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Doping-induced changes in the electronic structure of La„Sr, „Ti03.
Limitation of the one-electron rigid-band model and the Hubbard model
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The electronic structure of La„Srl „Ti03 has been studied by photoemission and x-ray absorption
spectroscopy. Electron doping through La substitution induces a new photoemission feature of Ti 3d
character within the band gap of SrTi03', the Fermi level is located near the bottom of the conduction
band of SrTi03. The experimental results are incompatible with the rigid-band behavior predicted by
one-electron band theory or Hubbard-model calculations.

The evolution of electronic states in Cu-oxide super-
conductors with carrier doping has been the subject of
much controversy. Optical' and photoemission ' studies
have shown that carrier doping induces spectral weight
or so-called "gap states" within the bands gaps of the
parent compounds, whereas oxygen 1s core-level absorp-
tion spectra have been interpreted in terms of the rigid-
band filling of the 0 2p band by doped holes or that of
the Cu 3d-derived upper Hubbard by doped electrons.
Moreover, it has been reported that in La& Sr„Cu04
and Nd2 „Ce„Cu04, the position of the Fermi level (EF )

is located well inside the band gaps of the parent com-
pounds with a minimal shift with doping whereas
a rigid-band shift has been observed for

Ba2Sr2Ca& „Y„Cu0208.
In this paper, we report on the results of photoemission

and x-ray absorption (XAS) studies of La„Sr& „Ti03,
where La substitution introduces electrons into the con-
duction band of SrTi03. This system differs from the Cu
oxides in that the parent compound has the empty Ti 3d
band and therefore that the band gap is not due to elec-
tron correlation. This offers a possibility of clarifying the
role of electron correlation in the formation of the gap
states. The results clearly show the formation of gap
states, inconsistent with the rigid-band behavior predict-
ed by one-electron band theory and a recent exact diago-
nalization study of the Hubbard model although the E~
is found near the bottom of the conduction band as in the
rigid-band model.

SrTi03 is an n-type semiconductor having the cubic
perovskite-type structure. LaTi03 is a Pauli-
paramagnetic metal at room temperature and orders anti-
ferrornagnetically below TN =125 K; it has a distorted
perovskite (GdFe03-type) structure. La doping makes
La Sr, „Ti03 metallic for x as small as &0.1. All the
doped samples studied here are therefore metallic. Poly-
crystalline samples were synthesized by melt-quenching

stoichiometric mixtures of La203, Ti02, and SrO powders
in a Qoating-zone furnace, and were checked by x-ray
diffraction. Photoemission experiments performed at
beamline BL-2 of the Synchrotron Radiation Laboratory,
Institute for Solid State Physics, University of Tokyo,
and also using a spectrometer equipped with a helium
discharge lamp (hv=21.2 eV) and a Mg x-ray source.
The total resolution of the ultraviolet photoemission
spectra was 0.2—0.4 eV depending on the photon energy.
X-ray absorption measurements were carried out at Ber-
liner Elektronen-speicherrung Gesellschaft fur Synchro-
tronstrahlung (BESSY) with the SX700/II monochroma-
tor. The instrumental resolution was better than 0.1 eV
in the 0 1s absorption range. In order to obtain clean
surfaces, the samples were scraped in situ with a diamond
file in a vacuum of 1X10 ' Torr. Photoemission mea-
surements were made at liquid-nitrogen temperature in
order to prevent surface degradation in ultrahigh vacu-
um.

Band-structure calculations were performed for
stoichiometric SrTi03 and LaTi03 using the localized-
spherical-wave method' in the local-density approxima-
tion. A minimal basis set of orbitals was used to achieve
the self-consistency and to obtain low-energy states
probed by photoemission. An extended basis set was
then included to permit an accurate calculation of high-
energy states probed by XAS. For simplicity, the cubic
perovskite structure has been assumed for LaTi03 %e
do not think this assumption will significantly influence
the comparison below.

The Ti 2p XAS study of La„Sr, „Ti03 (Ref. 11) has
indicated that extra electrons introduced by La substitu-
tion enter the Ti 3d orbitals and that the system is in the
Mott-Hubbard regime. The dipole selection rules indi-
cate that 0 1s XAS spectra of La„Sr& Ti03 correspond
to transitions into 0 2p character hybridized into the
unoccupied metal states. Accordingly, in Fig. 1 the 0 ls
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FIG. 3. Photoemission spectra (h v=21.2 eV) near the Fermi
level on an expanded scale for small doping concentrations.

separation has been adjusted so that the experimental and
calculated positions of the 0 2p band coincide for x =0.2.
The theoretical spectra indicate that the partial filling of
the t2g band would lead to the appearance of a narrow
emission with a sharp Fermi cutoff, in obvious disagree-
rnent with experiment. Also, the rigid-band model pre-
dicts a EF shift of =0.5 eV between x=0 and x=1
whereas the observed position of the 0 2p band is almost
fixed.

The discrepancy between the photoemission spectra
and band theory for x=1 arises from strong d-electron
correlation since LaTi03 is close to a Mott insulator:
The emission peak at —1.5 eV has been attributed to the
remnant of the lower Hubbard band. ' The same
discrepancy, however, persists down to x=0.1 This is
diScult to understand along the same line because, for
small doping concentration, electron correlation due to
short-range Coulomb repulsion could become less impor-
tant and the one-electron rigid-band model is expected to
be recovered. Indeed, an exact diagonalization study of
the single-band Hubbard model has demonstrated an ap-
parent rigid-band shift of EF with doping. Also, the opti-
cal properties of La„Sr& „Ti03 show free-electron-like
behavior below -0.5. As a possible origin for the
discrepancy between theory and experiment, we consider
effects which are not included in the one-electron band
theory nor in the Hubbard model.

(i) Multiplet effects invoked to explain the XAS and
bremsstrahlung isochromat spectra of Li„Ni, „0 (Ref.
17) cannot account for the present results since the pho-
toemission final state is simply d .

(ii) Impurity potential due to the La + ions substituting

Sr + produces donor levels, but the binding energy of
such a donor level would be orders of magnitude too
small to account for the —1.5-eV peak.

(iii) Long-range Coulomb interaction combined with
potential disorder might cause a pseudogap in metallic
systems' since it is known to produce a Coulomb gap in
insulators. ' Such an effect, however, depends on the
mean distance between doped electrons and hence should
diminish with decreasing x.

(iv) If there exists strong coupling between the doped
electrons and lattice distortion or vibration, the lattice
motion cannot follow the sudden disappearance of the
photoelectron, leading to high binding energy features.
Such a coupling, ho~ever, mould lead to a heavy electron
mass, apparently inconsistent with the optical proper-
ties.

Although the origin of the peak shift to -1.5 eV for
small x still remains unclear, we note that similar photo-
emission results have been previously reported for re-
duced samples of SrTi03 (Ref. 20) and Ti02, ' where
electrons are doped via oxygen vacancies: In these com-
pounds, Ti 3d-derived emission appears showing a peak
at —1 eV below Ez. Similar non-rigid-band doping be-
haviors have been found for a hole-doped Mott-Hubbard
insulator Li„Zn, „V204.'

In conclusion, electron doping in SrTi03 induces a new

spectral feature of Ti 3d character predominantly below

EF as in the case of the electron-doped superconductor
Nd2 „Ce Cu04. The position of EF shows a minimal
shift with doping; it is clearly located near the bottom of
the conduction band of SrTi03 unlike the ambiguous sit-
uations of Cu oxides. The new spectral feature is spread
over the band gap of SrTi03 with a peak —1.5 eV below

EF. The persistence of the peak down to x =0.1 cannot
be explained by either the Hubbard model or the one-
electron rigid-band model, suggesting that electron corre-
lation is not the only origin of the formation of gap states
in doped transition-metal oxides.
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