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Classical theory of shot noise in resonant tunneling
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We show that shot noise for electrons can be suppressed in resonant tunneling through a double
barrier, using a classical description based on the rate equation for "sequential" tunneling. The
suppression is greatest when the escape rates through the two barriers are equal, in agreement with
experiment and with the quantum-mechanical "coherent" model of resonant tunneling. A master
equation is needed to calculate the noise, but cannot be uniquely derived from the rate equation;
choices differ in the way that they describe transport between the emitter and the resonant state.
Our choice for the rates, which are consistent with the exclusion principle, gives a suppression of
the shot noise. We briefly discuss the results of choosing rates that are consistent with classical or
Bose statistics instead of Fermi statistics. Finally, we apply our results to the two-state regime of
the classical Coulomb blockade.

I. INTRODUCTION

Resonant tunneling through a double barrier in a semi-
conducting heterostructure has continued to attract in-
terest since its observation in 1974. A typical resonant-
tunneling diode comprises contacts of n-doped GaAs out-
side two undoped barriers of Al, Gay As, with an un-

doped well of GaAs between the barriers. A resonant
state is trapped between the barriers and causes a peak
in the transmission coefficient. Its energy lies above the
Fermi sea when the structure is in equilibrium, but a
bias between the contacts bends the bands so that the
resonant state becomes accessible to electrons in the left-
hand contact (emitter), as shown in Fig. 1. The current
through the device rises until the energy of the resonant
state falls below the Fermi sea in the emitter, when the
current drops abruptly and produces a region of negative
differential resistance in the current-voltage characteris-
tic I(V) This is th. e important practical feature of res-
onant tunneling, on which amplifiers, mixers, and other
devices intended for use at extremely high frequencies
have been based.

The modeling of transport in a resonant-tunneling
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FIG. 1. Band profile through a double-barrier resonant-
tunneling diode under typical operating conditions. All elec-
trons in the emitter can contribute to the current, but none
from the collector.

diode raises fundamental problems. The above descrip-
tion has been based on the analog with an optical Fabry-
Perot etalon. Each energy is treated separately with
simple wave mechanics. The transmission coefficient
T(E) can be found by several methods that solve the
Schrodinger equation; no further scattering is included.
The contributions from different energies are then added
by integrating over the range of incoming energies from
both sides of the device, with an appropriate weighting
for the density of states. Note that a resonant-tunneling
diode is usually used with a bias larger than the Fermi
energy, and current is carried (unequally) by electrons
at all energies; transport is not restricted to the Fermi
energy as in linear response. This is called the "coher-
ent" model, although it is only the wave function at each
energy that is considered to be coherent —no coherence
between electrons with difFerent energies is assumed.

The difficulty with this approach is that electrons
spend a long time in the resonant state if the width of
the resonant peak in T(E) is small, corresponding to a
long dwell time. It seems inevitable that electrons in
the resonant state will scatter either from phonons or
each other. Luryi2 proposed an alternative model of "se-
quential" tunneling, in which transport is modeled by a
classical rate equation for the density of electrons in the
resonant state. One rate describes "hopping" from the
emitter to the resonant state, and another describes hop-
ping from the resonant state to the collector. The rate
constants are related to the transmission coeKcients of
the coherent model, but there is no explicit assumption
of phase coherence. It was originally suggested that I(V)
would be different in the coherent and sequential models,
but it has been shown that the current is the same in
both cases provided that one integrates over the whole
width of the resonance in the coherent picture.

If the average current cannot tell us about scattering in
the resonant state, what can a more searching experiment
such as the shot noise reveal? This was recently measured
by Li et at. ,

s who studied a range of devices with different
ratios of the transmission coeKcients of the emitter and
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collector barriers. They found that the shot noise took
its classical value 2eI if this ratio was far from unity, but
that shot noise was suppressed, to a minimum of half
its classical value, if the transmission coefficients were
similar.

There have also been theoretical studiess~ of shot
noise in purely coherent transport. These show that shot
noise is proportional to T(1 —T). It is reduced if the
transmission coefficient approaches unity, while taking its
classical value for weak transmission. A recent studyio
of a resonant-tunneling diode in the coherent limit found
suppressed shot noise when the two barriers had similar
transmission coefficients. These theoretical results agree
with the experimental observations, but raise the ques-
tion: does this imply that transport in the experimental
devices is best described by the coherent model or is the
noise, like the current, insensitive to scattering.

We have attempted to answer this question by study-
ing the noise starting from the classical rate equation for
sequential tunneling. Unfortunately this is too averaged
a description of the system to calculate the noise: we need
the greater detail of a master equation. An infinite num-
ber of master equations are consistent with the rate equa-
tion. We make the simplest choice which is consistent
with both the rate equation and with Fermi statistics,
which limit the number of states in the well and prevent
electrons from tunneling back to the emitter in the limit
of large bias, eV » k~T. We find that the shot noise is
suppressed: the results are identical to those of the co-
herent model. It therefore appears that the shot noise is
insensitive to the degree of coherence provided that the
master equation holds. We have used nonequilibrium
quantum statistical mechanics in a separate paperii to
discuss resonant tunneling when the rate equation, and
consequently our choice for the master equation, does not
apply

The same model can also be applied to the Coulomb
blockade in a double tunnel junction, which has a similar
master equation. iz We have also investigated briefly the
difFerent master equations that arise if the particles obey
classical or Bose statistics. Classical statistics give no
suppression of shot noise, while Bose statistics raise the
shot noise above its classical value.

The outline of this paper is as follows. In the remain-
der of the Introduction we define noise and provide a
classical derivation of the main general result treated in
this paper, the suppression of shot noise for Fermions.
The quantum-mechanical theory of shot noise is briefIy
reviewed in the next section. We set up the rate equation
for sequential tunneling in Sec. III, and derive the master
equation and the steady-state distribution for the number
of electrons in the resonant state. Section IV contains the
calculation of the noise from this master equation, and
difFerent models are discussed briefly in Sec. V.

A. DeBnition of noise

We are concerned with noise in the current, de6ned
through the autocorrelation function

»(t) = (i(t+ t')i(t'))„—(I)', (1.1)

where (I) is the absolute average value of the current i(t).
The averaging is performed over a finite (but long) time
T. Taking the Fourier transform, defined by

cll(w) = f err(t)e' 'dt (1.2)

gives the two-sided power spectrum of the fluctuations,

Clg(cu) = —iI(ur)i —2z (I) 6(ur),

B. Classical suppression of shot noise

As an amusing aside, we next provide a classical deriva-
tion of the "T(1 —T)" suppression of shot noise, whose
quantum-mechanical analog we shall discuss later [Eq.
(2 2)j.

Consider a stream of particles incident on a barrier.
Transmission through the barrier is treated as a stochas-
tic process with probability T of success; a determinis-
tic approach was taken by Beenakker and van Houten.
We assume that T is constant over the range of ener-
gies present in the input stream; the range should be
subdivided if this is not true, and the noise from each
subdivision can then be added.

Divide the incoming stream of particles into time slices
of duration w. Slice i contains N; incident particles, which
varies from slice to slice. If the particles behave indepen-
dently, the number of electrons transmitted during each
slice is given by a binomial distribution. Then the prob-

where I(u) is the Fourier transform of i(t). The quan-
tity measured experimentally is the one-sided power spec-
trum, defined by S(v) = 2CII(u) for cu & 0. We shall
usually refer to this simply as the noise.

There are several important sources of noise in a
resonant-tunneling diode. First, there is Johnson noise
which is related to the linear conductance through the
fluctuation-dissipation theorem, and is present even at
equilibrium. Other sources give "excess" noise when a
current is passed through the device. The second source,
our main concern, is shot noise, due to the discrete nature
of the charges (electrons) that carry the current. This is
reflected in the classical result S(a) = 2e (I), where e is
the magnitude of the electronic charge. The power spec-
truin is flat at low frequencies, and the noise increases
linearly with current provided that the bias V is large,
eV » kgT. The third important source is 1/f noise,
which is widely believed to be due to fluctuations in re-
sistance within the device, perhaps by the charging of
traps or scattering centers. Its power spectrum should
be quadratic in the average current, and of course goes
roughly as 1/~. All of these sources of noise are seen in
the experiments, s and the measurements in units of shot
noise had to be made at frequencies above those where

1/f noise was significant (of order 1 kHz). This is still in
the zero-frequency limit as far as shot noise is concerned,
since its dependence on frequency is governed by micro-
scopic rates whose frequencies are typically measured in
units of THz. We are therefore justified in taking the
limit u ~ 0 in the calculations of shot noise.
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pN(N)=i 'iT (1 —T) ' (1.4)

ability that N particles are transmitted during slice i is
given by

quantum-mechanical theory can be based on wave pack-
ets of electrons. 9 is

We now move on the corresponding quantum-
mechanical theory.

var(N) ~, =N, T. (1 —T)

for the variance. These expressions can now be averaged
over the distribution of N;. As both are linear, we just
replace N, by its mean N. The mean transmitted current
1s

(I) = e (N) /w = eNT/r = evT (1.7)

as expected, where v = N/T is the mean rate of incidence
of particles. The shot noise in the limit u ~ 0 is given
by Milatz's theorem, i4

S = lim 2&var (I~)
7 ~OO

(1.8)

where I is the current averaged over a period ~ and
"var" stands for the variance. In our case I = eN/v
alld

var (I ) = (e/v) var(N) = (e/r) NT(1 —T),
so the shot noise is

This can be averaged over time slices in two stages. First,
consider all slices with the same value of N, Av. eraging
the binomial distribution (1.4) gives

(N)~——N, T

for the mean and

II. QUANTUM-MECHANICAL THEORY

In this section we shall briefiy review the coherent the-
ory of the current and noise in resonant tunneling. "Co-
herent" simply means that scattering (other than by the
double barrier) is neglected: simple wave mechanics is
used for each energy, and the "intensity" is then summed
over energy.

Current and noise in coherent transport

The quantum-mechanical theory of shot noise in quasi-
one-dimensional systems was first given by Lesoviks and
by Yurke and Kochanski. ~ We shall take the limit of zero
temperature throughout; the scale is set by the Fermi
temperature in the emitter for a resonant-tunneling diode
under typical operating conditions, which is usually much
larger than room temperature (this contrasts with the
linear conductance, where the scale is set by the width of
the resonance). The average current in a one-dimensional
channel is given by

I=e ~nyDEvETE E=2— TE E; 21

the one-dimensional density of states niD(E) and the ve-
locity v(E) cancel. The corresponding shot noise in the
current at low frequency iss ~

S = 2e vT(1 —T). (1.10) Q2
S = 4— T(E) [1 —T(E)]dE. (2 2)

This is suppressed as the probability T of transmis-
sion approaches unity, and agrees with the quantum-
mechanical result (2.2). The shot noise measures the
extra randomness introduced into the How of particles
by the transmission process; there is no randomness, and
therefore no shot noise, if T = 1. In the opposite limit
of small T, transmission through the barrier tends to a
Poisson process and full shot noise results.

The simple derivation fails for small biases, eV ( kgT
because we have not included thermal Huctuations; it as-
sumes that all the noise is due to the current flowing
through the sample. In the limiting case of no current
Howing, (N) = 0, N still has a finite variance. Thus, the
above may be thought of as the limit for large voltages,
eV )& k~T, where thermal fluctuations are not impor-
tant. It is also important that the distribution of N, , the
number of incoming particles, is sufBciently well behaved
for the averaging to be done.

Equation (1.10) is far from new; the method is essen-
tially that of Burgess's theorem and the result is closely
related to "partition noise;"i4 this is seen, for example,
in vacuum tubes, where T would be the probability of
passing through a grid to the anode. The analogy with
classical partition noise has also been pointed out by van

der Roer, Heyker, and Kwaspen, and a complementary

2iniD(E)v(E) = — dE, (2.3)

integrated over the appropriate range. Perhaps Eq. (2.2)
is no more than a quantum-mechanical extension of clas™
sical partition noise.

We are interested in three-dimensional systems, and
need a further sum over transverse wave vectors. For
parabolic bands of mass m, , and a large bias, the results
are

and

I me
27t'h. ' (EF —E) T(E)dE (2.4)

These include a factor of 2 for spin, and the range of
integration is set by the difFerence in the chemical poten-
tials or by the whole range of incoming energies; the lat-
ter holds for a resonant-tunneling diode under the usual
large bias, as shown in Fig. 1.

This is clearly the same as the classical expression Eq.
(1.10), provided that T(E) is constant over the range of
interest, because the rate at which electrons impinge on
the barrier (from one side) is given by
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S fez F
(EF —E) T(E) [1 —T(E)]dE,

7I 0
(2 5)

&(E) =Ti,g 1+
I

(E —E„i
(2 6)

where A is the cross-sectional area of the device. Equs
tion (2.4) is the well-known Tsu-Esaki formulai7 and
(2.5) is its analog for shot noise.

Assume that there is a narrow Lorentzian resonance
centered on E„,

s = S/2el
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The peak transmission T~k is given in terms of the trans-
mission coefficients of the emitter and collector barriers,
T, and T„by

(2 7)
(T, +T,)'

The full width I' gives the total escape rate from the well,
1/~. It can be split into contributions from each barrier,
which are given in terms of escape rates and transmission
coefficients by

(b)
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(2.8)

Here v„is the velocity of an electron inside the well at
the resonant energy and iv is the width of the well, so
v„/(2') is the frequency at which the electron hits each
barrier.

Provided that the resonance is much narrower than
the range of incoming energies and is well inside this
range, we may approximate the integrals (2.4) and (2.5)
by treating T(E) as a /I function. The resulting current
density is

FIG. 2. Current I, shot noise 8, and ratio of the noise
to its classical value s = S/(2eI) for a symmetric resonant-
tunneling diode calculated within the coherent picture, as-
suming a Lorentzian resonance of full width I' = 0.02EF
and peak T~g = 1. The dotted lines show the prediction
s = 1 —sag = s. The abscissa of (a) is reversed in energy
to correspond with increasing bias. The dip near E = 0 in

(a), where the resonance falls below the range of incoming
energies, produces the loop in (b) where the arrows show the
direction of increasing bias.

I me 7r
(EF —E„)—rT gA 2vrzh P (2.9)

me vr
Iiv = 8EF rTri, . —

2vrzh
(2.12)

and the shot noise is

S rne2 7r
(EF —E„)—rT g (I —-T g) .P Q P (2.10)

The dimensionless ratio s of the shot noise normalized to
its full classical value 2eI does not depend on E„,nor on
the width of the resonance:

1 4TT,s — —1 —&TPk —1 ——
2eI 2 (T, +p, )

(2.11)

This result was first derived by Chen and Ting using
path integrals. Shot noise is suppressed in resonant tun-
neling, with the maximum effect for a symmetric struc-
ture with T, = T, giving TPk = 1 This result is consis-
tent with the experiments of Li et at.s

Equations (2.4) and (2.5) can easily be evaluated an-
alytically for a Lorentzian resonance without further ap-
proximation. Typical results, for a symmetric structure
with T~k = 1 and I'/EF = 0.02, are plotted in Fig. 2. The
current is normalized to the maximum value predicted by
Eq. (2.9), with E„=0:

Both the current and noise have the familiar triangular
shape for a three-dimensional resonant-tunneling diode.
The ratio s of the noise to its full classical value is unity
when the resonance is outside the range of incident elec-
trons, and almost constant at zi when it is within the
range. There is a dip in s as the resonance passes be-
low the range of incident electrons (E„=0), which is
reflected as a loop in the parametric plot S(I) shown in
Fig. 2(b). A loop is also seen in the experiments (Li et
aL, s Fig. 2), but there the noise goes above 2eI which
our treatment can never give. Comparison is difficult in
this region because the experimental devices show bista-
bility caused by a buildup of charge in the resonant state.
This is not seen in our calculations because they are not
self-consistent.

The simple coherent picture explains the experiments
rather well, and it is tempting to conclude that the ex-
perimental devices must be close to the coherent limit.
However, we know that the current is insensitive to inco-
herence, and this may be true of the noise too. A calcu-
lation of the effect of incoherence is therefore vital. It is
known that the effect of structureless scattering is to
lower and broaden the peak in T(E), while preserving its
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area. The current [Eq. (2.5)] is therefore unchanged, but
Eq. (2.11) shows that the noise should increase because it
depends only on Tr i, . Unfortunately the derivation of the
expressions for I and 8 holds only in the coherent limit,
and it is dangerous to try to draw conclusions from them
about the effect of incoherence.

In the next sections we shall calculate the noise
within a classical description of a resonant-tunneling
diode based on rate equations, and compare it with the
quantum-mechanical result.

III. CLASSICAL THEORY

We shall now set up the rate equation for the "sequen-
tial" picture of tunneling and develop a master equation,
in preparation for calculating the noise in the following
section.

c„„(t)= (n(t)n(0)) —(n) (3.6)

Substituting into the rate equation (3.1) shows that
c„„(t)obeys the simple equation

which agrees with Eq. (2.9). Thus the "coherent" and
"sequential" pictures give the same average current if the
coherent result is integrated over the whole resonance, s 4

a result confirmed by a more searching analysis that in-
cludes the effect of scattering. The rate equation is a
much less detailed description of the system than the
quantum-mechanical treatment used in Sec. II, but con-
tains sufBcient information for the current. As we shall
see, this is not true for the noise.

The fluctuations in the current are related to those
in the density of electrons in the resonant state. The
autocorrelation function for the density is defined by

A. Rate equation G 1—c„„(t)= --c„„(t)
t " 7. (3.7)

The sequential model of resonant tunneling was intro-
duced by Luryiz as an alternative to the coherent picture
using wave mechanics in the preceding section. The idea
is that an electron spends so long in the resonant state
that it will inevitably be scattered by phonons or other
electrons. The processes of entering and leaving the res-
onance would then not be phase coherent, and a classical
description of independent rates is more appropriate.

We shall take the sequential model to be defined by the
following rate equation for the ensemble-averaged density
of electrons per unit area in the resonant state, n:

(3 1)
Ao A 7l

7e 7c

np =
2 (EF —E„). (3 2)

vrh'

It is assumed that no electrons enter from the collector,
which is appropriate under normal operating conditions
(Fig. 1). The average density in a steady state is

(n) = '
np,

Te + Tc

and the average current density is

(3.3)

The time constants r, and p, were given in terms of
the quantum-mechanical transmission coefficients in Eq.
(2.8); their reciprocals are the escape rates for tunnel-
ing through the individual barriers to the emitter and
to the collector. The resonant state would fill to a den-

sity np if it were disconnected from the collector. It is a
two-dimensional electron gas, and Fig. 1 shows that the
effective Fermi energy in the resonance is (EF —E„)(or
zero if this is negative), so

for t ) 0. Integrating gives

c„„(t)= var (n) exp
~

——
~

.
( /t/l

ri (3.8)

Fluctuations in density relax with a simple exponential
dependence on time scaled by the total escape rate. Un-

fortunately the prefactor var(n) is simply a constant of
integration, and is not predicted by the rate equation
(3.1) alone. A more detailed description of the system is
needed to make further progress: a master equation.

B. Master equation

A master equation is the simplest extension of the
classical rate equation that can describe the fluctuations
in density, and has previously been applied to tunnel
diodes. zi As shot noise depends on the particulate na-
ture of current, it is convenient to use N = nA, the (in-

teger) number of electrons in the resonance, rather than
the density n. We now seek a master equation for p(N, t),
the probability that there are N electrons in the resonant
state at time t.

Unfortunately we are going the wrong way in attempt-
ing to derive a master equation from the rate equation
(3.1); the rate equation should be derived by summing
over the master equation, not vice versa. An infinite
number of master equations is consistent wit;h the rate
equation. All have the same structure, but have difFerent

rates. There is a "generation" rate g(N) that increases
the number of electrons from N to N + 1, and a "recom-
bination" rate r(N) that decreases it from N to N —1:

I np —(n) (n) np—=e =e =e
A ~, r,

Substituting Eq. (2.8) into this gives

I 1 m
A-'n(r-+r-). n

'" "
(EF —E„)I'T i„4~h'

(3 4)
—p(N, t) =g(N —1)p(N —1,t)+r(N+1)p(N+1, t)
dt

(3.9)—[g(N)+r(N)] p(N t)

The picture of a partially occupied resonant state closely
resembles the occupation of impurity levels in a semicon-
ductor, whose nomenclature we have adopted. There is

only one "generation" process possible under typical op-
erating conditions (Fig. 1), which is an electron hopping
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from the emitter into the resonant state (g hop). How-

ever, there are two possible "recombination" processes:
an electron can hop out of the resonant state forward
to the collector (c hop) or backward to the emitter (e
hop). The recombination rate is the sum of the rates for
these two processes, r(N) = c(N) + e(N). There is an
additional constraint, however, which is that the rates
must respect the exclusion principle. This means that e
hops cannot occur if the states in the emitter are fully
occupied, which we take to be the case; this is the "two-
process" model. Then e(N) = 0 and the rates follow
directly from Eq. (3.1):

g(N) = r(N) = c(N) = —,
+C

(3.10)

g(Np) = 0, r(0) = 0. (3.11)

These are the rates for the unphysical processes of gener-
ation into a full state and recombination from an empty
state. They must be zero physically, but in general the
extrapolated functional forms of g(N) and r(N) do not
vanish, and these terms must be explicitly excluded from
summations.

C. Steady-state distribution

The steady-state distribution po(N) is obtained by set-
ting the derivative in the master equation (3.9) to zero.
An equivalent method is to use detailed balance on the
rates, which gives immediately

pp(N + 1) g(N) r Np —N
pp(N) r(N+ 1) r N + 1

(3.12)

where Np = Anp is the maximum number of electrons
that can be accommodated in the resonance. We shall
consider other choices for the master equation that in-
clude e hops in Sec. V; these "three-process" models are
applicable to classical or Bose particles or if the states in
the emitter are only partially filled. The rate equation
(3.1) can be recovered from the master equation (3.9) by
multiplying by N and summing over all ¹

An important point is that we take Np to be an integer.
This need not be true in general (although the number of
electrons N must be an integer), and the master equation
used in the theory of the Coulomb blockadeiz provides
an example where the continuous nature of Np is vital
and our approximation is inappropriate. The number
of electrons in a typical resonant-tunneling diode is very
large, and the distribution of N is not highly skewed, so
we do not expect this assumption to be important. It
provides enormous simplifications, as we shall see in the
following sections, mainly because the functional form
of the rates in equation (3.10) automatically satisfy the
following end-point conditions:

(3.13)

The mean value is

(N) = Np
7g + 7Q

in agreement with (3.3), and the variance is

(3.14)

r,r, & Itl1
civN(t) = Np & exp

I

——
I ~

(r, +r,)' E r) (3.16)

which we shall use to calculate the shot noise in the next
section.

IV. NOISE IN THE CLASSICAL THEORY

We shall now calculate the noise for the models of res-
onant tunneling defined by the master equations in the
preceding section. First we derive the form of the cur-
rent, snd then a general formula for the noise in terms
of cross-correlation functions, which we evaluate in detail
for the master equation discussed above. A formula ap-
plicable to other models will be considered more briefly,
followed by a special one-dimensional case in which the
number of electrons in the resonance is restricted to 0 or
1.

A. Current

We first need the form of the current. An obvious way
to measure the current is to count the number of elec-
trons that hop out of the emitter or into the collector.
While this is satisfactory for the average current, these
two currents are not equal for frequencies above zero be-
cause charge can accumulate in the resonant state. A
more precise definition is needed.

As discussed above, an electron passes through the de-
vice in two hops, from the emitter to the resonant state
(g hop) and from there to the collector (c hop). Each of
these hops generates a pulse of current in the external
circuit. The Ramo-Shockley theorem s shows that a
g hop causes a charge ne to flow in the external circuit,
where n = a/(a + b) and the thicknesses a and b are
shown in Fig. 1. Similarly, a c hop causes a charge Pe to
flow, where P = b/(a+ b) Clearly n+ P. = 1 to ensure
conservation of charge. The current therefore takes the
form

i(t) = ne ) f(t —ts) + pe ) f(t —t'), (4.1)

var(N) =Np ' '
z

= (N)
~

1 —
~ (315)

(r, +r,)' & No )
Note that var(N) ( (N), showing that fluctuations
are suppressed compared with a Poisson distribution for
which the mean and variance are equal. We can now
complete the autocorrelation function,

The rates obey the condition r(0) = 0 and g(Np) = 0,
which restricts N to the range 0 & 1V & Np. The solution
to this recurrence relation is a binomial distribution,

where t~ are the times of the g pulses and so on. The
function f(t) gives the shape of the pulse that flows in
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the circuit. Its form is generally determined by the cir-
cuit rather than the device, although in principle it could
depend on the elusive "tunneling time. " We shall assume
that it decays rapidly on the time scales of interest, and
its only important property is its normalization,

f(t)dt =1. (4.2)

This means that its Fourier transform I'(~) satisfies
E(0) = 1, and we shall be able to ignore it at low fre-
quencies.

In a more general model the current consists of a sum
of three terms, with the addition of negative contribu-
tions from e hops when an electron hops back from the
resonant state to the emitter:

are not equal, as they are for the two-process model, al-
though the average rate of g hops must be the sum of the
rates of e hops and c hops to ensure the conservation of
electrons,

Although we have taken some care to define the current
precisely, it is rarely important at low frequencies. A
real device tends to maintain charge neutrality over some
time scale, and any measure of the current is adequate
for frequencies slower than this.

B. Noise

We can now substitute the specific form for the current
into the general formula (1.3) for the noise. The Fourier
transform of the current, Eq. (4.1), is

i(t) = ae ) f(t —ts) —ne ) f (t —tq)
3 k

+~e) .f(t ti). (4.3)
I(~) = eE(cu) o.) exp (icut,') + P ) exp (i&etc)

The e process is forbidden for Fermions if the states in the
emitter are full, but would be allowed for classical parti-
cles or bosons. The average rates of the three processes

(4.4)

The summations are restricted to hops within the finite
time of observation T, as in Eq. (1.3). Squaring this gives

~I(~)~ = e ~F(~)] o. ) exp iv) (t~ —t~&) +P ) exp i~ (t~ —t&)
j,k j,k

+ ap) exp iur (ts —tk) + pn) exp i~ (t' —
tsar, )

2,k
'

2,k

(4.5)

The next step is to reduce each of these double summa-
tions to a correlation function. This is done in much the
same way as the correlation and structure functions for
disordered materials (see, for example, Ziman, p. 124).

Start with the first summation, ) exp i~ (t~ —t~&) = NT 1+
j,k

hgs(t)e' 'dt

I

the number of g hops, NT, and set t~& ——0 in the integral.
Thus

) exp iur (t~ —ts&) (4.6) = NT [1+Hsg(~)], (4.9)

) ) exp [ku (t —tl, ) .
k jgk

(4.7)

Consider the sum over j, for fixed k. On average, this
can be replaced by the integral

exp [iu (t —t~k)] h~~ (t —t~&) dt, (4 8)

where the correlation function h~~(t) is the rate of g hops
given that there was one at t = 0. It is an even function
of time. After this averaging, the result must be the
same for each value of k, so we can simply multiply by

j,k

The terms with j = k each give unity and there are
NT of them, which is the average number of g hops or c
hops during the period of observation T. The off-diagonal
terms are

where Hs~(u) is the Fourier transform of h~~(t).
The other terms can be reduced in much the same

way. The cross-correlation terms [the third and fourth
in Eq. (4.5)] have no diagonal parts, only the correlation
functions. These functions are defined such that h~, (t)
is the average rate of g hops at time t, given that there
was a c hop at t = 0. They have the symmetry

hgc(t) = hcg( —t); (4.10)

the rate at which g hops come after a c hop must be the
same as the rate at which c hops come before a g hop.
Collecting all terms, we obtain

II(~)I' = "II"(~)I'N~ (~'[1+Hss(~)]
+ &'[1+H-(~)]
++PHD, (ur) + PnH, g (~)).

(4.11)
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This can be rewritten using "reduced" functions. Cor-
relation between the hops must vanish at large times,
and the rates tend to their average values. For example,
hg, (t) must have the limit

Nz (I)
T 8

Np

7g + 7Q
(4.13)

Define a reduced function as the nontrivial part of hs, (t)
by

lim hs, (t) = hg,

t-+choo

(4.12) gs, (t) = hs, (t) —h, (4.14)

where hs is the average rate of g hops. The average rates
of g and c hops are the same for the two-process model,
hs = h, = h, and are given by the average current, Eq.
(3.4),

Gs, ((u) = Hs, (cu) —2n h6(~).

Equation (4.11) becomes

(4.15)

and similarly for the other functions. The Fourier trans-
form is

~
I(~)~' = e'

~
F(~)~' NT (~ [1+G.,(~)] + p' [1 + G„(~)]+ ~pG.,(~) + p«„(~))

+e~ [F(~) [ N~2xb((u) h (n~ + P + nP + Po.) .

Equation (4.13) and the relation o. + P = 1 allow the term with the 6 function to be simplified to

2n (I) b(ur)T,

(4.16)

(4.17)

which cancels the subtracted term in the current autocorrelation function (1.3) when (4.16) is substituted. The power
spectrum becomes

S(u) = 2e (I) ]F(u)~ fo. [1+Gss(ur)] + P [1+G„(~)]+ aPGs, (u) + PnG, s(u)) . (4.18)

This is the final result for the noise in terms of the hop-
hop correlation functions. It is linear in (I), as expected
for shot noise. Dividing S(u) by 2e (I) ~F(u) [ gives the
dimensionless ratio s(~) of the shot noise to its full clas-
sical value, introduced in Sec. II.

This result shows a geometrical suppression of shot
noise even if there is no correlation between pulses. Dis-
carding all the G(u) functions from Eq. (4.18) leaves

in the charge in the resonant state if there were really no
correlation between hops, so this result cannot apply at
low frequencies. This is why it contradicts the statement
earlier that the form of the current, and therefore the
dependence on n and P, should be unimportant at low
frequency. However, it should hold at high frequencies on
a scale set by the device, ur )) 1/r for resonant tunneling,
and we will find it as this limit of the exact result.

The next task is to evaluate the correlation functions.

(4.19)

The noise ratio s reaches its minimum value for a struc-
ture whose geometry is symmetric, a = b, when shot
noise is halved. It is easy to explain this limit: an elec-
tron produces two equal pulses of weight e/2 in the ex-
ternal circuit as it passes through the device, so it is
as if the current were carried by particles of charge e/2
rather than e. The classical formula S = 2e(I) shows
that the shot noise is proportional to the charge of the
carriers, and is therefore halved too. More generally, the
suppression arises because we have divided the current
into two processes whose noise adds incoherently. The
magnitude of each current is some fraction of the to-
tal current, but the noise depends quadratically on the
fraction and is therefore reduced. This is essentially the
same as the suppressed shot noise obtained for two re-
sistors in series, which Li et al.5 suggested might explain
their data. There would be arbitrarily large fluctuations

C. Correlation functions

Start with the correlation function h„(t)for t ) 0,
which is the rate of c hops given that there was one at
t = 0. The rate of c hops where there are N electrons
in the resonance is given by c(N), Eq. (3.10). Define the
conditional probability p(N, t~M, 0) to be the probability
of finding N electrons in the resonant state at time t,
given that there were M electrons at t = 0. This must
be found by solving the master equation (3.9) subject to
the initial condition p(N, t = 0) = b& M. Conveniently it
turns out that we can avoid this difficult task, and will
only need the autocorrelation function for the density
which we already know.

Let the probability distribution of the number of elec-
trons immediately after the c hop at t = 0 be p, (M).
This is restricted to the range 0 & M & (No —1) be-
cause the c hop reduced the number of electrons by 1.
The probability distribution of N at t is given by sum-
ming p(N, t]M, O) over all M with a weighting given by
p, (M):
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No —1

) p(N, t[M, 0)p, (M).
M=O

(4.20)

Np Np —1

g„(t)= h ) ) c(N)g(M) [p(N, t;M, O)
N=1 M=O

N=1 M=O

We now need the form of p, (M). There were M + 1
electrons before the c hop, so p, (M) is proportional to
the steady-state distribution before the hop, po(M + 1),
weighted by the probability of making a c hop, c(M+ 1):

p (M) = po(M + 1)c(M + 1)/D. (4.22)

Then h„(t),the average rate of c hops at t, is given by
summing c(N) with this weighting, excluding the state
N = 0 from which recombination is impossible,

Np No —1

h„(t)= ) c(N) ) p(N, (~M, O)p, (M). (4.21)

—po(N) po(M)]:
(4.29)

Two vital simplifications can now be made that de-
pend on the specific form of the rates in our model, Eq.
(3.10), as discussed in Sec. IIIB. First, the rates are
linear functions of the density of electrons. Second, they
automatically obey the end-point condition of Eq. (3.11),
which prevents the impossible processes of recombina-
tion from an empty state and generation into a full state.
In general these unphysical terms must be carefully ex-
cluded from the summations, as in Eq. (4.29), but here we
can safely extend the summations over the whole range
0 & M, N & No. Substituting the rates gives

The normalization factor is

Np

D = ) pp(M')c(M'). (4.23)

Np

g„(t)= — ) (Np —M) N [ p(N, t; M, 0)
M

M'=1

This is the average recombination rate, and must be the
same as the average generation rate. Both are equal to
the average hopping rates, Eq. (4.13), in the two-process
model, so D = h. The distribution can be rewritten using
detailed balance, Eq. (3.12), as ) p(N, t; M, O) = ps(N). (4.31)

—po(M) po(N)].
(4.30)

This is the di6'erence of two terms. The first of these,
with No, cancels out because the sum over M gives

p, (M) = po(M)g(M)/ti.

Substituting into Eq. (4.21) gives

(4.24)
This leaves

p(N, t; M, O) = p(N, tiM, O)po(M). (4.26)

1Vp No —1

h„(t)= h ' ) c(N) ) p(N, t~M, O)p (Mo)g(M).
N=1 M=O

(4.25)

This can be rewritten slightly in terms of the joint prob-
ability p(N, t,; M, O) of finding M electrons at t = 0 and
N electrons at time t, using the general result

1
cd~(t) =-

h~, ~,
1

cNN(t) ~

p7
(4.32)

using the definition of the number autocorrelation func-
tion and that of h [Eq. (4.13)]. We would not have been
able to make this reduction without removing the restric-
tions on the summations. Substituting Eq. (3.16) for the
correlation function finally gives

Np

g (k) = —— ) MN[p(N, t; M, O) —pp(N)pp(M)]' ' Miv=

The result is

1Vo Np —1

M=ON=1
h„(t)= h ) c(N) ) p(N, C;M, O)g(M). (4.27)

g„(t)=—var(N) 1 (
pE )

1 (
exp

(

——[.
+r& E 'r ) (4.33)

Np —1

h„(t~ Woo) = h ) c(N)pp(N) ) g(M)po(M)
N=1 M=O

= h, hg/h = h. (4.28)

This is consistent with the limit (4.12). We can therefore
subtract it to leave the reduced function,

At large times when correlations have died away, the joint
probability factorizes into the product of two steady-state
distributions, so

This is negative, which means that the average rate of
c hops is suppressed after a c hop. The reason is that
the number of electrons is slightly below average after a
c hop. The rate c(N) of c hops decreases as N decreases,
and is therefore reduced. It is as if the pulses repel one
another in time.

The other correlation functions can be evaluated in
the same way. Symmetry requires that the other diago-
nal function hg~(t) be identical to h„(t);it only requires
interchanging M and N in Eq. (4.29). Thus like pulses
always repel one other. The off-diagonal functions at
positive times are
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g, (t) = —' exp
~

——~,
We 7 e + Te

(
g,g(t) = —' exp

~

——
~

.
Te 7e +re ( 7 p

(4.34)

(4.35)

The functions for negative time can be obtained by sym-
metry, Eq. (4.10); they are discontinuous at t = 0. These
correlation functions are positive, indicating that the av-

erage rate of g hops rises after a c hop, which can be
explained in the same way as the repulsion of like hops.

D. Noise

We can now substitute these correlation functions into
the general expression (4.18) and obtain the noise. The
exponential functions in time give a Lorentzian depen-
dence on frequency:

s(~)=2~(r)I~(~)~l
(

~ +0
~ ~

~ +0 ~pl +
(7e+te) 1+(ld7) . (7'c &e). J

2
1 4~ex, 1 1 4ab (vr)
2 (re + 7e) 1 + (4)7 ) 2 (a + b) 1 + ((o'r)'

J

(4.36)

(4.37)

This is our final result for the noise, valid at all frequeh-
cies. The third term in curly brackets in Eq. (4.37) van-
ishes in the important experimentally accessible limit of
low frequencies, leaving the ratio

S 1 4r r, var(N)
2e (I) 2 (7, + 7;)2 No

(4.38)

or

4e2
S(to ~ 0) = 2e (I) — var(N).

7~+7~
(4.39)

This shows that shot noise in resonant tunneling is di-
rectly related to the variance of the number of electrons
in the resonant state, and is suppressed at low frequency.
Equation (2.8) shows that the lifetimes re e are inversely
proportional to the transmission probabilities T, „which
in turn means that Eq. (4.38) from the master equation
is identical to the quantum-mechanical result, Eq. (2.11).
Thus the classical model and pure coherent quantum me-
chanics give exactly the same result for the shot noise at
low frequencies, as well as for the average current. Equa-
tion (4.38) is plotted in Fig. 3, with the experimental
results of Li et al.s The ratio T, /T, for the experimen-
tal devices was derived by self-consistent modeling; this
is notoriously dificult, and small errors in the potential
are greatly magnified in the transmission coefficients, so
we regard the agreement as good. We shall consider the
implications further in Sec. V.

Note that the geometrical factors n and P vanish from
Eq. (4.38), emphasizing that the precise form of the cur-
rent is not important at low frequencies as discussed ear-
lier. This can be traced back to the general result (4.18),
where all four terms with correlation functions become
equal as u ~ 0, and can be derived from the conserva-
tion of charge. A device with a = b and r, = 7; would
have 8 =

2 at all frequencies. This is because g and c
hops are indistinguishable in the external circuit if a = 6,
both carrying charge e/2, and the total rate of hops is

independent of N if 7e = r, It the. refore appears that
there is a stream of uncorrelated pulses at a constant
rate, each of half the electronic charge, which halves the
shot noise.

In the limit of high frequency, the noise ratio is

1 4ab
s((d~oo) =o( +P = 1 ——

2 (a+ b)
(4.40)

This is the noise that would arise from adding the full
shot noise coming from each of the two contributing cur-
rents in the two-process model, while asuming no correla-
tion between current pulses. It is exactly the result found
previously, Eq. (4.19), when all the reduced correlation
functions were discarded.

s = S/2eI

0.8

0.7

0.6

0.5
-2 0 2

log„(T,/T, ) or 1 g„(~o,/ )r
FIG. 3. Calculated ratio s(u = 0) of shot noise to its full

classical value 2eI for a resonant-tunneling diode, plotted as
s function of the ratio of transmission coefficients T,/T, or
escape rates 7;/7; for the two barriers. The points sre from
the experiments of Li et sL (Ref. 5). The solid curve is the
theoretical result obtained using either the coherent quantum-
mechanical approach or the two-process model based on a
classical rate equation. The minimum value of s =

z in the
theory occurs for a symmetric structure with equal transmis-
sion coefficients for the two barriers.
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E. Noise in other models

Np

h„(t)= —
2 ) Np(N, tiM, 0) (M + 1)pp(M + 1).

M, N=Q

(4.42)

The crucial feature is that P Np(N, t
~
M, 0) gives the evo-

lution of the ensemble average value of N, given that
N = M at t = 0. This follows from the rate equation
alone, and it is therefore independent of the choice of
master equation. The result is exponential relaxation to-
wards the mean, as in the autocorrelation function (3.8),

) Np(N, t~M, O) = (N) + (M —(N)) exp( —t/r) .

Substituting into Eq. (4.42) gives

(4.43)

„(t)=, (N) ) (M+1)po(M+1)

+ exp (—t/r) ) (M + 1) (M —(N))

In principle we vrould need to repeat the above deriva-
tion with nine correlation functions involving g, c, and
e hops in the more general three-process models where
electrons are also allowed to return to the emitter from
the resonant state. Fortunately there is a shortcut for
s(ur = 0). The precise definition of the current is not
important at low frequencies, as noted above, so we can
restrict attention to hops from the resonant state to the
collector. This is equivalent to setting o. = 0 and P = 1,
and we only need h„(t).The correlation function can be
calculated in a slightly different way from the preceding
section, making no assumption about the processes that
transfer electrons between the emitter and the resonant
state. This assumption entered when we used detailed
balance to replace Eq. (4.22) with (4.24). If we do not
take this step, Eqs. (4.21) and (4.22) give

Np Np —1

h„(t)= h ' ) ) c(N)c(M+1)
N=1 M=O

xp(N, t~M, 0)po(M + 1). (4.41)

Substituting the form of the rates and extending the sum-
mations gives

1 var(N) ( ~t
~
)g-(t) = -—1- exp

((N)
(4.46)

Taking the limit G„(u~ 0) of the Fourier transform
gives the noise ratio,

2r, var(N)
r, + r, (N)

(4.47)

The processes that transfer electrons between the emitter
and resonant state only affect this implicitly through the
variance: no assumptions about them have been made.
Substituting Eq. (3.15) for the variance shows that the
new result agrees with the previous one, Eq. (4.38).

This result is important because it relates the noise di-
rectly to the variance of the number of electrons in the
resonant state: a smaller variance reduces the shot noise
for given values of r, and r, (and therefore fixed (N)).
It is more general than the previous result, Eq. (4.39),
which applies only in the absence of electrons returning
to the emitter from the resonant state. We shall apply
it to different models in Sec. V where it is shown that
different master equations, all consistent with the rate
equation and therefore giving the same value of (N) and
the current, yield different variances and therefore differ-
ent results for the shot noise.

F. Two-state model

(4.48)

If there were no correlation between pulses they would
arrive on average at a constant rate h and t„would have
an exponential distribution,

The "two-state" model is a special case with No = 1.
This restricts the number of electrons N to be 0 or 1,
and could be a model of resonant tunneling through a
quantum dot or of Coulomb blockade in the limit where
only two states of charge are important. zs The current
has the form shown in Fig. 4, with a strict alternation of
g and c hops. This picture can usefully be analyzed in
terms of the waiting time between hops. The distribution
of these times is analogous to the Ornstein-Zernike direct
correlation function (see, for example, Ziman, p. 91).

At low frequency we need only consider, say, c hops.
Let t„bethe time between successive c hops (Fig. 4).
The noise can be written in terms of statistics of t„as

xpp(M + 1), (4.44)

which reduces to Ep

h-(t) = h, ((N)'+ (—t/ )l(N') —(N) —(N)'l)
C

(4.45)

The constant part gives h as before, and the rest reduces
to

FIG. 4. Current i(t) in the two-state model, consisting of
alternating g and c hops of relative weights a and P. The two-
state model, which is a special case of the two-process model
and can be applied to the Coulomb blockade, can be analyzed
in terms of the waiting times between successive pulses t~ and
t, instead of correlation functions.
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p(t„)= hexp( —ht„).
This has the property that

var (t„)= (t„)= (1/6),

(4.49)

(4.50)

for which Eq. (4.48) predicts s = 1, full shot noise as
expected. Shot noise will decrease if the hops repel
one another in time. In Fig. 4, with alternating hops,t„=t~ + t„where t~ is that time that we have to wait
after a c hop for the next g hop, and is exponentially
distributed with a time constant r„similarly t, is expo-
nentially distributed with a time constant r, . The distri-
bution of t„is now given by a convolution of those of ts
and t„

7g 7Q

t' t„) t' t, )
exp

/

——"
/

—exp
/

——
/re) E, rc j. (4.51)

This vanishes as t„-+0, showing that repulsive correla-
tion has been introduced between successive c hops. The
cumulants add when two distributions are convoluted, so
Eq. (4.48) becomes

var (t, ) + var (t,) rz + r~

((t.) + (t.)) ( ~ + )
(4.52)

V. APPLICATION TO DIFFERENT MODELS

In the preceding sections we have treated the sim-
plest model of resonant tunneling for electrons, where the
states in the emitter are assumed to be full. This sup-
presses the return to electrons to the emitter from the res-
onant state, and there are therefore only two processes in
the master equation. In general the third process of par-
ticles returning to the emitter should be included. This
modifies the master equation while remaining consistent
with the rate equation (3.1). We shall investigate the

in agreement with the earlier result, Eq. (4.38). This can
be rewritten in terms of the fractional occupation of the
state, f = r, /(r, + r, ), as s = 1 —2f(1 —f), showing
that the shot-noise ratio reaches a minimum of z when
the two states are equally occupied on average.

These results can be applied to the Coulomb block-
ade in a highly asymmetric double tunnel junction. This
is a highly dissipative system, which prevents electrons
hopping backwards. In general, the Coulomb blockade
is much more difficult to solve because of the different
boundary conditions: No is not an integer, and the ex-
trapolated forms of the appropriate rates g(N) and r(N)
do not vanish automatically at the extreme values of N,
although they are linear. Fortunately, there is a regime
of applied biases for which only two charge states are
energetically allowed at low temperatures. In this so-
called two-state limit2s the above expression can be used
with time constants r, and r, that depend on voltage.
There is a rich structure in the noise because the relative
magnitudes of r, and r, change with voltage. The maxi-
mum reduction in the shot noise, to s = z, occurs when
7g = 7g. This case and others are discussed in detail in
Ref. 26.

Electrons always travel forward in the two-process
model, so there is only one physical rate transferring elec-
trons between the emitter and the resonant state. This
model gave suppressed shot noise, a result identical to
coherent quantum mechanics. Other results agree sim-

ilarly, such as the variance of the number of electrons
in the resonant state. Consider No = 1, the two-state
model. For the quantum-mechanical case we can use the
identity n~ = n for Fermion operators, which immedi-

ately shows that

(var(n)) = (n ) —(n) = (n) (1 —(n)). (5.1)

Each state with a different transverse wave vector can
be treated independently in the coherent case, because
there is no scattering between them, so Eq. (5.1) can
simply be summed over all these states. The result is

exactly the same as Eq. (3.15) for the two-process classi-
cal model. It is also possible to derive a master equation
for the quantum-mechanical two-state model2~ which is

the same as the classical one. Thus the master equation
must give the same result as the coherent quantum me-

chanics even though it has a wider range of validity, and

may hold even in the presence of inelastic scattering.

B. More-general models

As discussed above, a general master equation for res-
onant tunneling should include (at least) three rates, but
the return from the resonant state to the emitter can be
neglected in the case of electrons (Fermions) if the states
in the emitter are fully occupied. This is not true for
either classical particles or bosons.

To understand the role of statistics we consider a sim-
ple example. Take a one-dimensional system where No
is the average occupation of the state in the emitter. In
general No will depend on the temperature and density
of particles in the emitter; here we simply treat it as a
parameter. In another paper~s we fixed the density in
the emitter and allowed the chemical potential to vary
with temperature. In the Bose case, for example, there
is a tendency torwards Bose condensation at low temper-
atures, and No can go either to zero or to infinity depend-
ing on the position of the resonance. For fermions, on the
other hand, No is 6xed to lie between 0 and 1, although
it still depends on temperature. Electrons can return to
the emitter from the resonant state (e hops) at a rate
N(1 —No)/r, if No ( 1, while the rate from the emit-
ter to the resonant state (g hops) is No(1 —N)/r, ; the
rate of exit to the collector (c hops) remains N/r, . The
rates for bosons have + signs instead of —signs, while
those for classical particles lack the factors containing the
occupation of the 6nal state. They are shown in Table
I, and are all consistent with the original rate equation
(3.1). The master equation now contains three physical
rates, but the e and t" hops can be absorbed into a com-
posite recombination rate, r(N) = e(N) + c(N). Solving

effect of this additional process on the shot noise after

pursuing the simpler model a little further.

A. Two-process model
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TABLE I. Summary of the results of the master equations
for one-dimensional resonant tunneling of Fermi, classical,
and Bose particles. All give the same mean number of parti-
cles in the resonant state, (N) = Nor, /(r, +r,). The variance
of N increases on going &om Fermi to classical to Bose parti-
cles. The shot noise s(&u = 0) is consequently suppressed for
fermions but enhanced for bosons; it is expressed in terms of
the peak transmission coefficient for the quantum-mechanical
model, T~k = 4T,T,/(T, +T,) = 4r, r, /(r, +r, ) .

g(N)

e(N)

c(N)

p(N)
var(N)

S(ur = 0)

fermions

NL (1 —N)
7e

N(l —Nr, )
7e
N
+C

binomial

(N) (1 —(N))
1 —

2 NpTpk

classical

7e
N
Te
N
+C

Poisson
(N)

1

bosons

NI, (1+N)
&e

N(1+ NI, )
7 e
N
&c

geometric
(N) (1+ (N))
1+ -NpT k

the master equation in a steady state gives the distri-
bution function p(N) and the variance. The number of
particles N cannot exceed 1 for fermions, but there is no
upper limit for classical or Bose particles. This behavior
is reflected in their larger variances. The noise at low
frequencies can then be found using Eq. (4.47). The re-
sults are summarized in Table I. The suppression of shot
noise for fermions is reduced if the emitter is not fully
occupied, in agreement with the quantum-mechanical re-
sults plotted in Fig. 2. The distribution of N is Poisson
for classical particles, in which case var(N) = (N) and
there is full classical shot noise as expected. For bosons,
enhanced shot noise is found, as a result of the greater
variance. is zs zs Note that the shot noise is proportional
to Np which can be arbitrarily large. This can be under-
stood from the form of the rates, which increase as the
occupation of the final state increases; this in turn leads
to bunching of bosons unlike the repulsion found in the
correlation functions for fermions (Sec. IVC).

We would now like to contrast these results to our ear-
lier calculationzs of the noise for a structureless trans-
mission barrier. In that case we found that the noise for
bosons diverges as one approaches zero temperature be-
cause of the incipient Bose condensation. Perhaps more
surprising, the noise decreases with increasing bias at low

temperatures because the condensation is suppressed.
Thus, although the noise for a finite bias is larger for
bosons than for fermions, it is still smaller than at zero
bias (thermal noise). In the present calculation with a
narrow resonance the noise for bosons is still larger than
the fermion noise, but depends on voltage and tempera-
ture in a different way. For a fixed bias larger than the
temperature, the noise ratio s = 1+z NpT~q can decrease
with temperature to the classical value because No may
go to 0. For a fixed temperature again small compared
with the voltage, increasing the voltage may move the
resonance into a region of larger occupation (Np), in-

creasing the noise. On the other hand, the noise may be
decreased because the bias may affect the incipient Bose

condensation. Thus the two cases, a structureless barrier
and a narrow resonace, can show very different behavior
for the noise at low temperatures.

VI. CONCLUSIONS

We have shown that suppressed shot noise can be de-
rived within a "classical" description of resonant tunnel-
ing based on the rate equation for sequential tunneling.
It needs to be derived from a master equation, and the
different master equations that are consistent with the
rate equation can give significantly difFerent results for
the noise, although the average current is the same in all
cases. The results from a master equation for fermions
are identical to those for "coherent" quantum mechanics.
Thus inelastic scattering can leave the noise in resonant
tunneling unchanged under some conditions.

There are many other processes that need to be in-
cluded in a more complete model of the experimental de-
vices. An important step would be to include scattering
by phonons explicitly. Polar optic phonons usually pro-
vide the strongest electron-phonon scattering in the III-V
semiconductors. The Fermi energy was less than the en-

ergy of optic phonons Mp in the devices used by Li et
aL, s so the electrons are unable to emit optic phonons
strongly. This would change if the Fermi energy were
raised above Mp. DifFerent material might be required,
as in the devices based on In, Gai ~As used by Wood-
ward et a/. Experiments on a series of such devices
would provide a valuable test of the effect of scattering
on shot noise in resonant tunneling. Our model omits
the effect of scattering in the contacts, the emitter in
particular. This is usually a three-dimensional electron
gas and might be expected to have faster scattering than
the resonant state, which is only two dimensional. The
effect of scattering in the contacts has not been investi-
gated for the current, let alone for the noise. There is
also space-charge feedback. si If the density of electrons
in the resonant state rises, self-consistency causes its en-

ergy level to rise too. This in turn decreases the effective
Fermi energy and thus the inflow of electrons from the
emitter. The same effect leads to the bistability seen in
the experiments. Clearly it is another mechanism that
suppresses fluctuations of density and current. It de-
pends on the capacitance between the resonant state and
the contacts, not just on the transmission coeEcients. It
should be possible to include all of these effects in more
sophisticated master equations and hence study their ef-
fect on the noise. We have already applied the techniques
described here to the classical double junction Coulomb
blockade problem. ~
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