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Experimental measurement of scattering coefHcients in mesoscopic conductors
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We describe a general experimental approach yielding the entire transmission matrix of a mul-
tiprobe mesoscopic conductor. Results are presented for several new investigations with ballistic
semiconductor nanostructures enabled by this technique. We measure the transmission coefficients
for an open cross junction emploving a sample design which is an almost literal realization of the
Landauer-Buttiker model and verify that these transmission coefficients are consistent with Hall and
bend resistance anomalies obtained by resistance measurements at low magnetic fields. Other inves-
tigations utilize a pinched cross junction in which two of the probes are separated &om the channel
by quantum point contacts. This series arrangement of point contacts allows a sensitive momentum
spectroscopy of the emitted distribution. Even in the case of a single propagating mode through
the constrictions, we observe modal feaNres in the outgoing distribution, This indicates that the
potential is spatially nonadiabatic even though conductance quantization is observed. This pinched
geometry also allows the first fully characterized realization of weakly coupled probes.

I. INTRODUCTION

The Landauer-Biittiker formula, i which treats trans-
port as a scattering problem, 's has provided the context
for understanding transport in many types of mesoscopic
structures. The formula's success in describing transport
in ballistic structures relies on the fact that electrical
conduction is dominated by a single scattering region. In
this work, we present an experimental technique enabling
measurement of the transmission coefficients for ballistic
multiprobe microstructures. We will describe samples we
have designed which are almost literal realizations of the
idealized Landauer-Biittiker model.

A generalized multiprobe scattering structure as mi-
crofabricated in a degenerate two-dimensional electron
gas (2DEG) is shown in Fig. 1. A scattering region is fed
by quasi-one-dimensional teads, each of which has a fi-
nite number of occupied transverse states, or modes An.
incoming electron in mode n of lead j is scattered into
mode m of lead i. The quantum-mechanical amplitude
for this process is given by t,j m„.The Landauer-Biittiker
formula relates currents and voltages to these amplitudes
within the context of linear response. i To each lead i is
attached a reservoir in a state of internal equilibrium
at a chemical potential p,;. The reservoirs are assumed
to contact the leads without introducing any additional
sources of scattering; that is, the connection between
reservoir and lead is reflectionless. All voltage drops and,
therefore, all dissipation occur within the reservoirs, as
thermalized electrons in the reservoirs at their respective
chemical potentials p, are injected into or collected from
these leads.

The Landauer-Biittiker formula at zero temperature is
given by

h
I, = Np, +) —T~pj, —

2c
2

where i and j are indices labeling the leads. N, is the
number of propagating modes in the lead i; N, = Q. Tj.
We use the convention that positive currents imply How

into the leads. The T,~ are transmission coeQcients,
given by the transmission probabilities evaluated at the
Fermi energy EF and summed over channel indices:

Tij = ) ~&ij,mn, (EF) I (2)

Rese Reservoir

FIG. 1. Generalized scattering structure microfabricated
in a 2DEG. An incoming electron in mode m of lead i is
scattered into mode n or lead j with transmission amplitude
t;~, „.Current is fed into each lead by a reservoir at chemical
potential p;.

These represent the total transmission (i.e. , number of
effective propagating modes) from all occupied modes in-
cident upon the scattering region from lead j and ulti-
mately emerging into outgoing occupied modes of lead
i. The Landauer-Biittiker formula follows the spirit of
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the Kubo formulas in that transport properties in the
limit of linear response~ s are related to the equilibrium
properties of the system at the Fermi energy. Because
this scattering formalism applies only in the limit of lin-
ear response, it deals exclusively with elastic scattering
between occupied modes near E~. Finite temperature
solely plays the role of "smearing" the distribution func-
tion; the transmission coefficients are weighted by the
derivative of the Fermi function:

( 8f-&t

Tij = ) dE
I I ~&ij,mn(&) ~

which quantum point contacts are used to separate tvjo
of the probes from the main conductor. This facilitates
two interesting experiments. First, the geometry allows a
momentum spectroscopy of electrons emitted from one of
the quantum point contacts. Interesting quantum effects
are present in this distribution which provide details on
the nature of conductance quantization. Second, we also
use this configuration to study the perturbation upon the
measurement caused by probes in the ballistic regime.

II. SAMPLES AND EXPERIMENTAL DETAILS

The formalism culminates in the development of measur-
able voltages at each reservoir given by the steady-state
chemical potentials over the electronic charge, V; = p,;/e.

Time-reversal invariance implies that the microscopic
transmission amplitudes satisfy

t;j, „(B)=t,', „(-B).
This implies that the transmission coefficients satisfy the
reciprocity relation: ~

T' (B) =T'(-B).
Equations (1) and (2) are derived under the assump-

tion of quantum-mechanical phase coherence. Buttiker,
however, has shown that the introduction of phase-
breaking scatterers is equivalent to the introduction of
additional reservoirs, which one constrains to have no net
effect on the current. s The Landauer-Biittiker formula
and the reciprocity relations, therefore, hold equally well
in the case of classical ballistic transport.

Equation (1) gives the conductance of the multiprobe
system; that is, the current response to voltages applied
to each of the leads. Thus far, only resistances have been
measured experimentally. In this case, fixed currents are
applied to the leads and voltages are measured. In a four-
probe measurement, we apply a given current at curmnt
leads (into k and out I) and measure the chemical poten-
tial difference at voltage leads (from rn to n) where the
currents are constrained to be zero. This standard ex-
perimental configuration permits study of one portion of
the total voltage drop along the current path. From Eq.
(1), generalized four-probe resistances are of the form

h T~I T„i—T~iT„g
(5)Icl,mn

2 2 D

A. Measuring the transmission coefBcients

(T»T2~T»T4~1 ('~~I
I2 T12 T22 T32 T42

2e —I3 T$3 TQ3 T33 T43 0
I4) &T]4—TQ4 T34 T44) ( 0 )

—Ny 0

As a starting point, we describe a simple means of
measuring the transmission coefficients of a four-probe
conductor. We note that conventional resistance mea-
surements implicitly involve the imposition of boundary
conditions upon the curmnts I;. We fix the current to
fiow only between two reservoirs, which we designate as
current contacts. This is achieved by their connection
to an external source and sink of electrons. The other
reservoirs are used to measure voltages; thus, currents
through these contacts are constrained to be zero. If in-
stead of these boundary conditions, we fix the chemical
potentials, we obtain an immediate simplification in Eq.
(1). Specifically, we source a (fixed) current Iq into reser-
voir 1, increasing its chemical potential to some steady-
state level pq, while equalizing p; at the other reservoirs
by an ideal short-circuit connection. We are thus free
to rescale all of the equalized p, in the collection leads
such that p2 = ps ——ji4 = 0. Under these conditions,
the currents through these short-circuit terminations are
measured with ideal arnmeters (see Fig. 2). Equation (1)
then simplifies to the form

where D is any cofactor of the matrix defined by Eq. (1).
As these R~i ~„arecomplicated functions of the trans-
mission coefficients, they provide only indirect informa-
tion about the scattering properties of the conductor. A
more direct approach is desired to study the detailed be-
havior of the separate elements Tj.

This paper is organized as follows. In Sec. II, we de-
scribe four-probe samples specifically designed for this
experiment. In Sec. III, we discuss transmission coef-
ficients we obtain for the open cross junction, which is
fourfold symmetric and, therefore, has no geometrical
distrinction between the probes. This geometry consti-
tutes a simplest case" test of the technique. In Sec. IV,
we discuss experiments in a pinched cross junction, in

FIG. 2. Conceptual basis for the T-measurement tech-
nique. We source a current I& into reservoir 1, increasing its
chemical potential to some level pz, vrhile equalizing p,, at the
other reservoirs by an ideal short-circuit connection through
current preamplifiers.
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One immediately obtains the first column of the trans-
mission matrix by measurement of the currents Iq, Is,
and I4. The off-diagonal T;~ are directly proportional to
the currents measured by the ammeters

,~ V

while

I1
(Tii —Ni) = ——.

28 P1

The other columns of the transmission matrix can be
obtained by changing the source lead and following the
same procedure.

In an experiment, however, the situation is less ideal.
Real current paths used to short-circuit the reservoirs
contain finite resistances such as those in the wire bonds,
contacts, external leads, and current amplifiers. For each
path from the reservoirs to the common external point
defined as "ground, " both the resistance and the current
carried will be unique. The resulting path-specific poten-
tial drops which develop in steady state render external
short-circuit connections ineffective at equalizing the p,
which are internal to the sample.

We circumvent this difficulty by including a separate
current contact (I contact) and voltage contact (V con-
tact) at each reservoir. This pair of contacts enables us
to simultaneously and separately monitor all the p, in
the presence of current flow. With this configuration,
one can actively null differences between the three chem-
ical potentials of the collection reservoirs by introducing
external, variable terminating impedances between each
(sink) I contact and "ground. " This dynamic equaliza-
tion of the p, at the current collection contacts permits
the simplication of Eq. (6) to be achieved experimentally.
A flow chart in Fig. 3 outlines this procedure for a four-
probe device.

Applying these studies to four-probe conductors re-
quires a self-consistent adjustment at each of three reser-
voirs for every value of magnetic field. In practice, we
have found this technique to be more difficult than an
alternative, mathematically analogous, procedure. This
second approach employs static terminations and in-
volves building a set of linear equations, through a set
of successive measurements (sweeps) where these termi-
nations are changed. We ultimately solve the set of linear
equations to obtain the transmission matrix. This sec-
ond approach to the technique is implemented as follows.
Current (typically 10 nA) is injected into the current con-
tacts of the injection reservoir and extracted and mea-
sured through current preamplifiers through the current
contacts of the three collection reservoirs. The chemical
potentials (voltages) of these three collection reservoirs
are measured with respect to the injecting reservoir (ref-
erenced to V = 0). (In the work described herein, we
perform our experiments at 2 K using conventional lock-
in techniques at a frequency of f = 14 Hz. ) We simul-
taneously obtain complete sets of separate traces for all
the voltages and currents as a function of magnetic field
for each of seven different static current terminations.

Apply I
&

Measure
V2, V3, V4

rio I

Adjust

yes Measure
I2, I3, I4

Compute T

FIG. 3. One possible implementation of the T-
measurement technique. Arrows show the direction of cur-
rent flow for B directed upward. Assignment of current (light
shading) and voltage (dark shading) contacts depends upon
field orientation. For clarity, only connection to reservoirs 1
and 3 are shown.

Seven
static
termination s

FIG. 4. Representation of the seven diferent static cur-
rent terminations used to solve for T for the case of current
introduced via lead 1. For the case of geometries in which
there is only very small transmission through a given lead,
the open circuit connection is replaced by a = 10-kA shunt
connecton to ground.

We have represented the terminations used for the open
cross junction in Fig. 4 for the case of current introduced
via lead 1. These represent the complete set of separate
configurations by which current can be collected from one
(three configurations), two (three configurations), or all
three (one configuration) remaining leads.

For each magnetic-field point in the sweep, this pro-
vides an overdetermined linear system which we subse-
quently solve numerically to extract the transmission co-
efBcients. Consider, for example, lead 2. For each of the
seven configurations (denoted by the index o.), we obtain
an equation of the form
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I3 ———(T33V3 + T33V3 + T34V4 ),
(&) I (~) I (~) I (~)

[7 x 1] = [7 x 3] [3 x 1] .

The least-squares solution of this linear system is given

T3 ——(V V) 'V I3. (12)

This procedure can then be repeated using data which
had been obtained simultaneously for leads 1, 3, and 4
and three columns of T are thereby deduced. One can
obtain the remaining column of T, i.e., the T,i' s, by in-
jecting current into a difFerent lead and repeating the pro-
cedure. We find, in general, that our approach provides a
set of transmission coefficients satisfying the reciprocity
relation of Eq. (3) to within a few percent.

Because our set of terminations n provides a linear sys-
tem which is overdetermined, we can also extract vari-
ances for each transmission coefficient. We shall see that
these provide additional insights into the mechanisms of
scattering in these samples. Specifically, consider the lin-
ear system solved to find T43.

I4 ——T4& V3 + T43V3 + (T44 —N4) V4
(o') () (+) (~) (13)

We take data for seven configurations (once again de-
noted by the configuration index n) to find the three
coefficients, T43, T43 and T44 —N4. This leaves us with
four degrees of freedom. We assign all the error in the
least-squares fit to an "effective" error in measuring the
current I4 (Ref. 10)

7

&I. = 4) (I4' —T43V, ')'. (14)

T43 denotes the transmission coefficient determined by
the least-squares flt. Similarly,

1 .(I4 —T43V3 )
(i) — (i) 2

+42 4 (i) 2
i=1 V~'

We shall see in Sec. IVD that this variance data sheds
additional light on the underlying physics of conduction
in these structures.

The assignment of I contacts and V contacts cannot
be arbitrary in the presence of a magnetic field. Con-
sider our eight-contact, four-reservoir device pictured in
Fig. 3. Arrows show the direction of current flow for a
magnetic field directed upward with respect to the plane.
With this field configuration, voltage probes must be in
equilibrium with the electrons incoming from the current
probes. This requires that current entering a current
probe must first enter the voltage probe, before pass-

where T,' = T;z —N;6';y. In matrix form, this complete
set becomes

2

I2 = VT
h

which has dimensions

ing into the scattering region. The choice of contacts
shown in Fig. 3 assures this for upwardly directed mag-
netic fields. If the opposite choice is made, a spurious Hall
potential drop will result. Changing the magnetic-field
orientation must, therefore, be accompanied by a change
in the choice of voltage and current contacts. These con-
ditions are a multiprobe generalization of previous mea-
surements of two-terminal resistances in the presence of
a magnetic field.

The use of two contacts for each reservoir still leaves
a small background resistance associated with voltage
drops within the wide 2DEG rectangular regions and the
"spreading" resistance associated with the coupling of
these regions to the narrow gated leads of the junction.
In the few-mode regime when Ri,~ & 3 kA, they re-
sult in only a few percent systematic corrections to the
measured transmission coefficients.

In four-terminal resistance measurements, it is difficult
to use a lead that is only weakly coupled to the scatter-
ing region as a voltage probe The .chemical potential of
such a "floating" reservoir is determined by ill-defined
parasitic leakage paths. In this measurement, however,
each reservoir is tied to the external ground through a
terminating impedance at the current contact which is
smaller than any parasitic ground path. As described
in Sec. IV, this allows "measurement" of four-terminal
resistances with weakly coupled voltage probes. For the
case of geometries in which there is only very small trans-
mission through a given lead, we replace the open circuit
connection by a 10 kA shunt connection to ground.
This is sufficient to differentiate it from the short cir-
cuit, 0 0, configuration. This allows measurement of the
transmission matrix even in the presence of nearly van-
ishing electron flux and proves adequate to constrain the
reservoirs to avoid spurious drifts in p, .

B. Sample fabrication

The devices for our transmission coefficient measure-
ments are patterned from a conventional modulation-
doped GaAs/AlQ. 3GaQ qAs heterojunction. An undoped
1-pm GaAs buffer is grown by molecular-beam epitaxy
on a Cr-doped semi-insulating GaAs substrate. This is
followed by an undoped 150-A. AlQ 3GaQ qAs spacer layer
and a 600-A.-thick A1Q 3GaQ 7As layer, doped 1.5 x 10is
em 3. Growth is terminated with a 50-A. cap layer doped
2 x 10is cm 3. The 2DEG density obtained from the
Shubnikov —de Haas oscillations in the magnetoresistance
is n, = 3 x 10ii cm 3. The impurity-limited mobility
is 1.0 x 10s cm3/V sec which corresponds to a transport
mean-free path of l = ""~" 9 pm. The Fermi wave-

length is AF = (—„)~3 = 46 nm.
The device geometry used in these studies is shown in

the scanning electron microscope (SEM) micrographs of
Fig. 5. Twelve Au/Ge/Ni/Au Ohmic contacts are de-
fined by optical lithography and lift-off. They are subse-
quently annealed into the sample to contact the 2DEG.
In another mask step, Cr/Au fingers are defined which
converge from these contacts into what wi11 become the
central active region of the device. A final optical lithog-
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FIG. 5. SEM micrographs of one device used in this study.
Top left: Wire bonds attached to twelve Au/Ge Ohmic con-
tacts. Cr/Au fingers lead from these contacts to a central
mesa. The devices are ~ 1 p,m across. Top right: Central
mesa is 20 x 40 pm. Four fingers are isolated from the 2DEG
of the mesa by ion exposure. Four Cr-Au gates are then
defined. Bottom: These gates form a central cross pattern.
Adjacent gates are separated by 400 nm.

raphy step defines a central rectangular mesa 20 x 40 pm,
which is ion-etched into the semiconductor. Two electron
beam lithography steps using a JEOL JBX-5DII system
follow. Using a single level PMMA mask and exposure to
500-eV Ne+ ions, i2 four of the fingers are isolated from
the 2DEG and the mesa is divided into four rectangular
regions connected at the center. This provides a gross
partitioning of the mesa into reservoirs which is effective
without application of any gate bias. In a second step
using a bilevel PMMA process, four Cr/Au gates, 100
nm thick, are added. When a negative bias is applied
to these gates with respect to the 2DEG, the "scatterer"
is defined. As an example, we show in Fig. 5 samples
which allow depletion of the electron gas from beneath
the gates to define an open cross junction.

The structures we have fabricated constitute almost
literal realizations of the idealized Landauer-Buttiker
model. The ion exposure separates the mesa into four
rectangular regions which function as reservoirs. Each
is designed with two Ohmic contacts, required for direct
measurement of the transmission coefficients. Each re-
servior feeds a lead, which is formed near the center of
the mesa by each adjacent pair of gates. While these
gates are separated lithographically by 400 nm, depop-
ulation measurements indicate that the actual channel
produced in the 2DEG is approximately 300 nm wide at

formation. The scattering region, which subsumes all the
transport physics of the conductor, is the junction region
where the leads defined by the gates connect together.

III. TRANSPORT IN THE OPEN
CROSS JUNCTION

The first structure we study is the open cross junction
shown in Fig. 5, a "simplest case" test of the technique.
The open cross junction has been the natural starting
point for discussions of mesoscopic transport phenomena
because of its C4„symmetry. This implies fourfold rota-
tional symmetry and the existence of four mirror planes
containing the axis of rotation. It constitutes the sim-
plest four-probe conductor.

Two low-field magnetoresistance effects in ballistic
conductors of this geometry have received considerable
attention. One such effect is the suppression, or quench-
ing, of the Hall resistance. is When the current is forced
between opposite probes of a cross junction, a Hall re-
sistance RH normally arises which is proportional to the
transverse voltage induced between two opposite probes
(see the inset of Fig. 9). RH, however, is found to be sup-
pressed near B = 0 in small ballistic junctions. A second
effect is the negative bend resistance at B = 0 which
decays with increasing field. i4 s The bend resistance is
proportional to the voltage drop between two adjacent
probes when current is forced through the two adjacent
probes on the opposite side of the junction (see the inset
of Fig. 10).

The key components to the physics of transport in
junctions appear to be essentially manifestations of ctas
sical ballistic transport. is Electrons introduced by the
"injection" lead scatter like billiard balls from within
the electrostatic sidewalls of the junction. Experi-
ments show that this scattering can be highly specular. ir

Experimentsis and calculationsis suggest that short tra-
jectories dominate the behavior of the transmission coef-
ficients.

For an open cross junction with fourfold rotational
symmetry, one is able to write simplified expressions for
the Hall and bend resistances from Eq. (5):is

(16)

h TETR Tg
2e2 D

where D = (TR + Tr, ) [2T~(TF + T~ + Tr.) + TI + TR]
T~ (= Tis ——T24) is the forward transmission coefficient,
T~ (= Tgi = T43) are the right-turning coefficients, and
Tr, (= T4i = T23) are the left-turning coefficients. The
magnetic-field dependencies in the transmission coeffi-
cients are manifest in the anomalous low-field magnetore-
sistance characteristics. The negative bend resistance
near B = 0 is caused by the enhancement of the for-
ward transmission over the right- and left-turning trans-
mission coefficients in this field range. The quenching of
the Hall effect may be caused by either decreasing the
turning probabilities with respect to the forward trans-
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mission or by decreasing the asymmetry between left-
and right-turning probabilities. Various mechanism have
been proposed by which these may occur.

Our technique allows us to directly measure the trans-
mission coefficients for the first time. We are then able
to determine experimentally the extent to which symme-
tries hold. The use of four separate gates to define the
junction allows us to compensate for nonidealities such as
potential variations and to obtain a confinement poten-
tial at the junction which is gate symmetric. Determining
the scattering properties of the junction experimentally
allows us to confirm the physics of measured anomalous
low-field magnetoresistance characteristics through Eq.

A. Transmission coefBcients

We shall display measurements of the transmission co-
efficients for the open cross junction at two different bias
points: for bias a, Vg = —0.7 V; and for bias b, Vs = —0.9
V. These biases correspond to values of EF resulting in
approximately five and seven occupied modes in each of
the leads, respectively. In Fig. 6, we present the results
for T~ = Tsi, the transmission coefficient for forward
propagation. The curve is peaked at B = 0 and falls off
monotonically with increasing field as the electron distri-
bution emitted from lead 1 is steered away from collection
in lead 3.

In Figs. 7 and 8, we present the right-turning coeffi-
cients (T~), T4i and T23, and the left-turning coefficients
(TI,), Tsi and T43 ~ For magnetic fields oriented such that
the Lorentz force steers the electron beam into a given
lead, the turning coefBcient rises to a level close to the to-
tal number of injected modes. It subsequently decreases
slightly with increasing field, which we attribute to mag-
netic depopulation. For field values such that one would
expect the electron beam to be steered autay from col-
lection in a given lead, we find a peak in transmission
associated with specular reflection from the rounded cor-
ner of the junction. This is the first direct observation

of such a "rebound" trajectory, s shown in the insets of
Figs. 7 and 8. Comparing the magnitude of Tsi with
the turning probabilities Tqi and T4i near B = 0 con-
firms that forward propagation is favored. This is prob-
ably due in part to the collimation of the beam injected
by lead 1, discussed in a more definitive context in Sec.
IVA. We note that both T2i and T43 and T4i and T23
should be strictly equal for a junction with t 4„sym-
metry. DifFerences arise due to the asymmetries in the
actual electrostatic (cf. lithographic) junction potential.

B. Ha11 and bend resistances

We use the measured transmission coefficients to cal-
culate, or "reconstitute, " the Hall and bend resistance
through Eq. (5) and then compare them with direct
measurements of four-terminal resistances in Figs. 9 and
10. Small discrepancies between the "reconstituted" and
measured values arise because the gate bias defining the
junction potential must be brought to zero and reapplied
between the transmission coefBcient experiment and the
four-terminal resistance measurement. Changes to the

I I I I

—05 0 0.5
MAGNETIC FIELD (T)

I I I

—05 0 0.5
MAGNETIC FIELD (T)

FIG. 6. Forward transmission probability T3& for the open
cross junction. We note two bias points. For bias a, V~ = —0.9
V. For bias b, V~ = —0.7 V. Inset: Ballistic trajectory at zero
field.

I I I

—0.5 0 0.5
MAGNETIC FIELD (T)

FIG. 7. Right-turning transmission probabilities for the
open cross junction at biases a and b. Arrows show Beld re-
gions at which rebound trajectories occur. (a) T3& vs magnetic
Geld. Top inset: Ballistic trajectory showing "rebound" into
lead 2. Bottom inset: Ballistic trajectory for direct steering
into lead 2. (b) T43 vs magnetic field. Top inset: Ballis-
tic trajectory showing "rebound" into lead 4. Bottom inset:
Ballistic trajectory for direct steering into lead 4.
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—05 0 0.5
MAG NETI C FIELD (T)

FIG. 10. Bend resistance Rs ——R/2, 43(B) for the open(~)

cross junction at biases a and b reconstituted from the mea-
sured T,, (solid curves). Also shown is Rs, measured conven-
tionally at each bias (dashed curves). Inset: Choice of current
and voltage probes for this measurement.

CVI—

I I I I

—0.5 0 0.5
MAGNETIC FIELD (T)

transmission coefficients always result from this proce-
dure, reflecting the difficulty in reachieving precisely the
same confinement potential. We speculate that this oc-
curs because of slight rearrangement of the lateral distri-
bution of ionized donors in the donor layer.

IV. TRANSPORT IN THE PINCHED
CROSS JUNCTION

FIG. 8. Left-turning transmission probabilities for the
open cross junction at biases a and b. Arrows show field
regions at which rebound trajectories occur. (a) T4q vs mag-
netic Beld. Top inset: Ballistic trajectory showing "rebound"
into lead 4. Bottom inset: Ballistic trajectory for direct steer-
ing into lead 2.

0
CY

CV

cU

I I I I I

—0.5 0 0.5
MAGNETIC FiELD (T)

FIG. 9. Hall resistance RH = R$3,24(B) for the open cross
junction at biases a and b reconstituted from the measured
T,~ (solid curves). Also shown is RH, measured convention-

ally at each bias (dashed curves). The curve for a is offset
—0.1. Inset: Choice of current and voltage probes for this
measurement.

In this section, we discuss experiments in a pinched
cross junction, in which quantum point contacts are used
to separate two of the probes from the main conductor.
We shall demonstrate that this facilitates two interesting
experiments. First, this geometry allows a momentum
spectroscopy of electrons emitted from a quantum point
contact. Second, we use this configuration to study the
perturbations upon the measurement caused by probes
in the ballistic regime.

Recent work views the quantum point contact as hav-

ing the form of a saddle-point potential. 2c Conductance
is quantized because the potential in the constriction is
locally adiabatic, implying that the mode number for
the transverse motion is conserved. Each mode that is
successfully transmitted contributes one unit of 2e2jh
to the conductance. Away from the constriction, the
potential necessarily becomes nonadiabatic since it ul-

tirnately widens rather abruptly to join the 2DEG. De-
spite intermode scattering in this region, the probabil-
ity of backscatter is small and the conductance remains
quantized. In Sec. IV C, we will present significant mod-
ifications to the adiabatic saddle-point picture of the
quantum point contact.

The "scatterer" studied in this section, the pinched
cross junction, is shown in the SEM micrographs of Fig.
11.~~ Leads of a cross junction are, as in the open cross
case, defined by gates separated by 400 nm. However,
in this case, two of these leads are pinched by 150-nm
side constrictions formed between two 50-nm-wide gate
fingers. By contrast with the open cross junction, the
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ideal pinched cross junction has only Cz„symmetry, that
is twofold rotational symmetry with two mirror planes
containing the axis of rotation. In this case, the Hall and
bend resistances are given by

h TRTR —TI.TI.
(18)

FIG. 11. SEM micrographs of the pinched cross junction.
Leads of a cross junction are, as in the case of the open cross
junction, defined by gates separated by 400 nm. Here, how-

ever, two of these leads are pinched by 150-nm side constric-
tions formed between two 50-nm-wide gate fingers.

FIG. 12. Two-terminal conductance across the constric-
tions as a function of gate bias. Three bias ponts are labeled
a, b, andc.

allowing much larger transmission along the main con-
ductor, T 7, 8, and 10. The properties of the effective
potential in the scattering region at these biases is sum-
marized in Table I. n, is the effective two-dimensional
electron gas density in the main channel, obtained from
the quantum Hall effect. L is the distance between the
constrictions, extracted assuming hard wall p-otentials
from the conductance of the leads (W = z,, ~&). The
other parameters displayed in Table I are introduced be-
low.

(i) h TgTL —TE TF
B 2e& D (19)

A. Forward transmission coefBcient and analysis

(z) h TRTL, —TFTs
2ez (2o)

There are two distinct bend resistances in this case.
TR (r,) is the turning coefficient for transport from the
main channel right (left) into one of the point contacts.
T~ (i,) is the turning coefficient for transport from the
quantum point contact right (left) into the main chan-
nel. T~ is the transmission coefficient from point contact
to point contact. TF is the transmission coefficient down
the main channel.

In Fig. 12, we display the two-terminal conductance
across the constrictions as a function of gate bias.
The conductance is approximately quantized in units of
2ezih. s 4 We denote three bias points, labeled a, b, and
c. These biases permit only small transmission through
the constriction t 0.5, 1.5, and 2.5, respectively, while

Molenkamp et al.zs measured the bend resistance with
a series arrangement of point contacts to demonstrate
collimation of an electron beam emitted by such a con-
tact. Collimation refers to an electron distribution that
is more peaked in the forward direction than a simple
cos 8 distribution. 2s This is an effect arising from the in-
variance of p„W(or in the few-mode case, by the con-
servation of transverse mode index) in a slowly widening
orifice. In a gradually tapered opening, the increasing
width lowers the transverse momentum, thereby increas-
ing the forward momentum.

Our experiments here allow forward transmission mea-
surements even in the case of nearly vanishing electron
fiux. With weakly coupled reservoirs where bend resis-
tance measurements are precluded, this permits us to
explore the details of the injected momentum distribu-
tion for the first time in the few-mode quantum limit. In
Fig. 13, we plot T42 as a function of Geld. The curves are

TABLE I. Parameters for the pinched junction. V~ is the applied negative gate bias. n, is the
effective two-dimensional electron gas density in the main channel. L is the distance between the
constrictions, extracted &om the conductance of the leads, assuming hard-wall potentials. X+ (X )
is the distance of the left (right) reflection point from the center of the collector. W, is the efFective
width of the collector.

Bias point Vg (V)
—0.9
—0.84
—0.7

n, (cm )

1.8 x 10
2.0 x 10"

x 10

L (nm)

210
220
270

X+ (nm)

55.0
64.5
115.0

X (nm)

50.0
57.5
83.0

W, (nm)

28
90
146
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FIG. 15. Bend resistance, R~ = Rig, 43(B), for the
pinched cross junction at biases a, b, and c reconstituted from
the measured T,~ (solid curves). Also shown is Rs measured
conventionally at bias c (dashed curves). Curves for a and c
are o8'set by 0.05 and —0.05, respectively. Inset: Choice of
current and voltage probes for this measurement.

B. Turning coefBcients

In Fig. 16, we display the right-turning coefficients

(TR) for transport from the main channel into one of the

quantum point contacts, T4i and T2s. In Fig. 17, we dis-
play the left-turning coefficients (Tl, ) for transport from
the main channel into the other quantum point contact,
Tzi and T4s. Both T4i and T2s and Tzi and T43 should
be strictly equal in the case of perfect Cz„symmetry. As
in the open cross case, difFerences arise due to the ac-
tual asymmetries of the junction potential. For magnetic
fields oriented such that the Lorentz force steers the elec-
tron beam into a given lead, the transmission coefficient
rises to the total number of injected modes. For field
values such that we would expect the electron beam to
be steered atsay from collection in a given lead, we find a
peak in transmission similar to that observed in the open
cross junction (cf. Figs. 7 and 8). As in the case of the
open cross junction, this is due to a trajectory in which
the electron beam is reflected specularly from a small
segment of the smooth electrostatic boundary near the
constriction and directed into the "wrong" lead as shown
in the insets. In the case of bias a, the "rebound" peak
becomes comparable in magnitude to the fully deflected
flux.

Measurement of the momentum distribution of elec-
trons emitted by the point contact, analogous to that
s,chieved via T~, is also possible using the turning coef-
ficients TR and TI, . For this analysis, we use the coeffi-

I

)J IHIe

-0.5 0 0.5
MAGNETIC FIELD (T)

-05 0 05
MAGNETIC FIELD (T)

—0.5 0 0.5
MAGNETIC FIELD (T)

FIG. 16. Right-turning transmission probabilities for the
pinched cross junction at biases a, b, and c. (a) T2i vs mag-
netic field. Top inset: Ballistic trajectory showing "rebound"
into lead 2. Bottom inset: Ballistic trajectory for direct steer-
ing into lead 2. (b) T4s vs magnetic field. Top inset: Ballistic
trajectory showing "rebound" into lead 4. Bottom inset: Bal-
listic trajectory for direct steering into lead 4.

-05 0 05
MAGNETIC FIELD (T)

FIG. 17. Left-turning transmission probabilities for the
pinched cross junction at biases a, b, and c. (a) T4i vs mag-
netic field. Top inset: Ballistic trajectory showing "rebound"
into lead 4. Bottom inset: Ballistic trajectory for direct steer-
ing into lead 4. (b) T2s vs magnetic field. Top inset: Ballis-
tic trajectory showing "rebound" into lead 2. Bottom inset:
Ballistic trajectory for direct steering into lead 2.
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PIG. 18. Imaging with Tip and T3q. "Rebound" portions
of Ti2 and T32 plotted vs angle of emission. Top: Correspond-

ing simple classical electron trajectories

point where, at most, only a few modes propagate. In
this quantum-mechanical regime, side lobes appear in the
emerging beam. Let us first consider whether these side-

lobe features may be attributed to secondary diffraction
rnaxlma.

For a single mode of propagation, we can achieve a col-
limated central beam with the adiabatic potential shown
in the inset of Fig. 19. We calculate the injected distribu-
tion function for a wire in which only a single mode prop-
agates at the Fermi level and which widens and then emp-
ties into a wide 2DEG region. Our calculations are per-
formed using a recursive Green's-function techniquesi is

as discussed in Appendix B. Here, the transverse con-
finement potential satisfies the condition for spatial adi-
abaticity, given by

dW/dx & (24)

cients for transmission from the quantum point contacts
into the main channel at lead 2, TR(B) = TL, (—B) =
Tip(B) and TI, (B) = TJt( B) = T—ss(B). In this case, a
small segment of the rounded electrostatic contours near
the constriction at lead 4, directly opposite from the in-
jector at lead 2, specularly reflects electron flux into the
side probe. This is depicted in the diagrams at the top of
Fig. 18. As the beam is swept past this reflecting spot,
the angular profile of one half of the beam is imaged
(i.e. , scattered into the opposite side probe). Changing
the sign of the magnetic field causes the other half of the
angular profile to appear in the other side probe. In this
case, a different; reflecting boundary is involved, so small
differences in the results for +B are to be expected. In
Fig. 18, we have plotted these "rebound" features as a
function of angle of emission, 8, from point contact 2. A
trajectory analysis discussed in Appendix A yields the
function 8(X+,r, ), which is used to convert field into
angle. Imaging via the turning coefficients involves an
additional parameter, X+ (X ), which is the distance
of the left (right) reflection point from the center of the
collector point contact. Values of X+ and X used to
obtain the curves of Fig. 18 are noted in Table I. They
are determined by fitting the main "rebound" peaks to
a zero angle of emission. We note that the curves of Fig.
18 show the same side-lobe features observed in Fig. 14.
The presence of the same fine structure in TR and T~
as observed in TR and Tl, follows from reciprocity and is
due to the angular dependence of collection in the former
case rather than of injection in the latter case. A consis-
tent picture emerges, despite the fact that quantitative
comparisons are rather diKcult because of the complex-
ity of the collection within the "rebound" geometry and
that our hard-wall approximations only qualitatively rep-
resents the true, more rounded, potential contours.

C. Details of calculating dT/dg

In Fig. 14, we have presented curves showing the shape
of the momentum distribution (dT/d8) injected by the
quantum point contact. Although propagation within
the junction is essentially classical, transport at the quan-
tum point contacts is not. We constrict them to the

C3

D

o
o—~/2 —~/c 0

ANGLE

~/c ~/2

FIG. 19. dT/d8 for an adiabatic constriction with a single

propagating mode. The center of the constriction is defined

by a potential of height 0.38E~ and width 0.95Ap. The width

and potential are graded to 3.2A~ and zero, respectively, over

a distance of greater than 9A~. Inset: Adiabatic point contact
potential for the calculation.

where N(x) —kFW(x)/x and W(x) is the (transverse)
width at (longitudinal) position x.ss The resulting in-

jected distribution in this case is shown in Fig. 19. Sec-
ondary difFraction maxima are evident at 8 = 40' and
8 = 65' but are orders of magnitude below the central
maximum at 8 = 0. To compare these results with exper-
iment, we plot T42 in polar form, employing a logarithmic
radial coordinate, in Fig. 20. Comparing with Fig. 19, it
is immediately evident that diffraction cannot explain the
side-lobe features observed in the experimentally imaged
distribution, which are less than an order of magnitude
smaller than the central maximum.

On the other hand, features of this magnitude can re-

sult from injection of a multimode distribution into a
semi-infinite (2D) region. Allowed momenta for electrons
in such a wire which empty into a wide 2DEG region ap-

pear as allowed points on the k-space semicircle ~k~ = kF
in Figs. 21(b) and 21(c). Thus, a wire injects modal fea-

tures at specific angles into a 2D region.
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10-~rr/2
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The angular spread produced by each transverse mode is
determined by difFraction. The details of the scattering
potential determine the amount of flux from each occu-
pied mode of region I which is ultimately transferred into
the occupied modes of region III. In general, not all of
the electrons in a given mode will be scattered to other
modes. For those electrons which remain in the same
mode as they pass from region I into region III, the in-
creased width of III lowers their transverse momentum,

kli"), increasing their forward momentum,

FIG. 20. T4q as a function of angle of emission at biases a,
5, and c. The side lobes are less than an order of magnitude
down from the central peak.

Our data, however, show side lobes even for bias a,
i.e., even tohen only the lotoest transverse mode pro@a
gates through the constriction. In this case, higher modal
components can only become occupied for a point con-
tact potential which is non adiabati-c, as in the case of the
model potential in Fig. 21(d). Here we have introduced
a model potential in which a narrow saddle point (re-
gion I) defines the conductance. The potential violates
the condition of Eq. (24) and is nonadiabatically graded
(through region II) into a wider transition region (region
III) which then empties into the wide 2DEG. In both
regions I and III, momenta in the transverse direction
are quantized in units of fr/W. In the case of region III,
each mode produces a feature in the emitted distribution
centered at

(26)

and thereby collimating the emerging distribution.
Calculations by Nixon, Davies, and Barangerss in-

dicate that large potential fiuctuations for quantum
constrictions defined on GaAs/Al, Gai, As modulation-
doped 2DEG heterostructures are to be expected. These
fiuctuations appear to result from the random positions
of the ionized donors within the doped A1Q3GaQ7As
layer. ss Potential variations which are large fractions of
the Fermi energy can occur on length scales comparable
with the Fermi wavelength. Near the edges of the con-
striction where the potential rises to meet the Fermi en-

ergy, these fiuctuations are most pronounced. Thus, the
depletion region defining the effective boundaries of the
constriction (shaded) will not follow the smooth contours
of the gates themselves. In a short ballistic constriction,
we expect that this will in general result in a conduc-

-5 -4 -3 -2 -1 0

on C4

O

U

Intermode
scattering

Depletion Profile

1 2 3 4 5
I

/

0 t ~k

Critical path

FIG. 21. Critical path model of a quantum point contact.
(a) The depletion region defining the effective boundaries of
the constriction (shaded) do not follow the smooth contour
of the gates themselves (b) Mome.nta on the iki = k» shell
that would be emitted from region III. (c) Momenta on the
~ki = k» shell that would be emitted from region I. (d) Non-
adiabatic model potential. The narrowest region (I) of width
Wi and potential Vi empties into the transition region (III)
or width Wiii and length Liii. These are connected by a non-
adiabatic region (II), of length Lii, with width and potential
both linearly graded to match at regions I and III.

:I:

0
ANGLE

n/4 n/2

FIG. 22. (a) dT/da for the nonadiabatic point contact po-
tential of Fig. 19 with Err = 0.8Am, Wrrr = 3.2Az, and Lrrr =
1.6A~. Curves a, 5, and c correspond to 1, 2, and 3 injected
modes, respectively. For curve a, b, and c, VV&

——0.95, 1.3,
and 1.6Az, respectively; while Vz = 0.38, 0.04, and O.OOZE,
respectively. (Cf. the experimental results of Fig. 14.) (b)
Modal decomposition of curve c into even (dotted) and odd
(dashed) components. Calculated angular peak positions for
transverse modes 1 through 5 of region III are labeled.
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tance controlled by a single lo d 't,—a critical path.
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ation. We
The model potential of Fig. 21(d) simulate th'a es is sltu-
'

n. We now use this potential in additional calcula-
tions. The narrow region (I) of width W oten

'
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III) of fixed width Wiii = 3.2Ap, length I = 1.6A

p tial Viii = 0. The nonadiabat' '
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L„=2.4

D
—7T —7T

ANGLE

~/4 ~/2

FIG. 24. Importance of the nonadiabatic regon. dT/dB for
the case of a single mode propagating through the saddle point
(Wi = 0.95A~, Vi = 0.38Ez ) [cf. Fig. 23(b)j. In this case,
Lii = 2.4Ay, Liii = 1.6Ap. Increasing the length of region II
decreases intermode scattering. Right inset: Corresponding
polar representation. Left inset: Representation of the model
potential.

region in mode conversion. We focus on the mode con-
version from the first to the third modes, which is mani-
fested as the shoulder as the shoulder in the emitted flux
distribution for curve a of Fig. 22(a). Increasing the
length of region II while holding other parameters fixed
acts to decrease the amount of nonadiabaticity within the
model potential [Eq. (24)]. In Fig. 24, we plot dT/de for
the nonadiabatic region lengthened from Lii = 0.8A~ to
Lii = 2 4AF Com. pari.ng with Fig. 23(b), we can observe
the corresponding decrease in intermode scattering from
mode one to mode three.

Our model of a short quantum point contains a
nonadiabatics4 potential. This is completely consistent
with the conductance quantization observed in Fig. 12 as

long as intermode scattering can occur within these point
contacts without significant backscatter. Calculations us-
ing realistic point contact potentials comprising a single
region of constricted width and density appear to confirm
these ideas. These same calculations also show that
conductance quantization is lost, however, when more
than one constricted region is present within the point
contact. In this case, backscatter is enhanced by reso-
nance e8ects, a possibility which becomes greater with
increasing point contact length. sz Furthermore, it has
been demonstrated that boundary scattering begins to
play a role for lengths ) 0.5 pm. i~

To illustrate that our single-critical-path, nonadiabatic
model potential preserves conductance quantization, we
consider the point contact potential used in case b of
Fig. 22(a). In Fig. 25, we plot the conductance of the
constriction as a function of the saddle-point potential
Vo. As Vo is increased from 0 to E~, the conductance
shows clearly quantized plateaus.

D. Reproducibility of quantum point
contact potentials

In the model we have proposed above, we attribute fea-
tures in the injected flux distribution to details in the po-
tentials of the quantum point contact. In particular, the
side lobes of the distribution are expected to be very de-
pendent on intermode scattering, which is, in turn, quite
dependent on nonadiabaticity of potentials.

Our method of extracting the transmission coefficients
is accomplished by means of a least-squares fit to an
overdetermined linear system, as described in Sec. IIA.
The extra information permits us to study fluctuations
in the quantum point contact potential that occur during
the four or more hours required to complete the measure-
ment.

We plot the variance in T4z in Fig. 26 along with the

CV

CV

—0.5 0 0.5
MAGNETIC FIELD (T)

C4

1.0 0.8 0.6 0.4 0.2 0
Vo (EF)

FIG. 25. Nonadiabaticity and conductance quantization.
Model potential calculation with Wq ——1.3A~, LI ——1.6A~,
Vy = Vp, Lyy = 1.6Ay', Wyyy = 3.2Ay', Lying = 1.6Ay. Conduc-
tance plotted as a function of Vp for Vp varied from 0 to E~.
At Vp = 0.04'', this is the potential used for curve b in Fig.
22(a).

D
C)
C) —0.5 0 0.5

MAGNETIC FIELD (T)

FIG. 26. Variance in T42 for the pinched cross junction.
(a) T42 for bias c as determined by the least-squares fit. (b)
Corresponding variance uT . The variance is peaked at mag-
netic fields corresponding to those parts of the curve associ-
ated with higher-order mode injection.
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FIG. 27. Reproducibility of point contact potential with
thermal cycling. (a) and (b) T42 measured on two successive
cooldowns. Bias points a, b, and c are chosen to yield the
same quantized ballistic resistance in each case.

least-squares fit T42 for bias c. We note the absolute
magnitude of the variance is always & 5%. The interest-
ing point to note, however, is that the variance is peaked
at magnetic fields corresponding to the shoulders in T42,
that is, to those parts of the distribution corresponding
to higher-order mode injection. It is exactly these fea-
tures in the curve that we expect to be most sensitive
to changes in the point contact potential, since we pic-
ture them as arising from the detailed shape of a critical
path. Similar peaks in the variance are found for the
other transmission coefficients at magnetic fields corre-
sponding to transmission of side-lobe features. We stress
that these small changes most likely result from micro-
scopic discrete rearrangement of trapped charge in the
Al Ga1,As, occurring during the course of the several
hours required to take the magnetic-field sweeps. During
this time, gate bias and temperature are held fixed.

In addition, we have studied the reproducibility of
point contact potentials with thermal cycling. In Fig.
27, we show T42 on two successive cooldowns for a single
device. Bias points a, b, and c are chosen to yield the
same quantized ballistic resistance in each case. The po-
tential within the point contact has changed on thermal
cycling, although modal features are present in both sets
of curves. This variation is also indicative of variations
observed from device to device.

h 1 T~1 T43 T23 T41
(1) (1) (1) (1)

2e2 T (T(1) + T(1))(T(1)+ T(1)) '

where T = T31 —T13 . The factor(o) (o)

(1) (1) (1) (1)
21 43 23 41

(T (') + T('))(T (') + T(')) (28)

0
CU

probes almost totally decoupled from the main current
path. Engquist and Anderson define a weakly coupled
probe as accepting only infinitesimal transmission t com-
pared to transmission along the main conductor itself, T;
that is, weak coupling implies t/T (( l. In our pinched
junction, we have achieved weak coupling by using the
gated constrictions to separate two of the probes from
the main channel.

In Fig. 28, we show the reconstituted Hall resistance for
the pinched junction, RH(B) = 813 24(B). We show the
measured value for bias point c. (As in the case of the
bend resistance measurement, weak-coupling precludes
this four-terminal resistance measurement for biases a
and b )Th.e quenched Hall effect appears to directly re-
flect the rebound features observed in turning transmis-
sion coeKcients. Most surprising is that this eKect grows
as the probes become decoupled. As we noted previously,
with increasing bias, the anomalous rebound peaks ac-
quire similar magnitude to the total flux ultimately col-
lected by the "correct" probe at higher B. Quench of RH
is, thereby enhanced by progressive probe decoupling.

Buttiker has applied his four-terminal resistance for-
malism to consider the special case in which transmis-
sion into two of the probes, t, is weak. 37 The transmis-
sion coefficients for the structure can then be expanded
with respect to the small parameter t To lo.west order,

T31 = T31, T21 ——&T21, T43 ——&T43 . Similar expan-(o) (1) (1) ~ ~

sions follow for each transmission coefBcient. Buttiker
then obtains

E. Weakly coupled probes

In the case of a ballistic four-probe junction, strong
coupling is always obtained when, at the junction, lit-
tle or no geometrical distinction exists between voltage
and current probes. This is exemplified by the open cross
junction of Fig. 5. There has been considerable theoreti-
cal interest in weakly coupled probes as a means of "non-
invasively" measuring the voltage drops within small con-
ductors. To realize this opposite extreme requires voltage

—0.5 0 0.5
MAGNETIC FIELD (T)

FIG. 28. Hall resistance, RH = R$3,24(B), for the pinched

cross junction at biases c, b, and c reconstituted from the mea-

sured T,~ (solid curves). Also shown is RH measured conven-

tionally at bias c (dashed curves). Curves for a and c are
offset by 0.1 and —0.1, respectively. Inset: Choice of current
and voltage probes for this measurement.



46 EXPERIMENTAL MEASUREMENT OF SCA i I ERING. . . 9663

—0.5 0 0.5
MAGNETIC FIELD (T)

FIG. 29. Form factor [see Eq. (28)j and T3& as a function
of magnetic field for bias a.

is what is identified by Peetersss and, later, Akera and
Andoss as a "geometrical form factor" describing how the
Hall resistance vanishes with decreasing magnetic field.
This factor clearly depends on the details of the probe
coupling.

Using the experimental results of Figs. 16 and 17, we
extract the form factor for bias a from Eq. (28). The re-
sults are shown in Fig. 29(a). This result differs consider-
ably from previous calculations. All previous theoretical
calculations predict form factors which go to zero mono-
tonically as magnetic field goes to zero. These involve
simple models in which the weak coupling is achieved
by a tunnel barrier in which the transmission is propor-
tional to ~8@c/Bz~s, where @Ii is the unperturbed wire
wave function and the derivative is evaluated at the wire
edge where the voltage probe is attached. However, the
form factor we have extracted in Fig. 29 instead shows
structure due to the details of the momentum distribu-
tion injected by the weakly coupled probes and due to
the exact nature of the scattering from the potentials
induced in the neighborhood of the probes.

In Fig. 29(b), we also show the transmission coeffi-

cient Tp = Tsi as a function of field. It is relatively
constant except for small dips centered at ~B~ 0.3 T.
This is probably due to the enhanced backscatter within
this field range of certain trajectories from the slight dis-
tortions of the main channel in the vicinity of the side
probes. In this particular structure, forward collimation
alone clearly cannot explain the quenching of RH, con-
trary to early results of simulations reported by Baranger
and Stone. 40

V. CONCLUSIONS

We have found that in ballistic semiconductor struc-
tures, a single dominant scattering region can be isolated
and probed with quasi-one-dimensional leads. An exper-
imental technique is presented for measuring the trans-
mission coefficients in specially designed ballistic mul-
tiprobe microstructures. It is founded upon theoretical
work which treats transport in these structures as a scat-
tering problem.

We measure the scattering properties of a open cross
junction. There are strong features in the coefficients
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APPENDIX A: SEMICLASSICAL ANALYSIS
OF "IMAGING" BY REBOUND

TRAJECTORIES

This appendix describes the details of calculating semi-
classical propagation of electrons in a magnetic field from
an injector to a reflection point a distance X+ away from
center.

For X+ ( X+,~, we refer to Fig. 30(a). Introducing
the angle a, the relevant relations are

x+
tan(n+ 8) =

L —2r, s~n8' (A1)

X+ +(L —2r, sin8) =4r, sin n,
+2

(A2)

where r, = (h/eB) y n,,/2' is the cyclotron radius. L is
the distance between the collector and injector. These
relations can be solved to find 8(X'+, r, ), the angle of
emission reQected by the reBection point at X+ at a given

for turning which can be attributed to simple "rebound"
trajectories. These transmission coefficients can be used
to successfully calculate any four-terminal resistance.

We also study in detail the pinched cross in which
two of the probes are separated from the main channel
by quantum point contacts. This series arrangement of
point contacts allows a sensitive momentum spectroscopy
of the emitted distribution, even in the case of nearly
vanishing electron flux. Although propagation within
the junction is essentially classical in these experiments,
transport at the quantum point contact is not. In the
limit at which only a few modes propagate, we observe
side lobes in the emerging beam. This is most evident
in the transmission coefficients for propagation through
both point contacts. "Rebound" features clearly persist
in the turning coefficients for this geometry and show
structure due to specular scattering of the side lobes. The
side lobes are modal features in the outgoing distribution,
which are present even in the case of a single propagat-
ing mode. We believe that this implies that quantum
point contact potentials are, in general, nonadiabatic,
even in the presence of conductance quantization. For
short contacts, which demonstrate conductance quanti-
zation, transport appears to be dominated by a single
critical path of constricted width and density defined by
potential fluctuations produced by the random position
of ionized donors. This pinched geometry also allows
the first fully characterized realization of weakly coupled
probes. We find that signatures of junction scattering
persist in this case and are, in fact, strengtIiened in the
limit of weak coupling.
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magnetic field. X+,.~ is defined such that 8(X+ ~, r, ) = 0.
For X+ ) X,+„.„werefer to Fig. 30(b). In this case,

the relavant relations are

APPENDIX B:RECURSIVE
GREEN'S-FUNCTION CALCULATION OF dt/d8

x+
tan(cr+ 8) = I

X+ +L =4r, sin o.+2

which can be used to find 8(X+,r, ).

(A3)

(A4)

In this appendix, we will describe the details of the re-
cursive Green's-function calculations which we have used
to calculate the conductance of quantum point contacts
and the momentum distributions emitted from such point
contacts. The model potential is discretized into lattice
points as shown in Fig. 31. Semi-infinite ideal leads 100
lattice constants wide are attached at the left and right
to approximate wide 2DEG regions. The free-electron
Hamiltonian is similarly discretized into an Anderson
tight-binding Hamiltonian.

p2B = + v(z, y),2m

ih
p = ——) []n, m)(n+ l, m/ —in+ i, m)(n, m/],a

p„=——) [in, m)(n, m+ li —in, m+ l)(n, mi],
a

(B3)

where we have introduced lattice sites indexed by n and
m. a is the lattice spacing;

Semi
infinit
ideal .ead

FIG. 30. Classical trajectories for momentum spec-
troscopy by "rebound. " (a) Trajectory for X+ ( X+,, (b)
Trajectory for X+ )X,+„,

FIG. 31. Discretization of the point contact potential
into lattice points for recursive Green s-function calculations.
Semi-in6nite ideal leads 100 lattice constants wide are at-
tached at the left and right to approximate wide 2DEG re-
gions.
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H =) ( —In—, rn)(n+ l, m[ — In-+ l, m)(n, mI+2In, rn){n, m[

—2]n, m)(n, m+1[ —z]n, m+1)(n, rnI+V„, In, m)(n, m[}, (B4)

G'(j) = [G (j) ' —-'G'(& —1)1
' (B5)

where Go(j) is the Green's function for the isolated j
column. Beginning from the right, one similarly builds
up the Green's function GR(j) in which all columns to
the left of j are deleted:

G"(j) = [G'(j) —4G"U+ 1)] ' (B6)

Two additional relations allow one to build up the
Green's functions between any two columns,

G(j, j) = [G (j) —4G (j+1)—q~G~(j —1))

h2where we have chosen dimensionless units: [E) =
and [k] = -'.

One now builds up two Green's functions recursively
beginning with the Green s function of the semi-infinite
ideal lead. Beginning from the left, one calculates the
Green's function G~(j) in which all columns to the right
of j are deleted. The Green's function is a matrix in
the subspace of transverse site indices m. The relevant
recursion relation is

column i in lead i to column i' in lead j. One can then
compute the transmission probabilities from lead j to
lead i,

I' = l~" G(i i')x"'I'u"u."' (B11)

where v~(' is the velocity of mode m in lead i. The con-
ductance can be computed from

2e ~ 2
2 ).It', ,-n[ . (B12)

We can compute the momentum distribution in the "far-
field" limit (many Fermi wavelengths away from the point
contact) by noting that in the very wide wires to the right
and left of the constriction, the transverse eigenstates are
given by

(2)1/2
sin(k„y)(W)

P2)1/2 ik„y e—tk„y

W) 2i

G(j,j + 1) = —,'G(j, j)G"(j + 1)

(B7) where k„=nm/W, which for W large is a nearly con-
tinuous momentum distribution. Deriving an expression
for dT/d8,

The Green's functions for the semi-infinite ideal leads
are given by

Gg=GR= —2) y gee ',
where the sum is over Fermi-level states with longitudinal
wave vector k & 0. y is the transverse lead eigenstate
of mode n. The energy dispersion is given by

dT1. 2n
d8-2. &-I''-"I d8

where we treat n as a continuous variable with

kFW .sin8.

Therefore,

(B14)

(B15)

E (k) = cos(k) —1 + e , (B10) dT kFW cos8) - Itjj -nI (B16)
where e is the quantized transverse energy of mode n

One computes a matrix G(i, i'), the propagator from We use this expression in the calculations of Sec. IVC.
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