nian.

e
0
1
2
3
3

4
5
5
5
6
6
7
6
7
8

Symmetry
ag
fi
hg

f~
gu

hg

Qg

h„
fi~
f2
fis
hg
h„
gg
gu

f2s

Model (eV)
—7.41
—6.87
—5.87
—4.40
—4.13
—2.21
-2.12
—0.20

0.88
1.82
3.38
3.43
5.27
4.92
6.98
7.98

Literature (eV)'
-7.41
—6.87
—5.82
—4.52
—3.99
-2.44

2.37
1.27
0.62
1.59
2.71
2.78
4.15
4.60
5.05
5.47

'Reference 2.

from geometrical considerations of the atomic coordinate.
The energy splitting at f = 3 is due to the interaction

of T(s). The reason why the splitting of the E = 4 level
into Hs and Gs levels is smaller than E = 3 into Ez„
and G„ is that there is a level crossing of Hs and Gs
near the optimized parameter for the absolute value of
the perturbation when we change the value of ts.

Using the one-electron wave function, multiplets of
neutral and doped Csp can be calculated. For the neutral
Csp molecule, the two-electron excitation is calculated by
a configuration interaction method. s Although the quan-
tum chemistry approach gives only numerical results,
most of the electron-electron interaction may be deter-
mined by the geometric factors of the one-electron wave
functions. This work will be published in the future. iP
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