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Hydrogenic impurities in GaAs-(Ga, Al)As quantum dots
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The ground-state energy and the binding energy of shallow hydrogenic impurities in spherical GaAs-
(Ga,A1)As quantum dots have been calculated as functions of the radius of the dot. The binding energy
has been calculated following a variational procedure within the e8'ective-mass approximation. We have

used a finite confining potential well with depth determined by the discontinuity of the band gap in the
quantum dot and the cladding. Calculations were also performed for an infinite confining potential. For
the infinite potential we11 we found that the impurity binding energy increases as the dot radius decreases
whereas in the finite potential-well situation, the binding energy reaches a peak value as the dot radius
decreases and then diminishes to a limiting value corresponding to the radius for which there are no
bound states in the well. We found that the strong electronic confinement in these quantum dots rejects
itself in the ground-state energy and in the impurity binding energies, which are higher than those found
in GaAs-(Ga, A1)As quantum wells and quantum-well wires.

The development of experimental techniques such as
chemical vapor deposition, liquid-phase epitaxy, and
molecular-beam epitaxy have led to the fabrication of
many quantum-well structures with dimensions compara-
ble to the electronic de Broglie wavelength. Due to their
small size these structures present some physical proper-
ties such as optica1 and electronic transport characteris-
tics that are quite different from those of the bulk semi-
conductor constituents. ' It is expected that these
characteristics will be more pronounced as the electronic
confinement is increased with the reduction of the dimen-
sionality.

Structures produced by ultrathin-film growth are in-

herently two dimensional, and thus experimental and
theoretical investigations have largely been devoted to
heterostructures in which on1y the carrier momentum
normal to the interfaces is quantized. Recent advances in
microfabrication technology have allowed the fabrica-
tion of structures with quantum confinement to one di-
mension ["quantum-well wires" (QWW's)] and have ini-

tiated intriguing investigations into one-dimensional
physics. It is expected that the fabrication of semicon-
ductor heterostructures with quantum confinement to
zero dimensions ["quantum dots" (QD)] will show exotic
electronic behavior. In this sense some authors have re-
ported the fabrication of quantum dots and some elec-
tronic associated phenomena such as the observation of
discrete electronic states in GaAs-(Ga, A1)As nanostruc-
tures and the photoluminescence of overgrown GaAs-
(Ga,Al)As quantum dots.

The study of' impurity states in these low-dimensional
heterostructures is an important aspect to which many
theoretical and experimental works have been devoted.
Since Bastard's pioneering work ' about the binding en-

ergy of a hydrogenic impurity within an infinite
potential-well structure, using a variational approach, a
lot of attention has been devoted to the study of impurity
states in quantum wells (QW). ' ' Results show an
enhancement of the impurity binding energy with the de-

crease of the layer thickness. Also it has been found that
the impurity's binding energy depends upon its location
within the well.

Equally much theoretical work has been done to
characterize the impurity states in QWW's. Bryant"
studied the effect of changing the cross-sectional form of
the QWW on the impurity's binding energy and found
that, in the case of wires with the same cross-sectional
area, the binding energies are nearly equal for the cylin-
drical and the rectangular QWW's provided that the rec-
tangular form does not deviate too far from the square
shape. Weber, Schulz, and Oliveira' calculated the im-

purity binding energy as a function of the impurity posi-
tion and the density of impurity states in GaAs-
(Ga, A1)As QWW's with different rectangular cross sec-
tions and for infinite well depths. Brown and Spector'
calculated the impurity binding energies using infinite
and finite cylindrical confining potentials for both axial
and off-axis impurities. Porras-Montenegro, Lopez-
Gondar, and Oliveira' calculated the impurity binding
energy as a function of the impurity position in the radial
direction and the density of impurity states as a function
of the binding energies for different well radii and for
finite and infinite cylindrical GaAs-(Ga, Al)As QWW's.
More recently, Latge, Porras-Montenegro, and Oliveira'
have calculated the infrared transitions between hydro-
genic states in cylindrical GaAs-(Ga, A1)As QWW's. In
this work we present results for both donor and acceptor
impurity binding energies in spherical GaAs-(Ga, A1)As
quantum dots as a function of the dot radius, using a
variational procedure within the effective-mass approxi-
mation.

The Hamiltonian of a single hydrogenic impurity in a
spherical QD system is given by

p
2 e 2

H= — + V(r),

where m is the electronic effective xnass, e the dielectric
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constant of the QD material, V(r) the confining poten-
tial, and ro is the impurity position, which we take at the
center of the dot.

The eigenfunction of the Hamiltonian in the absence of
the impurity for the ground state (n = 1 and I =0) and for
the infinite potential well is

sin(k ipr)

(2mR)' r
)b)p(r) = (2)

sin(k ipr)
N e "", r+R

0, r&R (4)

where r is (r, 6, (t)}. In order to satisfy the boundary con-
ditions )t)(r =R ) =0, the eigenenergies corresponding to
Eqs. (1) and (2) are

E)pg = k)p with kip=
2m R

(3)

where R is the dot radius.
Equation (2) is the wave function of a particle confined

in an infinite spherical potential well. Inclusion of the
impurity potential makes it necessary to use a variational
approach to approximate the wave functions and eigen-
values implied by the Hamiltonian.

Taking into account the spherical confining geometry
and the hydrogenic impurity potential, we use the trial
wave function

functions of the Hamiltonian in the absence of the impur-

ity are

g)o(r) =
N

sin(g)oR ) r ()),)

e "
, r&R

r

with

' 1/2 ' 1/2
2mE10 2m ( V —E i() )

d y10=

(10)

V——1E =tan(g)pR }, (12)

and from which it can be found that the smallest radius
for the existence of a bound state is given by

' 1/2
n fi

8m V

where E10 is the energy of the ground state given by the
transcendental equation

—
g)o=y)otan(g) oR ),

which can be written as
' 1/2

for the ground-state wave function, where N is the nor-
malization constant of the wave function and I, is a varia-
tional parameter obtained by minimizing the binding en-
ergy.

The binding energy Eb(R, rp) of the hydrogenic impuri-

ty is defined as the ground-state energy of the system
without the impurity present, minus the impurity
ground-state energy g(R, ro), i.e.,

Rk
E()(R,rp) = —g(R, rp),

2m

with g(R, r }=o(T)+(U), where (T) and (U) are
given by

sin(, pr)
N e ~" r~R

r
sin(g ~R)y 1O y10( R —r)

e e ", r~R
r

(14)

with

In a similar way as in the infinite well situation, in-
clusion of the impurity potential in the Hamiltonian
forces use of the variational approach. Then the trial
wave function for the ground state with the impurity
present is taken as

(T)=

and

respectively, with

4~e~N~ )t sin (k,or )(U)= — dr e
0 r

(15}N =4m( A +8},
(6)

where
—2A.R

4A,

+e [—, A, cos(2()oR }+g) psin(2()oR ) ]

4(A, +pip)

A(X +kfo}
N =

( 1 e 2).R)— (&)
and

(16)

In the finite well model approximation the potential
V(r) in the Hamiltonian [Eq. (1)] will be taken as zero for
r ~ R and v for r & R. The boundary conditions on the
wave functions are that f(r) and its first normal deriva-
tive are continuous at the potential boundary. The eigen-

2(g ~ )e
—2A.R

8=
2(y)()+A }

and A. is a variational parameter.
Defining the binding energy Eb as before we have

(17)
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iri gio
Es(R, ro) = —g(R, rc) .

Calculating g(R, rc) = ( T ) + ( U ), we have

(T)= (A g&c)A

+(y,o+X) 8
where Cis given by

"[A, sin(2/i nR ) +g&ocos(2(,Q )],
and for the potential energy

4me X 2y (OR(U) = — [D+ sin (g,uR)e F]
sin (g,nR)

+2m% V e

where

R Sirl )0 —2A,RD= dr e
0 r

and

(20)

(21)

(22)

it is possible to find the fundamental energy level as
F' 1 The smallest radii for which it is possi-

are 0.20a',ble to obtain the donor binding energy are . a
0.25a', and 0.35a' for A1 concentrations of 0.45, 0.30,
and 0.15, respectively, and for the acceptor binding ener-
gy are 0.53a', 0.65a', and 0.93a* with the same Al con-
centrations. Also, it is observed that the binding energy
goes to 18 o in the bulk limit for the large dot radius.

In Fi . 3 we present the binding energy of a donor im-
purity in a spherical GaAs-(Ga, Al)As quantum dot as a
function of the radius for the infinite potential mode (a),
and for a finite barrier corresponding to Al concentration
x =0.30 (b). With the same Al concentration we present
the binding energy of a donor impurity in y

'
in a c 1indrical

WW (Ref 17.) of radius R (c), and in a QW of size
L, =R of the same material" (d). As observed in this
figure the quantum confinement produces evident
changes in the binding energy of shallow impurities as
the dimensionality of the structure is diminis e .
%hereas the maximum of the binding energy is about
2.5Ro and 4.6Rc for GaAs-Ga& c3A103As QWs and

e 2(y,o+A, )rF=f "dr (23) 0
60—
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FIG. 1. Energy of the ground state in a pin a s herical GaAs-
a, ,A1 As QD as a function of the dot radius for the conduc-

tion band {a) and for the valence band I'b), for different Al con-
1 for x =0.I5, 2 for x =0.30, and 3 for x =0.45.
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FIG. 3. Binding energy of a donor impurity in a spherical
GaAs-(Ga, A1)As quantum dot as a function of the radius for the
infinite potential model, I, and with a potential barrier corre-
sponding to an Al concentration x =0.30, b. With the same Al
concentration the binding energy of a donor impurity in a cylin-
drical QWW of radius R, c (taken from Ref. 17), and in a QW of
size L, =R, d (taken from Ref. 11).
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FIG. 2. Binding energy in a spherical GaAs-Ga& „Al„As
QD as a function of the dot radius for the hydrogenic donor (a)
and acceptor impurities (b), and for diferent Al concentrations:
1 for x =0.15, 2 for x =0.30, and 3 for x =0.45.

QWW's, respectively, it reaches —=8.0Ro in a spherical
QD of the same material.

Summing up, we have calculated the ground-state en-

ergy and the binding energies for on-center shallow donor

and acceptor iinpurities in spherical GaAs-(Ga, Al)As
QD's following a variational procedure within the
efFective-mass approximation. For the infinite potential
well we found that the binding energy increases as the dot
radius decreases, whereas in the finite potential well the
binding energy reaches a peak value as the dot radius de-

creases and then diminishes to a limiting value corre-
sponding to a value of the radius for which there is no
bound states in the well. As expected, we found that the
strong electronic confinement in these QD structures
rejects itself in the ground-state energy and in the impur-

ity binding energies, which are considerably higher than
those found in cylindrical GaAs-Ga, „Al„As QWW's.
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