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Effect of frustration near the magnetic-nonmagnetic transition
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Many different physical situations can be explained by the effect of frustration in systems close to the
magnetic instability. We study this phenomenon within a Blume-Capel model on a triangular lattice, by
numerical and analytical calculations. Complex magnetic ordered phases, including coexistence of mag-
netic and nonmagnetic sites, are obtained. The interesting dependence of the phase diagram with pres-
sure, magnetic field, and temperature is discussed in connection with experimental results on 8 Mn2 sys-

tems.

I. INTRODUCTION

Frustration is frequently present in magnetic systems
and its consequences on the physical properties are under
active discussion in the literature. The spin-glass behav-
ior is the result of frustration in disordered systems.
Frustration also occurs in both metallic and insulating
periodic systems, either because it is inherent to the crys-
tal structure, or due to competing interactions. The low-
temperature behavior of such systems is very rich be-
cause of the existence of many states with similar ener-
gies. In rare-earth metals helimagnetic (Tb, Dy) and anti-
phase (Tm) orderings have been recognized for a long
time. More recently other exotic behaviors have been re-
ported: Gd3Ga50, 2 does not order even at low tempera-
ture spin-nematic order has been proposed for the
Heisenberg antiferromagnet on a Kagome lattice:
SrCr8Ga40». In another context, frustration certainly
plays a role when cuprate perovskites are doped.

In all the previous cases all relevant sites are magnetic.
In a recent work, however, in order to explain the pecu-
liar properties of itinerant antiferromagnetic (AF) RMn2
(R denotes rare earth) systems, another possibility has
been considered: the instability of the magnetic moment.
Frustration near the magnetic-nonmagnetic (M-NM)
transition yields complex magnetic ordered phases in
which magnetic and nonmagnetic sites coexist and which
show unusual dependence on external parameters such as
magnetic field, temperature, applied pressure, or alloying.
This is in fact a more general phenomenon: a similar sit-
uation can occur in frustrated Ce compounds where the
nonmagnetic state is attained by means of the Kondo
effect or in compounds where the lowest crystal field level
is a singlet.

We have then proposed to map all these cases, near
the M-NM transition, into a Blurne -Capel model:

H=gbS;+ —,
' g J, SS

7&J

where 6 and J, are related to the parameters of the mi-
croscopic model corresponding to the particular case.
Close to the M-NM instability, 6&0 and S; can take
three values: S,- =+1 if the site has a magnetic moment

p; =+p, and S, =0 if p, =0. This last choice breaks the
rotational invariance of the spins, which is just the case
of the RMn2 systems where the Mn atoms are located on
a site of high uniaxial symmetry. The model can be im-
proved by taking into account longitudinal as well as
transverse fluctuations. In other cases it is necessary to
consider from the beginning xy or Heisenberg interac-
tions.

The frustration of the structure is described in a tri-
angular lattice where it is not possible to satisfy all the
AF nearest-neighbor interactions. Consider the triangle
in Fig. 1. If the energy 6 necessary to create a moment is
positive, configuration (b) has a lower energy than
configuration (a). Thus on a triangular lattice the mag-
netic moments on some sites can vanish due to frustra-
tion. The same occurs in the more complicated Laves
phase structure of the RMn2 systems or in the Ce com-
pounds with competing interactions.

The paper is organized as follows. In Sec. II we discuss
different physical situations that lead to this interplay be-
tween instability of the magnetic moment and frustration.
In Sec. III we describe the two methods used to study the
Hamiltonian that we propose to model this phenomenon
in Eq. (I). In Sec. IV we obtain the corresponding phase
diagram on the triangular lattice at T=Q and H =0; its
evolution with pressure is discussed. The magnetic field

and temperature dependences are discussed in Secs. V
and VI, respectively. Section VII contains the con-
clusions and some comments on experiments.

R

FIG. 1. Competing three-site configurations. (a) Three mag-

netic sites with total energy E~=35—J&. (b) Two magnetic
sites with E&=2h —J

&
(o indicates nonmagnetic site).
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II. SOME PHYSICAL REALIZATIONS
OF THE MODEL

HO g ekcko eke
k, o.

(4)

A. RMn~ compounds

The intermetallic RMn2 compounds show interesting
properties that are associated with the instability of the
itinerant-electron antiferromagnetism in a frustrated lat-
tice.

These compounds crystallize in either the C14 hexago-
nal or C15 cubic Laves phase structure. The Mn atoms
occupy the corner of regular tetrahedra, giving rise in
both cases to a highly frustrated lattice. On the other
hand, the Mn moments in the RMn2 series are very close
to the M-NM instability. Below a critical Mn-Mn dis-
tance d„Mn remains nonmagnetic, i.e, for R =Sc, Ho,
Er, Tm, and Lu. Above d„i.e., with light lanthanides,
R =Pr, Nd, Sm, and Gd, large moments with AF in-
teractions are found. Complex magnetic orderings are
then observed due to the lattice frustration. They set in a
first-order transition accompanied by a large volume
discontinuity which is accounted for by a substantial
jump of the Mn moment at the ordering. In the com-
pounds with a Mn-Mn spacing near d, the magnetism be-
comes extremely sensitive to external parameters. A
good illustration is TbMn2. In the paramagnetic regime
this compound exhibits strong short-range order. As the
temperature is decreased two close magnetic transitions
develop. At low temperature, the magnetic structure can
be destabilized by an applied field, leading to magnetic
isotherms with large field hysteresis. ' Application of hy-
drostatic pressure induces a dramatic decrease of the or-
dering temperature of the Mn ions, at a rate of 36
K/kbar. " The substitution of only 3% of Tb by Sc is
enough to destroy the Mn moment. ' The case of DyMn2
is particularly interesting, as although all the Mn sites are
chemically equivalent, only 25% of them bear a magnetic
moment. This coexistence of magnetic and nonmagnetic
Mn sites has been clearly established by NMR (Ref. 13)
and by powder neutron diffraction. '

In the RMn2 compounds in which a Mn ordering takes
place the Neel temperature is roughly independent of the
rare earth R (Tiq —100 K). ' This shows that the R-R
and R-Mn exchange interactions are 1 order of magni-
tude smaller than the Mn-Mn interactions: we neglect
them. We use for the Mn lattice a Hamiltonian derived
from the Hubbard model close to the M-NM instability.

Using the functional-integral technique, the partition
function of the Hubbard Hamiltonian can be written as
an integral over N auxiliary variables iM; (in the static ap-
proximation)

Z= dp, exp —F p; (2)

where

and Vis a nonuniform potential,

V= —
—,'Ugim;(n;& n;—&) .

At zero temperature, the integral over iu; in Eq. (2) is
usually replaced by a saddle-point approximation. The
auxiliary variables p; are determined by minimizing
F(p; ) and this is equivalent to a local Hartree-Fock ap-
proximation: iM; =(n;& —n;&).

It has been shown' ' that the main contributions to F
come from the one-site F&(p;) and two-site F2(p, p )

terms. Two situations can occur: (i) F~ is minimum for
p;=+p (iMWO}. In this case all sites are magnetic and
the ground state can be ordered due to the magnetic ex-
change energy [i.e., F2(p,;pj }]. This is the case for U
larger than a critical value. (ii}F

~
is minimum for p; =0.

A magnetic moment can exist only if the two-site interac-
tions are large enough. This occurs close to the M-NM
transition.

F, and F2 can be calculated numerically for a given
band structure. ' For small values of p; the following ex-
pressions for F& and F2 can be derived from Eq. (3)

Fi= gbP(~ ~ F2 2 g JijPiPi
l i'

with

U U f ek f ek+q
4 & k, , ~k —

~k+q

JJ= geU iq(R —R ) f (ek } f(ek+q)
4N kq ~k+q

(6)

h=Ap, J"=J.-p, and S.=0,+1 . (9)

This S =1 Ising-like model is particularly well suited
for the RMn2 compounds where the Mn lattice is submit-
ted to a large uniaxial anisotropy.

b & 0 in case (i) and b )0 in case (ii) above. In the follow-
ing we suppose that 5 &0. The magnetic moment at a
given site, p;, which minimizes F&+F2 will be different
from zero only if the molecular field around it is large
enough to overcome the on-site energy h. Thus we con-
sider that p; can take three values, p; =0,+p. This is the
main difference from the earlier calculations where mag-
netic moments were supposed to have only two values,
+p. Of course, for finite values of p; other contributions
to F& and F2 must be taken into account. However, the
saddle-point approximation yields the same type of ex-
pression (6) (only the coefficients b and J; are changed).

Equation (2) is then equivalent to the partition function
of the spin Hamiltonian in Eq. (1), with

Up,
F(p; }=F0——Tr ln(1 —VGo)+ g

l

(3) B. Kondo lattice compounds

In this expression Fp and the Green's function Gp are re-
lated to the noninteracting part of the Hamiltonian,

Most of the Ce compounds that do not show magnetic
ordering show, however, AF correlations at low tempera-
ture. ' These correlations are induced by the Ruderman-
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Kittel-Kasuya-Yosida (RKKY) interaction. In a lattice
with such long-range interactions, frustration generally
occurs because it is not possible to satisfy all AF correla-
tions. This frustration will favor the Kondo effect: if a
site is strongly frustrated it will be energetically more
convenient to stabilize a singlet on that site. The Kondo
lattice can then also be mapped on the effective Hamil-
tonian in Eq. (1). However, in this case

(10)

iq(R,. —R. )
e

q

2 (0)
(p)

J Xcc ( l)
xff(e)

are related to the localized and conduction-band Kondo
susceptibilities in the nonmagnetic state' off' and g,', ',

and they depend on temperature.
Experimental indications for this behavior are the

metamagnetic transitions induced by the application of a
magnetic field in CeRu2Si2, for example. Also CeSb
where magnetic planes alternate with nonmagnetic
planes ' could be analogous to the mixed phase observed
in RMn2 systems.

C. Crystal field eft'ects

D. Dense classical Coulomb gas

A similar model has recently been proposed for the
classical Coulomb gas of integer charges on a triangular
lattice and related problems: superAuid and supercon-
ducting films, Josephson-junction arrays, two-
dimensional (2D) melting surface roughening and liquid
crystals. In spite of the fact that the interaction is long
range and the interest is focused on the 2D properties,
the phase diagram reported by Lee and Teitel shows
many similarities with our work. Particularly these au-
thors also obtain the mixed phase (phase VI in Fig. 2),
with simultaneous charged and neutral sites: q, =+q or
0.

III. METHODS

We propose then to map all the previous cases on the
effective spin model in Eq. (1). We have studied this

The same kind of Hamiltonian in Eq. (1) was first pro-
posed by Blurne and Capel for the following case: the
ground state of a system is a singlet and a magnetic level
lies at an energy 6 above the singlet. In a magnetic field
the magnetic level is split while the singlet remains
unaffected. If the magnetic field is large enough, the
ground state will have a net magnetic moment. If the
magnetic field is smaller than 6/gp~, however, the sys-
tem will be nonmagnetic. The same happens if the mag-
netic field is due to exchange interactions between the
various ions, and if frustration is present one or the other
situation can occur on sites that are chemically
equivalent. This is the case of TbNi2Si2 (Ref. 22) and
PrNi2Si2 (Ref. 23) where this effect gives rise to incom-
mensurate modulated structures down to T =0 K.

Harniltonian for temperature-independent parameters 6
and J; which could correspond to the cases described in
Secs. II A, II C, and II D, but not to the one described in
Sec. II B, by numerical and analytical calculations.

For the general case there are no exact results. In the
limit A~ —~, nearest-neighbor interaction J, )0 and
next-nearest and third-neighbor interactions, J2 =J3 =0,
Eq. (1) is equivalent to the AF S =

—,
' Ising model, which

in the triangular lattice does not order: the simultaneous
reversal of pairs of spins does not cost any energy. The
molecular field calculations and the Monte Carlo simula-
tions with periodic boundary conditions do not reproduce
this result. However, we are interested in the case 5)0
for which no exact results are known. As is shown in the
next section, for J2=J3=0 the stable phase is a mixed
one with coexistence of magnetic and nonmagnetic sites
(see phase VI in Fig. 5), for which the previous argument
is no longer valid: it is not possible to reverse spins
without increasing the energy. On the other hand, the
magnetic phases are obtained for J2 or J3%0 where this
argument also cannot be applied.

We have used two different methods to study Eq. (1)
and we have verified in all cases agreement of the results

(a) Monte Carlo simulations using Metropolis sampling
on 10X12, 12X12 and 16X12 lattices upwith periodic
boundary conditions. Some simulations have also been
performed with free boundary conditions in order to
check that no other structures with different periodicity
are stabilized.

(b) Analytical calculations where correlations in the ele
mentary magnetic cell are treated exactly. For example,
for a three-site unit cell, the partition function Z is evalu-
ated replacing the Hamiltonian in Eq. (1) by

a'=00'+ V', (12)

Hp =J,(S,S2+S2S3+S,S3)+b(Sf+S~+S3), (13)
3

V = g V; S; with V, = g'J;.m. for j@1,2, 3, (14)

where the sites 1, 2, and 3 form a triangle. V represents
the interaction with the other sites which is treated in
mean field approximation. g' includes all other sites ex-
cept 1, 2, and 3. The advantage of this second method is
that analytical results can be obtained, where frustration
is partially taken into account. The magnetic moments
are calculated self-consistently:

~ g(c) —PH

m,~= (c)

ye PH—
(c)

(15)

with j&1,2, 3 (16)

where (c) means the different possible configurations for
the three sites merged in the studied phase P. The com-
parison of the free energies corresponding to the different
phases:

3Fr= kTlnZr ,' g'g'(m—; &(m, &——
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allows one to study the temperature dependence of the
phase diagram, discussed in Sec. VI.

IV. PHASE DIAGRAM AT T =0 AND H =0

The two methods described before lead to the same
phase diagram for the model Hamiltonian in Eq. (1) at
low temperatures. Although many other configurations
have been taken into account, only the ordered structures
plotted in Fig. 2 have been stabilized at zero field in the
range of parameters considered. If the on-site energy 6
and the interactions J;~ are related to the parameters of
the Hubbard model, we can think that 6 increases con-
siderably with the application of pressure while the J," in-
teractions change but in a more moderate way. Figure 3
shows the evolution of the T =0, H =0 phase diagram
with 6 when first-, second-, and third-neighbor interac-

tions are included. Preliminary results have been given
elsewhere.

For b, =O all phases are magnetic [Fig. 3(a)]. For finite
5 an ordered phase in which magnetic and nonmagnetic
sites coexist appears for ~J2~ (6)'3 [Fig. 3(b)]. This new
mixed phase VI (hexagons of alternating up and down
spins with a nonmagnetic sites at the center) is stabilized
between the ferrimagnetic phase III (hexagons of up spins
with a down spin at the center) and the AF phase IV (zig-
zag up and zigzag down spin chains). For increasing b
(b/J, )—', ) this last phase, IV, disappears and a new

mixed ordered one, VII, is stabilized (zigzag up and zig-

zag down chains alternate but leaving a nonmagnetic site
at the center of the hexagons that they form) [Fig. 3(c)].
A third, more complicated mixed phase VIII appears for
larger b, and larger interactions J) [Fig. 3(d)]. For 5
very large it is energetically more convenient to cancel
moments and the nonmagnetic phase IX spreads over the
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FIG. 2. Ordered phases stabilized in the range of parameters
considered in Fig. 3. In the text the different phases are referred
to using the numbers indicated in this figure.

FIG. 3. Phase diagram of the model Hamiltonian [Eq. (1)],
on the triangular lattice at T =0, H =0, with increasing on-site
energy h. The borderlines between the different phases defined
in Fig. 2 are determined by the following equations: phases I
and II, J, = —J2; phases I and III, J, = —J3, phases II and III,
J2=J3, phases II and IV, J&=2J3, phases III and IV, J&=0;
phases II and V, J& =4J3, phases IV and V, J, =2J2; phases II
and VI, 5=9J2 —12J3,' phases III and VI, 6= —3J2, phases IV
and VI, 5=3J„.phases V and VII, 5=J, +J2; phases VI and
VII, J, =2J, ; phases II and IX, 4=J, +J,—3J3., phases V and
IX, 6=J2+J3,' phases VI and IX, 26=3J, —6J, +3J3,. phases
VII and IX, 26 = —Jl +2J2+ 3J3, phases VII and VIII,
26 =3J2; phases VIII and IX, 86= —3J& +9(J2+J3 ).
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magnetic and mixed phases [Fig. 3(d)].
The phases obtained can be classified in three

categories which can be related to different RMnz com-
pounds, depending on the Mn-Mn distance.

(I) (V—) magnetic phases (YMn2, NdMn2). When

~S; ~

= 1 on each site, different magnetic orderings can be
obtained, depending on the J2/J& and J3/J& ratios. The
evolution of each of these phases with b, (i.e., with in-

creasing pressure) is different: in some cases the magne-
tism is canceled homogeneously, whereas for other pa-
rameters only partial vanishing occurs and mixed phases
are obtained.

(VI) (VIII—) mixed magnetic phases (ThMnz DyMn2).
These phases are new and occur in compounds with Mn-
Mn distance d-d, or, for special ratios of the parame-
ters which are attained by modifying the external condi-
tions: temperature, magnetic field (TbMn2 below 40 K at
H )4.5 T, see Sec. V), pressure (TbMn2 at P ) 2

kbar). NMR measurements have determined unambigu-
ously this behavior, neutron diffraction experiments have
been done to determine the arrangement of the magnetic
and nonmagnetic sites.

(IX) nonmagnetic phase (ScMn2, ErMn2) For larg. e b„
S;=0 at each Mn site.

Since all these phases are observed with either magnet-
ic (Er, Nd, Dy) or nonmagnetic (Sc, Y, Th) rare earths,
they are characteristic solely of the Mn lattice.

V. MAGNETIC FIELD DEPENDENCE

The effect of an applied field is interesting: several
transitions are induced, their number depending on the
initial state in zero field. Furthermore, Monte Carlo
simulations show an unexpected feature: at some critical
fields the number of magnetic sites decreases with in-

creasing field. Figure 4 shows the evolution of an AF in-

itial state ( b, =J„Jz=J, /2, and J& =0): four transitions
are observed at h, = —b, +2(J, +Jz), h2=b, +2(J, +J2),
h3 = —b, +6(J, +J2), h~ =6+6(J,+J2). Above the first

and the third critical fields new mixed phases are ob-
tained, which were not stabilized without field.

According to recent neutron diffraction experiments
this behavior occurs in TbMn2. With a magnetic field

this compound, initially in an AF state, tips over a mixed

phase, where Mn magnetic moments coexist with 75% of
nonmagnetic Mn sites in the more complicated Laves
phase structure. By cooling this compound under ap-
plied field and returning to zero field, a different ordered
state is obtained, showing another characteristic of frus-
trated lattices: many different phases are very close in en-

ergy.

VI. TEMPERATURE DEPENDENCE

A systematic study of the phase diagram with the
analytical method explained in Sec. III shows that the
temperature behavior is also very rich, with first- and
second-order as well as multiple transitions, depending
on the parameter values. In Fig. 5 we indicate the re-
gions where these different behaviors are observed for
first- and second-neighbor interactions (J3=0). In this

0.7

Z0
I-
N
~ 0.5
LUz
Q

0.2

h, h3 h4

APPLIED FIELD (units of J, )

FIG. 4. Monte Carlo simulation for increasing magnetic
field for 5=Jl End J2 =J l /2 corresponding to the antiferro-
magnetic phase II in zero field. Two additional mixed phases
are obtained.

TIC

-0.5 O. 5 J2 I J&

FIG. 5. Phase diagram for first- and second-neighbor interac-

tions, J3=0. The solid lines indicate the phase boundaries at
T =0. The dashed lines separate regions with different temper-
ature behavior: g means that a first-order transition from
the ground state to another ordered state is observed at T&, be-

fore reaching the nonmagnetic state at T~; [g indicate re-

gions where the transition at T~ is first order. In the other part
of the diagram the transition to the nonmagnetic state at T~ is

second order.

case the competing ordered states are described below.
(a) The mixed phase VI, for which the elementary mag-

netic cell is a triangle with m; =(S; ) =0, +m, yield-

ing

V =Jm (S~ —S ),
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where

J 2J i 6J2+ J3 (18)

gM
M —— M —mM=

ZM

and the free energy per site is given by Eq. (16):

F =—'
I kTln—Z +J(m ) ]

(19)

(20)

With this molecular field, following Eq. (15) we calculate

z0

N

z
U

0.6—
N

0.4—

M g ~ m

OO
OO

02— O ~

N

(b) The ferrimagnetic phase III, where the triangular
unit cell has m; =m

~
or m ~, and

0
0 2 3 4

TEMPERATURE (units of J / k )
] B

and

J=2J)+6Jq+3J3,

J=2J&+3J

A t (m t, m t ) A t (m t, m t )

ZF(mF m ) Z (m m )

(22)

In this case the self-consistency includes these two equa-
tions which verify the condition

~
mF,

lim
T TNm)

(24)

as can be easily by expanding Eqs. (23) for m~0. The
free energy per site is given by

F =
—,'[ kTlnZ —J—(m t ) —3J2(m &)

+2J(mt )(mt )] . (25)

(c) The AF phase II, for which the unitary magnetic cell
contains only two sites, with m;=+m". The molecular
6eld Hamiltonian reads

with

H"=J,S,

S2+b(St

+S2�)+
Jm "(S2—S, ), (26)

V =(Jm t
—Jm

&
)(St+Sz)+(2Jm t

—6J'2m t )S3, (21)

with

FIG. 6. Temperature dependence of the magnetic moments
for 6/J&=2. 5 and J2/J& = —0.8, J3=0. m is the amplitude
of the magnetic moments in the mixed phase VI; m ~ and m ~

correspond to the ferrimagnetic phase III. Note that just below

TN, m ~ /m ~
—', verifying Eq. (24).

the moment in all sites: at Tz one goes from phase VI to
phase III before attaining the nonmagnetic states at Tz.
This case is shown in Fig. 6. The opposite occurs for
6 &J&. with increasing temperature the magnitude of the

up moments of the ferrimagnetic phase III decreases fas-
ter than the opposite component in order to attain the re-
lation given in Eq. (24), but before arriving at the ratio of
1/2, a transition to the mixed phase VI occurs. The van-

ishing of the magnetic moment is done only in some sites
before reaching the homogeneous nonmagnetic phase.

As a function of temperature, also Monte Carlo simu-
lations indicate that several transitions take place for
some values of the parameters J; and 5, which are
rejected in the therrnodynamical properties. For the pa-
rameters of Fig. 6, at low temperature the ground state is
the mixed phase VI but between Tz and TN the ferri-
magnetic phase III is stabilized in the simulations. The
speci6c heat, plotted in Fig. 7, clearly shows the existence
of these two transitions.

In order to understand these numerical results, we
have performed high-temperature expansion, using the

J=J]+J2 6J3

In this case there is only one self-consistent equation:

(27)

0.8

A "(m ")
mA mA mA (28)

and the free energy per site is

F"=—,'[ kTlnZ "+J(m —) ] . (29)

The comparison of the free energies of these
configurations indicates (see Fig. 5) that two successive
transitions at T& and T& are obtained with increasing
temperature near the borderline between the mixed phase
VI and the ferrimagnetic phase III, J2= —5/3 (for
J3=0). For 6)J„the number of magnetic sites in-
creases with temperature before having cancellation of

Q

U

U
C4
C/)

0.6

0 4

0.2

0—
0 2 4 6

TEMPERATURE (units of J /k )
l B

FIG. 7. Specific heat calculated by Monte Carlo simulations:
C„=[(E ) —(E) ]Iks T for the same parameters as in Fig. 6.



996 M. D. NUNEZ REGUEIRO, C. LACROIX, AND R. BALLOU 46

where

—Y[J(q)f (q) J,f—(q) 2J,—], (30)

X=Tr [Sf exp( —@Ho ) ]/Tr[ exp( PH—
D )], (31)

Y=Tr[S&S2exp( PHD—)]/Tr[exp( PHD—)], (32)

=2 qx &3f(q) =—cosq„+cos + q3 2 2

q+cos
2

v'3
qy (33)

J(q) is the Fourier transform of JJ. H0 is given by Eq.
(13).

The mixed phase VI corresponds to

q, =(2n./3, 2~/&3), J(q, ) = —3J, +6J2. The antiferro-
magnetic phase II corresponds to qz=(0, 2n. /v'3) and

J(qz)= —2J, —2J2. The ferrimagnetic phase III is de-

scribed by two different q values: q, and q0=(0, 0),
J(qa)=6J, +6J2.

When the temperature decreases the stable phase is the
one with the highest Tz(q). However, phases VI and III
have the same T~, since they both correspond to the
same q =q, . Below T~, in phase VI only one order pa-
rameter m =(S;exp(iqR;)) is different from zero,
whereas in phase III two order parameters, m and ma
(uniform magnetization), must be considered. ma is
much smaller than m, below T~: m0 —

~m~ ~
with

m -(T~ —T )'~ . Expansion of the free energy up to the
sixth order in PV must be performed in order to find a
difference between the two phases: F —F
—A(T~ —T) where the sign of A depends on the pa-
rameters. The results shown in Figs. 6 and 7 correspond
to the case where A is positive: thus decreasing tempera-
ture below T~, phase II has a lower energy than phase
VI, but as phase VI is the stable one at T=O K, a second
transition occurs at Tz & Tz between phases III and VI.
This second transition is a first-order one with a discon-
tinuity in the values of m and m0. (The coefficient A

can be calculated easily in the one-site mean field approx-
imation and it is then found to be proportional to J (q0 ).

This estimation gives a larger parameter region for the
existence of two transitions: Jz & J,}.

In the antiferromagnetic phase II, two transitions as a
function of temperature are also obtained for small values
of Jp /J ] ~ However, the origin is different since the two
phases involved here do not correspond to the same q
value, and then they do not have the same Tz. Since, in
Fig. 5, Tz(q, ) and Tz(q2) were not obtained in the same
approximation [three- and two-site mean field approxi-
mation, respectively, Eqs. (20) and (29)], it is interesting
to compare both TN in the same one-site approximation:
in this case, for a second-order transition, Tz is given by
the equation

three-site mean field approximation described above. We
find that the transition temperature T& depends only on
the q vector which characterizes the ordered state below
Tz. If the transition is second order one has

k~ T~(q) = —X[J(q) —J,f(q)]

ks T~(q) = —2J(q)
2+ exp[A, /T~(q) ]

(34)

and TN(q, )& T~(q2) if IJ(q~)l & IJ(q2)l i.e., if
J2/J, & —,. Thus in this case two transitions are obtained:
the high-temperature phase being the mixed one VI, and
the low-temperature phase being phase II. The critical
value obtained by this simple calculation is very close to
the one obtained in the elementary magnetic cell mean
field approximation explained above, J2/J, =0.15.

On the other hand, the M-NM transition changes from
second to first order as J2 approaches the borderlines of
phases VI and II with phase IX at T=O given by
J2 =J, /2 —6/3 and J2 =6,—J„respectively (for J3 =0).
This change of behavior also implies a sudden lowering of
the critical temperature. This can also be explained using
high-temperature expansion: near Tz, if the transition is
second order, one has m =B(Tz—T) where B is posi-
tive. However, calculation of B shows that it becomes
negative close to the borderline. Again in the one-site
mean field approximation one obtains that B becomes
negative if b, /~ J(q) ~

& (2 ln2)/3.
Finally we would like to point out that Lee and Teitel

in their calculation for the Coulomb interaction in the tri-
angular lattice also obtain a second-order transition with
increasing temperature between a nonmagnetic phase and
a paramagnetic phase. This Kosterlitz-Thouless transi-
tion is a property of two-dimensional lattices with long-
range interactions. Although we have considered finite-
range interactions, the nonmagnetic phase IX may have
unusual behavior since at high temperature —', of the sites
are magnetic. It will certainly be interesting to study this
disordered phase.

VII. CONCLUSIONS

The effect of frustration on a system close to the M-
NM instability allows one to understand the qualitative
behavior of RMn2 systems. For this case we have derived

a model from the Hubbard Hamiltonian which contains
these two ingredients. We have discussed other quite
different physical situations that can be explained within
the same picture.

The two methods used to study the effective Hamil-
tonian, Eq. (1), are complementary: the simulations allow
one to find the stable configurations; the analytical
method gives reliable results when the involved phases
are compared. In spite of its simplicity the mean field

calculation considering exactly the elementary magnetic
cell gives very good agreement with the numerical re-
sults. This suggests that the method can also be useful

for studying other frustrated structures, such as the fcc
or the kagome lattices.

Different kinds of magnetic orderings have been ob-

tained, as observed in the RMn2 compounds. In particu-
lar, the puzzling coexistence of magnetic and nonmagnet-
ic sites can be explained and the recent observation of the
predicted field-induced mixed phase on TbMn2 (Ref. 28}
seems to show the soundness of the proposed model. As
we have commented, this mixed phase has also been ex-
perirnentally observed as a function of pressure.
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In the triangular lattice we have stabilized mixed

phases with only —,
' and —,

' nonmagnetic sites. The more

complex structure of the RMnz compounds yields mixed

phases with —,
' (ThMn2) (Ref. 30) and —,

' (DyMn2), ' non-

magnetic sites. Preliminary Monte Carlo simulations
show in fact that the effect of frustration is even more im-

portant in the real Laves phase structure: the stabiliza-
tion of ordered structures with more nonmagnetic sites is
expected.

On the other hand, such transitions where the number
of magnetic sites changes imply large magneto-volume
effects that must be taken into account in a more quanti-
tative calculation. Interesting results have been recently
obtained for TbMn2. the transition from an AF to a
mixed phase by the application of a field is accompanied
by a 0.4%%uo decrease in volume. The opposite occurs upon

decreasing the field but it shows some hysteresis, as is fre-

quently observed in these frustrated systems. '

There is no clear experimental example of the succes-
sive transitions with temperature. Two consecutive tran-
sitions, very close in temperature, are observed in TbMn2
but further work is necessary to establish whether they
are both due to magnetic transitions on the Mn sublattice
or if the highest-temperature one involves the rare-earth
atoms, Tb in this case. '
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