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We propose a test to distinguish, both numerically and theoretically, between the two competing pic-

tures of short-ranged Ising spin glasses at low temperature: "chaotic" size dependence. Scaling theories

in which at most two pure states {related by a global spin Qip) occur require that finite-vo1ume correla-

tions (with, say, periodic boundary conditions) have a we11-defined thermodynamic limit. We argue,
however, that the picture based on the infinite-ranged Sherrington-Kirkpatrick model, with many non-

congruent pure states, leads to a breakdown of the thermodynamic limit. The argument combines

rigorous and heuristic elements; one of the fomer is a proof that in the infinite-ranged model itself, non-

self-averaging implies chaotic size dependence. Numerical tests, based on chaotic size dependence,
could provide a more sensitive measure than the usual overlap distribution P (q) in determining the num-

ber of pure states.

I. INTRODUCTION

The question of multiplicity of pure states in the
Edwards-Anderson (EA) short-ranged Ising spin glass
model' remains open despite intensive study over a de-
cade and a half. The Parisi solution of the infinite-
ranged Sherrington-Kirkpatrick (SK) model indicates
the existence of many distinct states at low temperature
and field. For the short-ranged model there presently ex-
ist primarily two opposing points of view. Scaling
theories suggest that, unlike the infinite-ranged model,
no more than two pure states exist at any temperature
and field. ' Others have argued, by analogy with the SK
model, that short-ranged models in su5ciently high di-
mension should exhibit many pure states (see, for exam-
ple, Ref. 2) for some range of temperatures and fields.

In most of these papers, what is actually meant by
"multiplicity of states" is not made precise, a notable ex-
ception being Ref. 8. The standard procedure for gen-
erating a thermodynamic state is to choose a set of
boundary conditions on a sequence of volumes increasing
to infinity; for each volume, one computes all thermo-
dynamic quantities and correlation functions using the
standard Gibbs prescription, and the limiting values (if
they exist) of all the correlations specify a thermodynam-
ic state. ' This state may be a pure state, meaning that it
cannot be expressed as a convex combination of other
Gibbs states; or it may be a mixed state, such as that pro-
duced in the Ising ferromagnet below T, from an infinite
sequence of periodic boundary conditions. In that case,
the state produced consists of a sum of two pure
translation-invariant states, the "plus" state with a ma-
jority of bulk spins up and the "minus" state with the
majority down, each with probability —,.

In the case of the spin-glass model described below, let
us consider, as in recent numerical studies, "' a se-
quence of cubes At (of length scale L, centered at the ori-

gin) with periodic boundary conditions. Those studies
evaluate numerically a function P(q), the order parame-
ter distribution, and find a continuous portion extending
down to q=0, as in the SK model. ' Although at first
glance this seems to support the SK picture, this is not
unambiguously so: finite-volume effects could create a
continuous portion of P(q) even if the limiting thermo-
dynamic state were a mixture of only two pure states, as
predicted by the scaling picture. It seems implicit in the
discussions of Refs. 11 and 12 that the more likely alter-
native to the above possibility is the existence of a limit-
ing thermodynamic state p which is a mixture of (count-
ably) many pure states p, with weights W; the p 's and
W 's would be non-self-averaging, i.e., would depend on
the couplings in such a way that an average over cou-
plings would yield the continuous portion of P(q). The
question of whether there exists a thermodynamic limit at
all has not been discussed.

In this paper we argue that the actual situation in sim-
ple nearest-neighbor Ising spin-glass models is more sub-
tle than previously suspected, and that this subtlety can
be exploited to yield an unambiguous test that distin-
guishes between the scaling and SK pictures. ' We will
show that the problem of existence of many pure Gibbs
states in spin glasses is sensitively tied to the question of
whether an infinite sequence of couphng-independent
boundary conditions, such as periodic, possesses an
infinite-volume limit. Indeed, we claim that this is actu-
ally the crux of the problem of multiplicity of states.

We will argue, through a combination of rigorous
proof and heuristic argument, that the SK picture leads
to a situation in which the infinite-volume limit does not
exist; i.e., one in which to obtain a thermodynamic state
it is necessary to choose a (coupling dependent) subse-
quence of I.'s, such that different subsequences yield
different thermodynamic states for a single coupling
configuration Thus, in ad. dition to non self averagi-ng d-ue
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to coupling dependence for fixed size, the SKpicture seems
to require some kind of chaotic size dependence for fixed
coupling. If such chaotic size dependence does not occur,
it would follow by our arguments that the SK picture is
invalid (or else, to paraphrase Ref. 12, it is missing some
important ingredient). On the other hand, if chaotic size
dependence does occur, it easily follows that the scaling
picture is invalid. We emphasize that the test we propose
is based on a chaotic size dependence of the state (or
equivalently, of the correlation functions), and not of
thermodynamic functions like the free energy per spin,
which should always have a well-defined (and self-
averaged) thermodynamic limit.

The details of our arguments, which contain both
rigorous proofs and heuristic analysis, are presented in
the next two sections; we briefly sketch them now. First,
we prove (Theorem 2), by a simple and standard argu-
ment, that the scaling picture forbids chaotic size depen-
dence; i.e., it implies the existence of a thermodynamic
limit for the state. Next, as a first step in showing the in-
consistency of the SK picture with existence of a thermo-
dynamic limit, we prove (Theorem 3) that if a thermo-
dynamic limit for the state exists with (say) periodic
boundary conditions, then it also exists with any other
fiip-related boundary condition (e.g., antiperiodic) and
the two thermodynamic states obtained must be identicaI.
That is, the two states are of the form g W p, with the
same pure states p and the same weights 8' . We end
Sec. II with heuristic arguments, for both zero and
nonzero temperatures, which suggest that in the SK pic-
ture, periodic and antiperiodic boundary conditions
should not yield identical p 's and 8' 's.

Although chaotic size dependence may at first seem
unnatural, we show in Sec. III by several examples that in
fact it is rather typical in disordered systems. The first,
and most important, example is the infinite-ranged SK
model itself. Here we consider PN(q), the ¹pin order
parameter distribution for /Bed couplings (denoted by ot).
More precisely, P~(q) is the distribution of the overlap
sum between the original X-spin system and a duplicate
[see Eq. (11) in Sec. III]; it is often expressed, somewhat
imprecisely, as the distribution of the overlaps q & among
states:

N

q ti=(l/N) g (S;) (S;)~ .

The usual interpretation' of the Parisi solution suggests
that, as N ~~,P&(q ) converges to a countable sum of 5
functions,

g W Wtifi(q —q+ti)
a,P

(2)

which, after averaging over the couplings, yields P(q)
with a continuous portion, as discussed above. In other
words, non-self-averaging is taken to mean existence of a
coupling-dependent limit for P~(q). This cannot be so:
we prove that, if the N~ oo limit exists before averaging
over the couplings, then that limit must already be self-

averaged. Therefore, if there is indeed non-self-

averaging, as predicted by the Parisi solution, ' then

there must be chaotic N dependence [of P~(q ) ] for fixed
couplings. We therefore argue that an SK picture for
short-ranged models with chaotic size dependence is most
consistent with the situation in the infinite-ranged model.

Section III concludes with four more examples of
chaotic size dependence: (i) the zero-temperature spin
glass with a fixed configuration; (ii) an ad hoc two-
dimensional model with random couplings only along a
one-dimensional line; (iii) the Ising ferromagnet in a ran-
dom field; and (iv) the Ising ferromagnet with random
boundary conditions.

In Sec. IV we discuss various refinements of the scaling
picture and related issues such as a possible weak unique-
ness of the thermodynamic state. We discuss here ques-
tions of volume dependence of free energy differences
among noncongruent pure states, and their relation to the
Fisher-Huse' inequality for the scaling exponent,
8 (d —1)/2. In Sec. V, we discuss refinements of the
SK picture including such issues as whether there need be
coexistence of pure phases at all in "typical" large
volumes. We then use these results to discuss in more de-
tail how a numerical test for chaotic size dependence
could be conducted.

II. THERMODYNAMIC LIMITS

We will henceforth consider the d-dimensional Ising
spin glass described by the EA Hamiltonian

%=—gJ;,S;S (3)
1J

where i EZ, S;=+1, and the angular brackets under the
summation sign indicate a sum over nearest-neighbor
pairs only. The couplings J; are chosen with quenched,
independent randomness with a common distribution.
Usually (as indicated) we will assume that the distribution
is symmetric and sometimes that it is continuous. For
definiteness, one may use a Gaussian distribution of mean
zero and variance one; i.e., one with probability density

(4)

We will denote by ot a configuration of all the J;J's for all

(/J) inZ
For each L = 1,2, 3, . . . , let AL denote the cube'

t L+1, L+2,—. . . , L J
—in Z, let pL denote the finite

volume Gibbs distribution on the spin configurations in

AL at some fixed temperature T with some boundary con-
dition chosen for each L, and let ( )I denote the thermal
average with respect to pL. We are primarily interested
in 4-independent boundary conditions; i.e., ones in which
the boundary conditions may depend on L but not 4. We
will say, for a given 8, that pL has an infinite-volume lim-

it if for each m and for each i &, . . . ,i in Z,

(S, . . . S,- ):—lim (S, . S; )~ exists .
I trt rrt

We will then also write pL~p where p is the (infinite
»lume) Gibbs distribution all of whose correlations are
given by (5). We now state a standard fact about such
infinite-volume limits in disordered systems at nonzero
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temperatures. '

Theorem l. If the boundary conditions are cF indepen-
dent, then either pI has an infinite-volume limit for al-
most all cP or else pI does not have an infinite-volume
limit for almost all 8. (Almost all means except for a set
of cPs with zero probability in the ensemble of cP's. )

Proof. Suppose o" is a configuration of couplings for
which pi has an infinite-volume limit, and suppose cP
differs from 8 only for finitely many J; 's. It is easy to see
by explicit calculation that the finite-volume correlations
of pz can be expressed as specific L-independent func-
tions of the correlations for 8 and thus pz must also have
an infinite-volume limit. Thus, by the Kolmogorov zero-
one law, ' the set of cPs for which there exists an infinite-
volume limit of pz (as an event which does not depend on

any finite number of couplings} either has probability
zero or probability one.

For a given 8, the set of all Gibbs states is the set of all
the p s which arise by the limit (5} for some (possibly 8-
dependent) choice of boundary conditions. As mentioned
previously, a Gibbs state is pure if it is not a mixture of
other Gibbs states (for the same 8).

It is a standard result, whose proof is quite similar to
Theorem 1, that the number of pure Gibbs states is the
same for coupling configurations 8 and 8' which differ
only for finitely many J; 's and thus this number takes
some fixed value (1 or 2 or or 0o ) for almost all o'.
According to the scaling picture, at low temperature
there are (for almost all cP) exactly two pure Gibbs states,
which transform into each other via a global spin flip.

The next theorem shows that chaotic L dependence
cannot happen in the scaling picture for symmetric (i.e.,
flip-invariant) choices of boundary conditions; its proof is
simple and standard. ' We will call boundary conditions
symmetric if for each L, pI is invariant under a flip of all
the spins in Az ', i.e., all odd order correlations of spins in

Az vanish. Examples of symmetric boundary conditions
are periodic, antiperiodic, and mixtures of fixed boundary
conditions in which each boundary spin configuration ap-
pears with the same weight as its flip. This theorem al-
lows 8-dependent boundary conditions.

Theorem 2. Let 8 be fixed. Assume that there are ex-
actly two pure Gibbs states, p+ and p, and that these
transform into each other under a global spin flip. If the
boundary conditions are symmetric, then pz has an
infinite-volume limit (which is the mixture —,'p++ —,'p ).

Proof. Let p be any limit of pI along some subse-
quence of L's. p is a Gibbs state and hence can be ex-
pressed uniquely as a mixture of the pure Gibbs states:
p=ap++(1 —a)p for soine 0~a~ l. But since each

pz has all odd correlations vanishing, so does p. There-
fore, p is invariant under a spin lip. On the other hand,
since p+ and p transform into each other under a spin
flip, p must transform into ap +(1—a)p+. This re-
quires that a= —,

' and p =
—,'p++ —,'p . By a standard com-

pactness argument, if all subsequence limits are the same
p, then pI ~p over the entire sequence.

The next theorem is the main rigorous result of this

Theorem 3. Assume a symmetric coupling distribu-
tion. Consider two 8-independent flip-related boundary
conditions and the corresponding pi and pz. If (for al-
most all d"}, pi has an infinite-volume limit, then the
same is true for pI and the two limits are the same.

Proof. Consider the correlation function of the spins at
the m distinct sites i, , . . . , i as in (5). For each L, call
this m-point correlation function Xz for boundary condi-
tion 1 and XI for boundary condition 2. XI' and XI are
functions of 8 as is X'=limz „Xr'. We need to show
first that X =limz „XI exists and second that X =X'
(for almost all 8).

Let G denote the (infinite volume) spin flip transforma-
tion relating the two boundary conditions; i.e., G flips S
for each x which belongs to B, the union of all the subsets
Bz of the boundary of Az (discussed above), and let 0
denote the corresponding transformation on 8. That is,
G replaces J;J by —J,.

&
for each i,j with exactly one of the

sites in B. Let g=+1 or —1 according to whether
Ii„.. . , i I contains an even or odd number of sites
from 8. Then (for L large enough so that
Ii„.. . , i I cAc)

XI (8}=iiXI'(C8) . (6)

Let A denote the set of 8's for which XI (8) has a limit;
by assumption A has probability one. By (6), the set of
op"s for which XI (8) has a limit is I 8:C8E A I. But the
assumption of symmetry on the coupling distribution im-
plies that this set has the same probability as A; thus XI
has a limit for almost all 8.

It remains to show that X(8)—:X'(oP') —X (8)=0 for
almost all 8. X is the limit of XI ——XI' —XI . Note that
Xz and Xz are bounded between —1 and 1 for all L and
all 8. We now focus on the conditional expectation
E„[.], defined as the expectation of a quantity after
averaging over all of the couplings outside of the cube A, ;

section. It is our first step in arguing that the SK picture
leads to chaotic L dependence. The theorem concerns
finite-voluine Gibbs distributions whose 8-independent
boundary conditions are fiip related. By this we mean
that for each L, there is some subset BI of the boundary
of A~ whose flip transforms each boundary condition
into the other. An example of such a pair is periodic and
antiperiodic; e.g., if the antiperiodicity is only along the
jth coordinate axis (j=1 or 2 or or d ), then BI con-
sists of one of the two faces of the boundary of Az which
are perpendicular to that axis. A second example is any
two fixed boundary configurations; here Bz is of course
just the set of sites where the two boundary
configurations differ. A third example has as the first
boundary condition the mixture (with equal weights} of
some fixed boundary configuration and its total flip and
the second boundary condition the similar mixture for
any other fixed boundary condition; the BI is as in the
second example. An example of flip-unrelated boundary
conditions is periodic and fixed. The theorem requires
the common distribution of the J; 's to be symmetric, i.e.,
invariant under J; ~—J; and as usual we deal with spin
glasses with no external field.
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hence E„[ ] is a function of all couplings J;. with both i
and jin A, . Because

E„[XL] =E„[XI'] E—„[XL],
then

E„[X]= lim (E„[XI] E„—[XL]) .
I, —+ oo

Now for a given r, let L ~ r (and large enough so that
Ii „.. . , i I C AL ). Because E„[ ] averages over the
boundary bonds of the cube, we claim that E„[XI]
=E„[XI'] due to the spin flip which connects the pair of
boundary configurations (and due to the symmetry of the
J,i distribution). To see this, do a simpler gauge transfor-
mation than the one used to derive (6); namely, just flip
each S with x in BL and the corresponding couplings be-
tween BL and AI . Therefore, E„[X]=0 for every r. But
if the random variable X (which is bounded, hence integr-
able) has a conditional expectation equal to zero for every
r, then X=O (for almost all a"). The theorem now fol-
lows, because the same argument is true of all correlation
functions.

For the remainder of this section we restrict attention
to 8-independent symmetric boundary conditions, such
as periodic. We argue, first for zero temperature and
then for nonzero (low) temperature that within the SK
picture it is implausible to have the same infinite-volume
limit for all flip-related boundary conditions. The only
way to avoid this implausible situation, according to
Theorem 3, is for the limit not to exist; i.e., to have
chaotic L dependence.

For the rest of this section we require that the distribu-
tion of the J; s be continuous. This eliminates accidental
energy degeneracies and implies that for, say, periodic (or
flip-related) boundary conditions on Ar, there is (for al-

most all 8) a unique pair of ground-state configurations
related by a global spin flip: S =(S;:iGAL ) and —S .
S will of course depend on the particular boundary con-
dition. At T=O, pL is the symmetric (i.e., with equal
weights) sum of two 5 functions on S and —S . In this
situation, pL ~p means simply that p is the symmetric
sum of 5 functions on some infinite space spin
configuration S=(S;:iCZ ) and —S and that for each
fixed i, S; =S; for all large L (how large may depend on
i). Any such S must automatically be an infinite-
volume ground state (i.e., a configuration such that the
flip of any finitely many spins raises the energy) and the
pure Gibbs states are simply the 5 functions on infinite-
volume ground states. They of course come in pairs re-
lated by a global spin flip.

According to the SK picture, there are many pairs of
infinite-volume ground states. If, with periodic boundary
conditions, pl has an infinite-volume limit (for almost all

d), then it means that a single (8-dependent) pair persists
in the limit L ~~, and moreover that same pair persists
for any flip-related boundary condition (such as an-
tiperiodic). This would mean that among all the many
pairs of ground states, one pair would have an extra sta-
bility property guaranteeing it would be the one chosen
by any 8-independent boundary condition (flip-related to

periodic); other pairs could only be chosen by
dependent boundary conditions. This already seems im-
plausible to us.

But let us pursue the matter further. Consider the 4-
independent boundary condition which is a symmetric
mixture of some fixed boundary configuration with its to-
tal flip. Although Theorem 3 does not imply it, we would
expect that if periodic boundary conditions have a limit,
then so does this other 8-independent (but flip-unrelated
to periodic) boundary condition, and furthermore that
the limit is the same. If that is so, then it ought to be the
case that any 8-independent symmetric boundary condi-
tions would yield the same pair of (infinite-volume)
ground states, even though many ground states exist; i.e.,
all but one of the ground states would be invisible to 8-
independent boundary conditions. Such a situation cor-
responds to neither of the standard pictures, but is remin-
iscent more of the scaling than the SK picture (and so in
Sec. IV we call it the weak scaling picture). We conclude
that, at zero temperature, chaotic L dependence is re-
quired by any reasonable SK scenario. With chaotic L
dependence, different ground states would be visible for
9-independent boundary conditions by choosing
dependent subsequences of L's.

We next consider positive temperatures. If pI with
periodic boundary conditions has an infinite-volume limit
(for almost all cP), then that limit p is a unique mixture of
all the pure Gibbs states: either a countable sum,

p=+W p (9)

or possibly an analogous integral over continuously many
pure states. The latter possibility already seems incon-
sistent with the conventional SK picture in which most of
the weight in such a decomposition comes from a finite
number of pure states. ' In either case, what seems most
implausible within the SK picture is that, according to
Theorem 3, changing from periodic to antiperiodic (or
any flip-related) boundary conditions would not only not
change the p 's but would also leave the weights 8' un-

changed. This is implausible: states which at low T con-
tribute to the sum in Eq. (9) must in some sense have free
energy differences of order one (or they would have van-
ishing Boltzmann weights), so that introduction of at
least one relative domain wall (occurring in the switch
from periodic to antiperiodic boundary conditions) must
necessitate significant changes in relative weights (if the
set of p 's is not replaced altogether). We therefore con-
clude that it is unlikely that the limiting state is a mixture
of many states; surely, it should be a mixture of only two
states, related by a global spin flip. Finally, if the limit
does indeed exist, i.e., pL ~p, for periodic boundary con-
ditions, then just as for T=O, we would expect that any
8-independent (and symmetric) boundary condition
should also have the same p as a limit. But such insensi-
tivity to boundary conditions is contrary to the nature of
the SK picture. Our conclusion is that any reasonable
SK picture requires chaotic L dependence; its nature
within various versions of the SK scenario will be dis-
cussed in Sec. V.
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III. EXAMPLES OF CHAOTIC SIZE DEPENDENCE

It is a 8-dependent sum of 5-functions on [ —1, 1] whose
Laplace transform is

Y&(t ) = f e'~Pg, (q )dq = ( e '~)
& . (12)

The average of Ptt(q } over 8, [P~(q )],„, is the quantity
studied numerically in Ref. 12. According to the Parisi
solution's Ptt (q ) should be non-self-averaging, ~4 i.e.,
should have nontrivial dependence on 8, even as N~ ~.
In particular, a quantity like Yz(t ), regarded as a func-
tion of 8, should have nontrivial fluctuations:

Var( Yz( t ) ) —= [ Yz ( t ) ],„—( [ Yz( t ) ],„) (13)

should not tend to zero as N —+Do. The next theorem
shows that such non-self-averaging requires chaotic N
dependence of Pg (q }. For a given 8, we say that P~(q)
has a limit as N~ao if Y (t}=limz „Ytt(t) exists for
each real t; there is then a unique probability measure P+
on [ —1, 1] whose Laplace transform equals Y~.

Theorem 4. If P&(q) has a limit P (for alinost all
8), then there is self-averaging in the sense that P is
equal to a fixed or-independent P (for almost all 8) and
also for each real t,

Var(Y&(t))~0 as N~ao . (14)

Proof. Suppose 8 and 8' difFer for only finitely many
8;J's. Then a comparison of the size-N Gibbs distribu-
tions shows that because of the N ' factor in the SK
Hamiltonian (10),

YcP(t )y YB(t )
—eo(N )

Thus Y (t ) = Y (t ). Because this is true for any such re-

In this section we demonstrate by several examples
that chaotic size dependence is a natural occurrence in
many disordered systems. The first and most important
example is within the infinite-ranged SK model itself.

The SK model, for size N, consists of Ising spins

S;, i =1,... , N, with Hamiltonian
N

N—'"-y J,,S,S, , (10)
i&j=1

where the couplings J;j are again chosen with quenched,
independent randomness with some common distribu-
tion, which may be taken to be Gaussian [Eq. (4)]. (We
use the same notation for J; and 8 even though the in-
dices differ from the short-ranged case. ) Let pz=pz
denote the Gibbs distribution, at some fixed T, for Eq.
(10} (there are no boundary conditions here} and let pIv
denote a Gibbs distribution for duplicate variables S
(with the same dt). The joint probability measure P~ for
the pair (S,S') of spin configurations is the product of p~
and pIv', we denote by ( ~ )z its thermal average. The
size-N order parameter distribution for fixed couplings,
P~(q ), is simply the probability distribution of the over-
lap sum,

N

Q—= (I/N) g S;S

lated 8 and o ', it follows from the Kolmogorov zero-one
law that for each fixed t, Y (t} is a constant (for almost
all cP). This implies that P is independent of ot (for al-
most all 8). Since for fixed t, Yg (t) converges to a con-
stant {for almost all 8), and since the

~
Yz(t ) ~

are bound-
ed functions of 8 (by e ' ) uniformly in N, it follows that
Var(Y&(t)) converges to zero (the variance of a con-
stant).

We proceed with brief discussions of four examples
where chaotic size dependence occurs in finite-ranged
disordered systems. The first is our EA d-dimensional
spin glass at zero temperature, but now with plus bound-
ary conditions or any other fixed ot-independent bound-
ary configuration. We assume a symmetric and continu-
ous coupling distribution. Now since there is a fixed
boundary configuration, pl is a 5 function on a single
ground-state configuration (rather than on a pair, as
occurs with symmetric boundary conditions). Hence if
pt has a limit, it is also supported on a single (infinite
volume) ground state. Now consider the boundary condi-
tions obtained from a global spin flip of the previous
boundary conditions. On the one hand, these would
clearly yield the global spin flip of the previous limit; on
the other hand, by Theorem 3 the two limits must be the
same. This contradiction was a consequence of the as-
sumption that pt has a limit for almost all 8; we con-
clude that there must be chaotic L dependence. Within
the scaling picture this chaotic dependence simply corre-
sponds to the spin at the origin never settling down to a
fixed sign as L ~~ —the fixed boundary condition some-
times prefers one of the two (infinite volume) ground
states and sometimes the other (its global spin flip). This
phenomenon should persist within the scaling picture
also for T & 0 as the fixed boundary condition sometimes
prefers the pure state p+ and sometimes p . Within the
SK picture, the system may alternate among many
ground states. Here things are even more chaotic, as
(some) pair and higher even-spin correlations should also
fail to have a limit as L ~~. Once again, we expect the
phenomenon to persist at positive temperature; most like-
ly, chaotic L dependence will occur at any temperature in
which global spin flip symmetry is broken (i.e., the
Edwards-Anderson order parameter qE~ is nonzero).

The next example is an artificial construction designed
to illustrate more explicitly how nonexistence of a limit
may occur in a spin glass. (We note, however, that the
mechanism involved in this example may be, and in the
last two examples certainly is, related more to nonex-
istence of a limit in the scaling picture when nonsym-
metric boundary conditions are employed, rather than in
an SK picture with periodic boundary conditions. ) Con-
sider a two-dimensional nearest-neighbor Ising model on
a square lattice, with all couplings equal to +J except
those oriented vertically and connecting the y =0 to the
y =1 line: these are chosen independently to be +J, each
with probability —,'. Now consider at T=O the sequence
of squares Al, all with free boundary conditions. For
each square, one of two states will be obtained: the first
is the mixed state composed of all spins up or all down,
with equal probability; the second is the mixed state com-
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posed of all spins up in the top half and all down in the
bottom, or I.ts global spin Hip, again with equal probabili-
ty. Which state is actually chosen depends on the sign of
the sum of the randomly chosen couplings; if the sum is
positive, the first state will be selected, and if negative,
the second. Now, as L~~ independently of the cou-
plings, this sum will execute a one-dimensional random
walk, with its sign changing infinitely often between plus
and minus. In this case, a limit will not exist.

In this example, two different limiting Gibbs distribu-
tions can be found if some subset of the L's are chosen
dependently on the couplings. That is, one could choose
only those L's such that the sum of the randomly chosen
couplings is positive; in that case one would select out the
first Gibbs distribution in the infinite-volume limit. Simi-
larly, by choosing L's such that the sum is always nega-
tive, one generates the second Gibbs state. This illus-
trates an important property of all such cases in which
nonexistence of a limit occurs, including the spin glass it-
self: any nonconvergent sequence of boundary conditions
always contains convergent (but cF-dependent) subse-
quences. This follows from standard compactness argu-
ments.

However, in contrast to the spin glass (within the SK
picture), not all sequences of coupling-independent
boundary conditions have the property of nonexistence of
a limit; in fact, many do have a limit. For example,
periodic boundary conditions in the y direction will al-
ways select out the first Gibbs state.

The next example is the three-dimensional random
field Ising model with, say, a Gaussian distribution of
fields with zero mean. At sufficiently low temperature, a
sequence of either free or periodic boundary conditions
with L chosen independently of the fields will not yield a
limiting Gibbs distribution, owing to the oscillation in
sign of the sum of the random fields as the volumes grow.
(Again, one can obtain a limit by choosing L dependently
on the fields. ) Here, however, a sequence of deterministi-
cally chosen axed boundary conditions, such as all spins
up at the boundary, does yield a limit on any sequence of
volumes, unlike in the spin-glass case.

The last example is a two-dimensional ferromagnet in
zero external field. If for each L the boundary spins are
chosen randomly and independently (say, by flipping a
fair coin at each site on the boundary), then there will be
no limit owing to the oscillation in sign of the sum of the
boundary spins. This phenomenon is rather clear at
T=O and has been discussed previously; it should per-
sist also at nonzero temperature and higher dimension.

Now that our main result —the close connection be-
tween existence or nonexistence of a limit using periodic
boundary conditions with the question of multiple Gibbs
states —has been discussed in some detail, we turn to a
closer examination of each of the two opposing
viewpoints of short-ranged spin glasses. We first discuss
the scaling picture.

IV. SCALING PICTURE

Until now we have not needed to categorize the rela-
tionships between pure states which may arise in short-
ranged spin glasses. A lucid discussion may be found in

Ref. 8, whose definitions we adopt here. We focus on two
possible relationships among pure states which are not
trivially related (i.e., not related by a global spin flip): in
congruent and regionally congruent. Incongruent states
are unrelated by any simple symmetry. At T=O, two in-
congruent ground states possess a nonvanishing density
of relative domain walls. (A specific bond belongs to a
relative domain wall between two spin configurations if it
is satisfied in one configuration and not the other. ) Re-
gionally congruent ground states, on the other hand,
possess a vanishing density of domain walls. We refer the
reader to Ref. 8 for a more complete discussion. When
we do not need to distinguish between incongruent or re-
gionally congruent states, we will use the term "non-
congruent, "which includes both.

Because we consider, in this section, sequences only of
cP-independent symmetric boundary conditions, we focus
on incongruent states; we do not believe that regionally
congruent states, which in all known cases arise from
boundary conditions carefully tailored to the couplings,
present an issue here. We will assume throughout this
section that a limit as L~~ with periodic boundary
conditions exists (for almost all d"), which we argued in
Sec. II implies the correctness of the scaling scenario.
Our aim in this section is to examine more closely the
consequences of the existence of this limit, and show that
a self-consistent picture emerges. We do this through an
examination of the likely volume dependence of energy
differences between incongruent ground states; our con-
clusions will also be relevant for the discussion of numeri-
cal simulations in the next section.

Fisher and Huse (FH) have examined the conditions
under which incongruent states will and will not occur;
their argument amounts to comparing bulk free-energy
fluctuations arising from incongruence to those due to
different boundary conditions. We paraphrase here their
main argument (restricted to the case T =0), and refer
the reader to the original papers for details.

Consider the Ising spin-glass model with Hamiltonian
(3) and a symmetric coupling distribution such as (4) in

Al, and ask what ground-state energy difference would
result from two separate boundary conditions. Numeri-
cal results ' and the droplet picture suggest that the
root mean square difference will be no larger than the
square root of the boundary area, or +L ~ '. This is the
assertion that the scaling exponent 8~ (d —1)/2. (Bray
and Moore use the symbol y for the same exponent. )

Suppose for a moment that incongruent ground states
do exist, and consider two such infinite-volume states for
the same 8. Now consider the energy for each contained
within the volume Az. A central question concerns typi-
cal energy differences within this volume; if they are of
order unity, then incongruent states should easily arise
from different boundary configurations. However, FH
argue that their typical energy difference is bounded from
below by +L, which would presumably violate the
bound (+L" ') on maximal energy differences which
can be gotten by switching from periodic to antiperiodic
boundary conditions. The implication is then that any
two 8-independent sequences of boundary conditions will

not generate incongruent states.
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Var(F, F2)(4 Var(J;,. )iBAI—~, (16)

Nevertheless, this does not completely rule out in-

congruent states, as FH recognized. It could be that for
a fixed realization cF, special boundary conditions depend

ing on 8 might be found, with an energy difference of or-
der L . (See Ref. 9 for a more precise definition of 8). In
general, 8 8(d —1; FH assumed that 8=8, but the is-
sue is unresolved. In particular, if 8~d/2, then in-

congruent ground states can exist even if they have free
energy differences scaling with the square root of the
volume. In this case, however, boundary conditions
chosen independently of the couplings cannot generate in-

congruent states; they can only arise from special choices
of sequences of boundary conditions dependent on the
coupling s.

Summarizing, there are three main possibilities: (1)
Low-lying (in energy) incongruent states have bulk ener-

gy differences of order one, independent of the volume.
En this case they would be generated by any two different
sequences (say, periodic and antiperiodic) of boundary
conditions. (2) Low-lying incongruent states cannot have
energy differences less than order square root of the
volume, and moreover the exponent 8 (d —1)/2. In
this case, incongruent states do not exist. (3) Low-lying
incongruent states have energy differences of order
square root of the volume, and the energy difference be-
tween two 8-independent boundary conditions is bound-
ed by the square root of the enclosing area, but the maxi-
mal energy difference can be greater. Special cP-

dependent choices of boundary conditions may then gen-
erate incongruent states, but in general two boundary
conditions, chosen independently of the couplings, will
not.

We now argue that the existence of incongruent states
with O(1) bulk energy differences is incompatible with
existence of a limit for 8-independent (e.g., periodic)
boundary conditions. If there are many such states, then
which is the actual bulk ground state should depend on
L. But this contradicts the requirement that the limit ex-
ists. We conclude that if periodic boundary conditions
possess a limit as L ~ ~ (for almost all cP), then the typi-
cal energy difference between incongruent states, both
within Ar, should scale as t/L . In principle, one could
argue that the difference has only been shown to scale as
L", with x )0 (or diverge even more slowly), but there is
no apparent reason why x should be anything between 0
and d /2, and so we do not pursue this further.

We have provided heuristic reasons why one part of
the FH argument follows from existence of a limit; the
other part, i.e., the inequality 8((d —1)/2, has been
rigorously proved by Aizenman and Fisher. Their re-
sult, a version of which is given in the following theorem,
can be proved by applying techniques similar to those
used by Aizenrnan and Wehr in studying the random field
Ising model. '

Theorem 5. Consider the Ising spin-glass Hamiltonian
(3) with a symmetric coupling distribution at some fixed
temperature (positive or zero) in zero external field.
Given two flip-related boundary conditions on BAz, the
surface of Al,

where F1 and F2 denote the respective free energies with

boundary conditions 1 and 2, and Var(X) is the variance
of X with respect to averaging over the coupling distribu-
tion.

An immediate consequence of Theorem 5 is that, for a
typical realization 8 in a volume AI, the free energy
difference between two flip-related boundary conditions,
chosen independently of the couplings, is bounded by a
number which scales as +L '. This suggests that if
two incongruent states in Az possess typical free energy
differences of order +L, they will not both be "seen" in

Az by choosing two flip-related boundary conditions,
such as periodic and antiperiodic, so long as L is chosen
independently of the couplings. This is a kind of
strengthening of the remarks made following Theorem 3,
which dealt only with infinite-volume limits rather than
estimates for large finite L.

Further, if the exponents 8 and 8 are equal, then
Theorem 5 suggests that no incongruent states exist at
all. If 8) 8, on the other hand, then we are also left with
the possibility that multiple Gibbs states exist, but all
coupling-independent sequences of boundary conditions
will always choose the same one. This might be called
the "weak" scaling picture. The "exotic" states should
probably be regarded as unphysical. One reason for sup-
posing this is the finding that similar exotic states ac-
tually occur in long-ranged spin-glass models at all tem-
peratures, coupled with the knowledge that at least at
high teinperature the single (paramagnetic) state seems
unaffected.

V. SK PICTURE AND NUMERICAL SIMULATIONS

Until now we have argued that a naive version of the
SK picture for short-ranged models (i.e., a sequence of
periodic boundary conditions having an infinite-volume
limit which consists of a mixture of many pure states)
cannot hold, and must be replaced by a picture in which
such a limit does not exist. In this section we assume that
multiple incongruent pure states do exist, and examine
possible SK-like pictures consistent with the resulting
chaotic size dependence. We present a heuristic discus-
sion in which we propose two such plausible SK-like pic-
tures; one is similar to the zero temperature picture of
Sec. II, while the other is considerably different. In par-
ticular, we investigate what it means for multiple states to
coexist under a single choice of boundary conditions.
This is of particular interest because almost all numerical
simulations which search for multiple states do so using a
single set of boundary conditions, usually period-

2, 11,12,35

Throughout the following discussion, we will assume
that bulk free-energy differences between noncongruent
pure states are of order one; otherwise, we would be
back to some version of the scaling picture, as discussed
in the last section. Within this assumption, however,
there are still various possibilities; we consider here the
two most obvious ones. The first is that two non-
congruent pure states (of infinite extent) may have a bulk
free-energy difference of order one in a fixed volume, but
may in general not be compatible with the same set of
boundary conditions. This would be reminiscent of the
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situation at zero temperature, in which only one ground
state and its global flip exists on any finite volume (for
continuous couplings). The second possibility is that
many pure states not only have free energy differences of
order one in bulk, but are also compatible with the same
set of boundary conditions, such as periodic. Then in any
finite volume several such states will contribute to the
Boltzmann sum, as in the infinite-ranged model.

In the first case, a single set of boundary conditions
will be insufficient for the observation of incongruence.
It is presumably the second possibility which numerical
simulations are searching for.

As already mentioned, such simulations almost invari-
ably use periodic boundary conditions on one or a few
cubes chosen independently of the couplings. In recent
papers which search for incongruence, two measures are
employed; the simulations by Reger et al. ' measure the
usual spin overlap function P(q ) on several four-
dimensional hypercubes, while the three-dimensional
simulations of Caracciolo et al. "measure both P(q ) and
a "link-link" overlap function P, (defined in their paper,
but which essentially measured the distribution of the
spatial average of (S;S.) (S S') ). Of the two measures,
only P, is sensitive to the difference between in-

congruence and regional congruence.
While the results of both papers are intriguing, and

seem consistent with an SK-like picture, neither can be
regarded as conclusive for several reasons. Some are ob-
vious: because of small lattice sizes, finite volume effects
may be substantial. Simulations are carried out at
moderately high temperatures, where even in the scaling
picture noncongruence will arise due to thermal excita-
tions. (On the other hand, we remark that when dealing
with a single boundary condition, the amount of in-
congruence can be proved to be bounded above by k~ T
regardless of the number of pure states. ) The effects of
this thermally induced incongruence must somehow be
disentangled from the sought-after "quenched" in-
congruence; separating these effects may be difficult for
some lattices. Moreover, in the Carracciolo et al. simu-
lations, a discrete distribution for the couplings is used,
which can lead to accidental degeneracies whose effects
on small lattices may be pronounced. A more detailed
critique of both simulations, particularly those of Carac-
ciolo et al. , is given in Ref. 37.

We emphasize that these objections can in principle be
overcome in obvious ways (although it may be difficult to
do so in practice). More serious is a problem which has
been pointed out by Huse and Fisher, ' who provided
an example (the two-dimensional Ising ferromagnet on a
square lattice with antiperiodic boundary conditions in
both directions) in which there are only two pure states,
and yet P(q) (as studied numerically) remains nontrivial
even in the infinite-volume limit. [We agree, however,
with Reger et al. that P(q) still contains interesting in-
formation. The number of pure states refers to
knowledge about all sets of local correlations, but loses
information about the global nature of the state generat-
ed in any finite volume. This last piece of information
may be important both numerically and experimentally,
and is conveyed by the P(q ) function. ] Moreover, even if

the scaling picture is wrong, P(q ) can still be a pair of 5
functions if the first of our two alternative SK pictures
holds. In this case, even though there are many states, no
more than two (related by a trivial spin flip) will coexist
in a typical A~. We therefore propose a test to surmount
these difficulties.

Consider two cube sizes L, &L2 ~ In going from L
&

to
L z, either: (a) a wholly or partially new set of pure states
is picked out, or (b) the same set remains but with
different weights, or (c) some combination of the above.
One can in principle test for such an occurrence: consid-
er some subvolume of the smaller cube, well away from
the boundary. Pick out some set of two- and maybe four-
point correlation functions, and measure their values. If
the above scenario does occur, then one should see a
dramatic change in the correlation functions in going
from cube 1 to cube 2. On the other hand, if all of the in-
congruence seen is simply thermally induced, only minor
changes will be seen, because cube 2 generates (altnost)
the same state in bulk as cube 1. Therefore, after many
such trials, and using several different coupling realiza-
tions, it should become clear which kind of incongruence
is actually being seen. Such a test directly looks for the
chaotic L dependence previously discussed. We caution
that we have no information about how frequently
changes in state should occur; however, if (as in the stan-
dard SK picture) there really is an infinite set of in-
congruent pure states, it seems unreasonable that, say,
doubling the cube size would pick out the same states
with the same weights.

A test such as the one discussed above should be used
in conjunction with another employing two sets of
boundary conditions. In such a test, one might focus on
a (not too small) At, and surround it with an appreciably
larger cube AI . Select fixed boundary conditions on the
surface BAI for one trial, and an independent set of
boundary conditions for a second trial. For increasing se-
quences of the size L', study the evolution of the bond
overlap function P, between configurations in AI corre-
sponding to the different boundary conditions. Repeat
this procedure at the lowest feasible temperature for as
many different sets of boundary conditions as is possible.

In both of the tests suggested above, measurements at
the lowest possible temperature is suggested, in order to
minimize the effects of thermally induced incongruence.
In practice, these tests, particularly the one employing
two sets of boundary conditions, are difficult to execute,
due to long thermalization times; on the other hand, such
tests help to remove possible ambiguities of the kind dis-
cussed in this section. We also suggest avoiding discrete
distributions, because, for lattice sizes likely to be studied
numerically, a fraction of domain walls between two
configurations at low temperature will be present due
simply to local degeneracies. Finally, we point out that,
if all of the above conditions are met, and even if a simple
scaling picture holds, there will still be come in-

congruence seen as the lattice size increases, due to rela-
tive domain walls. However, the fraction of bonds these
domain walls occupy would be subextensive, and as L in-
creases this fraction would fall to zero as a power of L.

To summarize, we propose a numerical test to look
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directly for chaotic size dependence, which differentiates
between the scaling and SK pictures for short-ranged
models. [Another chaotic dependence, on changing tem-
perature for fixed volume, may also occur, but probably
does not differentiate between the two pictures. It has
been argued ' that chaotic temperature dependence fol-
lows from the bound 8~(d —I)/2; if so, it holds for
short-ranged models, regardless of whether the scaling or
SK picture is valid. ] We have proposed two possible
ways in which an SK picture may hold for short-ranged
models. If the second of these holds, our test goes
beyond that of looking for a nontrivial P(q). If the first
holds, P(q) will be trivial but chaotic size-dependence
will remain. If the scaling picture is right, a chaotic size

dependence cannot occur. In all cases, our test is more
sensitive than those which look for nontrivial P(q),
which does not carry unambiguous information about the
number of pure states.
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