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Metallic phase of the quantum Hall system at even-denominator filling fractions
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We propose an explanation for the resistivity anomalies exhibited by the two-dimensional spin-
polarized electron gas at v=

2
and related even-denominator filling fractions. Within the Chem-Simon-

Landau-Ginzburg theory we argue that the inhomogeneity in the electron density, caused by the impuri-

ty potential, induces a spatially random distribution of statistical flux, and that electron localization can
be suppressed by this random flux. As a result, a metallic phase appears in the phase diagram of the Hall
system near v= —„leading to a temperature-independent resitivity minimum.

The magnetotransport behavior observed in quantum
Hall samples near filling fractions v= —,', —,', and —', is strik-

ingly different from the well-known signature of the frac-
tional quantum Hall effect. Commonly referred to as
"the v= —,

' anomaly, " the unusual features in the resistivi-

ty occur in very-high-mobility heterojunctions, with p„
displaying a sharp minimum at v= —,

' and saturating at a
nonzero value as T~O, while p„ is not quantized and
has the classical form p„„=BInec

At present there is no successful theory of the v= —,
'

anomaly. Unlike the case of incompressible quantum
Hall liquids, numerical results for small clusters at v= —,

'

remain inconclusive. A class of incompressible states
with p-wave pair correlations was proposed recently;
however, it predicts a quantized p and vanishing p„„
and is therefore inconsistent with experiment. A more
plausible scenario, based on phase separation, treats the
system as a composite of electron droplets forming odd-
denominator incompressible states with densities close to
v= —,'. However, the minimum at v= —,

' is observed up to
temperatures T-10 K, where the features of all fraction-
al quantum Hall states have disappeared. '

In this paper we develop a theory of the v= —,
' state and

show that the v= —,
' anomaly can be understood in the

context of this theory as a breakdown of electron locali-
zation. The Chem-Simon s-Landau-Ginzburg (CSLG)
theory has emerged in the last few years as a powerful
tool for the description of the quantum Hall system,
leading to the construction of its global phase diagram.
At odd-denominator filling fractions, the CSLG theory
treats electrons as bosons carrying an odd number of flux
quanta. Read' has suggested that the analogous pro-
cedure for v= —,

' is to attach two flux quanta to every elec-
tron so that the transformed particles have Fermi statis-
tics. Each of these particles, referred to as Chem-Simons
fermions, is subject not only to the external magnetic
field, but also to the gauge potential of the flux tubes at-
tached to other particles. At v= —,

' the average of the
Chem-Simons flux precisely cancels the external ffux, and
in the mean-field approximation the system behaves as a
two-dimensional gas of fermions in zero magnetic field.

%'e argue that the v= —,
' anomaly arises because of the

suppression of electron localization" by the random
Chem-Simons flux distribution induced by the impurities.
Since Chem-Simons fermions carry electric charge, they
participate in the screening of the impurity potential.
Therefore, a screened impurity, in addition to being a po-
tential scatterer, binds some of the Chem-Simons flux.
The latter breaks the time-reversal symmetry of the im-
purity scattering process which is crucial for the coherent
backscattering mechanism of localization. Thus, for
sufficiently weak disorder, when the backscattering argu-
ment is valid, the logarithmic correction to the conduc-
tivity is cut off and the system ground state becomes me-
tallic. We verify this qualitative prediction analytically
and by numerical simulation. Based on this evidence, we
argue that the phase diagram of the Hall system contains
a pocket of metallic phase at v= —,', as shown in Fig. 1.
The metallic phase is characterized by a positive magne-
toresistance if the magnetic field is measured relative to
its value at v= —,. This implies a minimum in p„at
v= —,', in qualitative agreement with experiment. Further-
more, the Hall resistance is not quantized in this metallic
phase. When disorder increases and the filling fraction
remains fixed at —,', the system enters a phase where the
carriers are exponentially localized despite the presence
of the random flux and where the magnetoresistance rnea-
sured relative to v= —,

' is negative. Similar arguments ap-

ply to other even-denominator filling fractions related by
the law of correspondence.

To proceed formally, we attach an even number of flux
quanta (two in the case of v= —,') to the electrons and
represent them as fermions g coupled to a gauge field a„.
One obtains a Lagrangian density similar to that found in
the Chem-Simons theory of the fractional quantum Hall
effect:

1 e" "a„t}~q+g (it},—Ao —ao)Q

1 1
—.V —A —a

2m l

,' Id y 5—p—(x)V(x —y )5p(y) —V; ~5p .

Here V(x —y) is the original electron-electron interac-
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{8, D—[ —i V —(2e lc)a(r) ] —I lr&] C(r, r', t )

=5(r —r')5(t), (4)

where D =
—,
' v~~0 is the diffusion constant, ~0 is the elastic

scattering time, and ~& is the phase relaxation time.
Equation (4) is the Schrodinger equation for a particle
with mass (2D) ' and charge 2e moving in a random
magnetic field in imaginary time. Therefore, C(r, r', t)
has the following path-integral representation:

C(r, r', t)
i%

(tv=i/2 Magnetic Field

FIG. 1. Schematic phase diagram of the Hall system in the
disorder —magnetic-field plane.

r(t) =r' r' . 2e . 1
2)r exp — dr +i r a+

r(0)=r 0 4D c

ebo = — D(C(r, r)) . (3)

Here

(C(r, r)) = lim fdt(C(r, r;t))e' ',
co~0

the angular brackets denote an average over the probabil-
ity distribution of the gauge potential, and C(r, r; t) is the
cooperon propagator obeying the differential equation

tion, V; is the random potential due to the impurities,

5p(x ) =g g —p is the deviation from the average electron
density, and 0 is an even multiple of m. The resistivity

p„of the Chem-Simons (CS) fermions is defined in terms
of their response to the total gauge potential (A+a).
The physically measured resistivity p„„, expressed in
units of h /e, is related to p„„as follows:

p„„(B)=p„„(5B), p„(B)=8/n+p„(5B. ), (2)

where B is the external magnetic field and
5B=B—(e'JB;a ) is the average magnetic field acting on
the fermions.

When the filling factor is equal to —,
' exactly and

V; =0, the mean-field solution of the equations of
motion which follow from (1) is given by f P=p and
e"B,a, =B. This solution corresponds to a uniform densi-

ty of fermions in the uniform field 5B=0. A nonzero im-

purity potential changes the mean-field solution by pro-
ducing a local deviation 5p(x) from the average fermion
density p. By virtue of the equation of motion of a0,
given by e'JB;aj =28p(x), this generates a local deviation
from the average magnetic field acting on the fermions.
A self-consistent mean-field solution in the presence of
disorder must therefore treat each isolated impurity as a
flux tube bound to a scattering center.

Motivated by these considerations, we examine the
quantum correction Ao to the conductivity of the CS fer-
mions subject to both a random potential and a random
flux distribution. In the limit of weak disorder and zero
flux, b,o. acquires a negative logarithmically divergent
contribution from coherent backscattering processes. "
The effect of random flux on 4o. can be expressed in the
following form

The probability distribution of the gauge field is assumed
to be Gaussian:

P[a]=exp ~
—(n;a )

' f d r(V Xa)2 (6)

—(2na) n, S[r(r)] ', (7)

where the path integral is over all loops beginning and
ending at r and S[r(r)]= —,

'
~ fdr Xr~ is the (positive) area

of a given loop. The average of S over all loops is finite
and is given by the diffusion law: (S[r(r)])=yDt, for
t &(v&, where y is a number of order unity. In the
saddle-point approximation to (7), we replace S[r(r)] by
(S[r(r)] ) and thus obtain the following result:

ip 1(C(r, r)) =
(2m) rt, '+r, '+Dq

(8)

where r, '=y(2ma) n;D
Therefore, to first order in the weak localization

corrections it is evident from (8) and (3) that the effect of
random flux on the conductivity of a weakly disordered
system is to cut off the logarithmic divergence in b,cr, i.e.,
to suppress localization. The cutoff scale is (r, '+r& ')
and remains nonzero in the limit ~&~~. Therefore,
neglecting higher-order weak localization corrections,
one concludes that at sufficiently low temperatures where
~, ')~& ', the resistivity is finite and temperature in-
dependent. In view of relations (2), we argue that the
Hall system at v= —,

' behaves like a metal.
Further evidence for the suppression of weak localiza-

tion by random flux comes from a numerical study of
single-particle eigenstates on a lattice. Previous calcula-
tions of the scale-dependent conductivity of a two-
dimensional Fermi system with random flux' did not

where a can be viewed as the flux bound to an impurity
(in units of the fiux quantum hc/e) and n; is the density
of impurities. The average over P[a] can then be per-
formed exactly, yielding

~ 2

(C(r, r;t)) = f" "g)r exp —f 'dr " +
r(0) =r 0 4D
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yield a definite conclusion. We have performed numeri-
cal diagonalization on square lattices of up to 10 sites,
and have found strong evidence for the existence of delo-
calized states in the presence of random flux. The Hamil-
tonian has the following form:

1O'

.-" 10' = ~

o 10

T T T

g—f,'f, e""+ge, f,'f, , (9) —1O-'
C$

where f; creates a spinless fermion on site i of a two-
dimensional square lattice, the on-site energy c; is a ran-
dom variable uniformly distributed in [ —W/2, W/2],
and the phase a," corresponds to a zero-average random
flux per plaquette plus a uniform magnetic field 5B. The
sum of a," around a plaquette is thus

a;J. +ajk+akl+a~; =P;Jl,i, with P;Jk& uniformly distributed
in [ F+5—B,F+5B]. The sum on (ij) in (9) runs over
all nearest neighbors j of ever site i; boundary conditions
are periodic in the horizontal direction and free in the
vertical direction.

As a measure of localization of the eigenstates of %, we
study the sample size dependence of the participation ra-
tio'4

1O
4

10

10

10 2

(b)
10

10

10
N (arb. units)

10
N (arb. units)

10

1O4

(10)

where f; is the amplitude of the normalized eigenstate

lg) at site i, N is the number of sites, and ( )z denotes
an average over random samples as well as over all states
for a given sample with energies in a small interval
around E. When E is in the extended-state region, one
expects az(E)-N ", where p is of order 1; on the local-
ized side of the mobility edge, az(E) is expected to be in-

dependent of N as N~ ao.
To test our numerical scheme, we first set

W=F=5B=O and obtain az(E)-N ', as shown by
open squares in Fig. 2(a). Eigenstates of a strongly disor-
dered system without flux, W=10, F=SB=O, show a
qualitatively different scaling behavior typical of localiza-
tion, with aN independent of N. The results for 8'=0,
5B=0, F =n. indicate that random flux by itself does not
lead to localization. This is true not only for the rnid-
band states (E =0), shown in Fig. 2(a), but across the
whole spectrum.

We are specifically interested in the case of correlated
on-site and flux disorder, which is relevant to the v= —,

'

Hall problem: P, kI =(F/2W}(E, +"E.+ek+el ) and
5B=O. The scaling of midband eigenstates for 8'=6,
F=n, shown in Fig. . 2(b}, suggests that these states are
extended. The delocalizing effect of random flux is evi-
dent from a comparison of these data with those for
%=6, F =0. For large values of 8'~ 10 the system is in
the exponentially localized regime, where random flux
has no effect.

These results support our hypothesis that the Hall sys-
tem at v= —,

' is metallic for weak disorder, and enters an
exponentially localized phase as disorder increases. In
addition to different temperature dependences of the
resistivity, the two phases are characterized by opposite
signs of the magnetoresistance. Our numerical results

FIG. 2. (a) aN(0) as a function of lattice size N for W =F=0
(open squares), W= 10, F=0 (dots), W=0, F=m (solid
squares). The average in (10) is taken over five random samples
and over eight eigenstates for each sample. (b) a&(0) vs N for
W=6, F=0 (dots) and W=6, F =m. (triangles).

reflect this tendency in the dependence of the exponent
p= —d Inane/d lnN on the magnetic field 5B As show.n
in Table I, p increases with increasing 5B when the sys-
tem is in the insulating phase (W=6, F=O). This sug-
gests a negative magnetoresistance, typical of an Ander-
son insulator. In the metallic phase (W=6, F=m) the
trend is opposite, in agreement with the minimum of p„„
observed in the clean Hall samples at v= —,'.

In conclusion, we have proposed a scenario for the
v= —,

' state of the Hall system, based on the mapping to a
system of Chem-Simons fermions. It has been argued
that impurity scattering is modified in an essential way by
the presence of the random statistical flux. This
modification has been shown, both analytically to the first
order in the weak localization correction and by numeri-
cal simulation on a lattice, to suppress logarithmic locali-
zation and to stabilize a metallic phase for weak disorder

0.0
0.1

0.2
0.3

W=6, F=O

0.378
0.640
0.558
0.568

W =6,F=77

0.713
0.700
0.651
0.571

TABLE I. The exponent p, obtained form the plot of lnaN vs

lnN, as a function of 5B in units of flux quanta per plaquette, for
two choices of disorder parameters F and W.

Exponent p
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and small deviation of the magnetic field from its value at
v= —,'. We have presented evidence that this phase is

characterized by a positive magnetoresistance, as mea-
sured relative to the field at v= —,', and unquantized Hall
resistance, in qualitative agreement with experiment.

The authors were recently informed of the work by
Halperin, Lee, and Read on the v= —,

' anomaly, where

similar effects were investigated.
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