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A linear approximation to dynamical low-energy electron diffraction (LEED) is proposed, called linear
LEED (LLEED). It may hold the key to the solution of complex surface structures with large atomic
displacements, in a way complementary to tensor LEED. More ambitious possibilities also present
themselves, based on direct inversion schemes and related in spirit to holographic ideas. Linear LEED
relies on the approximate linear independence of diffracted amplitudes from subunits such as atoms or
molecules, and reduces enormously the number of full dynamical LEED calculations needed in a

structural search.

Without doubt the most successful surface science tool
for structure determination is low-energy electron
diffraction (LEED), currently accounting for 40% of new
structures. Until recently LEED structure determination
has relied on large-scale calculations which can become
quite expensive in terms of computer CPU time for com-
plex structures. The inability to invert LEED data
directly has necessitated a full dynamical (i.e., multiple
scattering) calculation to be performed for each candidate
geometry which is then compared with the experimental
data. The process is repeated until as much of structural
parameter space as possible has been explored. This
trial-and-error approach has limited the method’s appli-
cability to relatively simple systems.

Recently, new approaches to LEED have been
developed which have greatly increased the power of the
technique. A particularly successful set of methods is
known by the generic term tensor LEED (TLEED).2”’
The basic idea is to expand diffraction amplitudes linearly
in terms of small atomic displacements away from a
reference structure, for which a full dynamical LEED
calculation is made: this yields a computationally
efficient way to explore many nearby trial structures. Us-
ing tensor LEED, Pendry and Heinz® have also
developed powerful direct inversion methods capable of
extracting vibrational data from LEED measurements.
Schemes based on spherical wave expansions and an au-
tomated search have been utilized to solve relatively com-
plex clean and adsorbate-induced reconstructions.” How-
ever, while these methods have greatly increased the ap-
plicability of LEED, they suffer from a uniform failing—
a radius of convergence of the spatial expansion of typi-
cally only a few tenths of an angstrom. While it is often
possible to guess structures for simple systems to this de-
gree of accuracy via hard-sphere models, more complex
structures may prove less amenable. Consequently, one is
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reduced to the old trial-and-error method in order to lo-
cate candidate structures close enough to the true solu-
tion from which to start the tensor LEED analysis.

Two assumptions go into the construction of a tensor
LEED scheme: (i) the trial structure is close enough to
the true structure for the difference to be accounted for to
first order in multiple scattering; (ii) the correction term
to first order in multiple scattering can itself be expanded
in a series: either a power series in the position coordi-
nates of the atoms, or a spherical-wave expansion. These
are two distinct assumptions, and the failure of the tensor
LEED scheme at large displacements is mainly due to the
breakdown of assumption (ii) rather than (i). In fact the
integrity of (i) carries with it a profound implication: the
scattered amplitudes are linear in the displacement of the
individual atoms or molecules. As an example, consider
a system of many atoms (such as an entire surface), in
which two atoms are displaced from locations r, and r, to
locations r;+8r; and r,+38r,, respectively. If A4(r,,r,)
represents a scattered LEED amplitude, then the linear
LEED expression is

A(r,+6r,r,+8r1,)
= A(r,1,)+[ A(r;+6r,1,)— A (ry,1,)]
+[A(r|,r2+8r2)'—A(rl,r2)] . (1)

Here, the terms on the right-hand side (RHS) are calcu-
lated by conventional LEED theory, for relatively few
structures, in which only one atom is displaced at a time.
The LHS produces amplitudes for any desired combina-
tion of one-atom displacements. Equation (1) holds ex-
actly in the kinematic limit, and its validity is therefore
limited only by multiple scattering. The problem is said
to be linear because Eq. (1) contains no higher-order
products of the changes in amplitudes. Linearity opens
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to us a huge range of mathematical tools developed for
linear analysis. At the simplest level it speeds the calcu-
lation of amplitudes for trial structures: once we know
how each atom contributes individually to the amplitude,
the effect of several atoms simultaneously displaced can
be found as a linear combination of the individual terms.

As an instance of the flexibility imparted by linearity
we cite holography: the diffraction pattern from a struc-
ture can be ‘“solved” by Fourier transformation because
the diffraction pattern is a linear combination of indepen-
dent Fourier components.!® In LEED the contribution of
each atom is usually more complex than a single Fourier
component, hence the complexity of current theories of
LEED. Nevertheless the signature of each atom is con-
tained in the diffraction data and can be extracted direct-
ly by a transformation, rather than by trial and error. A
simple instance of this process was implemented in Ref. 8
for the case of tensor LEED.

Establishing the validity of linear superposition in
LEED opens horizons for the interpretation of LEED
spectra. This approximation can also be thought of as an
extension of the kinematic sublayer addition method,!
which shares many similarities with the linear LEED ap-
proach, but is only applied at the composite-layer level
rather than at the full-surface level.

In order to test the accuracy of the linear LEED ap-
proach in the dynamical limit we performed test calcula-
tions on two systems. We began by considering the
Pt(111)-(2X2)-C,H; system which is almost identical to
the already studied’ Rh(111)-(2 X 2)-C,Hj structure. This
structure is shown in Fig. 1. We considered structures in
which the ethylidyne was displaced upward from its op-
timum position by 0.5 A while the Pt surface atom not
coordinated to carbon was simultaneously moved upward
by 0.2 or 0.6 A. The latter structure was outside the ra-
dius of convergence of conventional tensor LEED. Full
dynamical calculations were performed for these struc-
tures which were then compared with the approximation
of Eq. (1). In Table I we present the results of this com-
parison by means of the Pendry R factor for each beam,
together with the overall R factor. The overall R factor
is extremely good, being of the same order as typical er-
rors in experimental measurements (e.g., between symme-
trically equivalent beams). In Fig. 2 we display I-V
curves for these structures for visual comparison.

We then performed similar calculations for the clean
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FIG. 1. The Pt(111)-(2X2)-C,H; structure. (a) represents the

undistorted structure, while (b) illustrates the displacements
used in this study.
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TABLE 1. Pendry R factors for distorted Pt(111)-(2X2)-
C,H;, comparing linear and exact LEIE“,D I-V curves for dis-
placements of Pt atoms by 0.2 and 0.6 A (see text for more de-
tails).

Beam R (02 A) R (0.6 A)
(0,0) 0.076 0.057
(1,0) 0.029 0.052
0,1) 0.040 0.059
(0.5,0) 0.054 0.133
(0,0.5) 0.047 0.067
(0.5,0.5) 0.121 0.155
Weighted average 0.061 0.087

Pt(100) surface, modeling a rigid expansion of the top lay-
er of the crystal as a combination of two separate ¢ (2X2)
structures, i.e., as a combination of two checkerboard
structures, with first one half of the atoms raised and
then the other half. Again, these calculations produced
extremely good R factors, displayed in Table II. There is
one slight complication for these calculations: the ap-
proximation cannot move the location of the surface bar-
rier where damping cuts in. It is therefore important to
include this effect independently by means of a straight-
forward exponential damping factor.

Linear LEED is a good approximation to the full
dynamical LEED calculation, but how does this help us
with the initial problem of rapidly searching through
complex structural parameter spaces when performing
LEED structure determinations? This is best demon-
strated by a simple example. Consider a structure in
which we need to move 10 coordinates through 10 in-
dependent values each to explore parameter space. Using
conventional methods this would require 10'° full calcu-
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FIG. 2. I-V curves produced by an exact LEED calculation
(full lines) and the approximate linear LEED calculation
(dashed lines) for the Pt(111)-(2X2)-C,H; structure, in which
the molecule is moved up by 0.5 A, while a Pt atom is moved up
by either 0.2 or 0.6 A.
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TABLE II. Pendry R factors for the expansion of clean
Pt(100), comparing linear and exact LE;ED I-V curves for dis-
placements of Pt atoms by 0.2 and 0.6 A (see text for more de-
tails).

Beam R (02 A) R (0.6 A)

(0,0) 0.098 0.087

(1,0 0.033 0.064
(0.5,0.5) =0.000 ~0.000
(1.5,0.5) ~0.000 ~0.000
Weighted average 0.066 0.076

lations: an impractical computational requirement. Us-
ing the linear approximation we require only 10? calcula-
tions, plus appropriate simple summations of amplitudes,
in order to conduct a full exploration of parameter space:
a far more tractable computational proposition. The sit-
vation can be likened to a locksmith trying to open a
tumbler lock. The trial-and-error approach of conven-
tional LEED would correspond to the brute force
method of trying every key in existence until one fits. By
contrast, the linear LEED method tries to pick the lock
with a set of skeleton keys, matching one tumbler at a
time: a far more elegant solution to the problem.

The importance of the linear LEED approximation is
its validity for large displacements. In systems of this
sort, the damping of the electron wave field via the mean
free path will effectively remove the multiple-scattering
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correlations. Consequently, the method can be thought
of as the complement of tensor LEED: it improves with
larger displacements.

To conclude, we have proposed a new and efficient ap-
proximation, of value in all areas of LEED and other
electron scattering techniques, which we tested on two
systems and found to be extremely accurate. It is hoped
that this method will circumvent the problem of locating
candidate structures for examination by tensor LEED,
and allow the efficient examination of highly complex
structures, including coadsorption, multilayer relaxa-
tions, and systems which have so far been beyond the
reach of conventional LEED calculations. In addition,
the existence of a linear superposition theorem opens the
way for analytic analysis of multiple-scattering data pre-
viously thought to be intractable.
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