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Theory of light-induced drift of electrons in coupled quantum wells
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A theory of the new effect of light-induced drift (LID) in coupled potential wells is developed on the
basis of the density-matrix method. The effect appears when light excites intersubband electronic transi-

tions. LID manifests itself as the photocurrent of the two-dimensional electron gas in the well plane,
which depends on coherent electron tunneling between the coupled wells. The theory shows the effect to
possess distinctive features such as a characteristic antisymmetric spectral contour consisting of four al-

ternating positive and negative peaks and the change of sign of the LID current with the sign change of
the bias normal to the quantum-well plane. The quantitative estimates for GaAs wells show the LID
current to be readily detectable.

I. INTRODUCTION

The effect of light-induced drift (LID) in gas mixtures
suggested in Ref. 1 manifests itself as a drift of absorbing
particles in response to optical excitation with frequency
close, but not exactly equal, to the resonant frequency of
an internal transition in the particles. Characteristically,
the spectral contour of LID is antisymmetric with respect
to detuning from the internal transition frequency. LID
has been observed and studied in detail later (see, e.g.,
Ref. 3 and references cited therein).

The effect of LID is based on two features: (i)
velocity-selective excitation of particles and (ii} depen-
dence of the translational relaxation rate of the particles
on their internal state. The velocity-selective excitation
of particles is produced due to the Doppler shift. Consid-
er, for instance, optical excitation redshifted with respect
to the exact resonance. Then the particles that move to-
ward the light source sense a blue Doppler shift which
compensates the radiation detuning. Such particles are
more likely to undergo excitation. As a result, their col-
lision rate with a buffer gas, and consequently, the fric-
tion force acting upon them are changed. For the parti-
cles moving in the opposite direction, there is no excita-
tion and no change of friction. Compelled by the disbal-
ance in the friction forces for these two groups of parti-
cles, the absorbing component moves as a whole. The
effect of surface LID predicted in Ref. 4 and observed in
Ref. 5 is similar to the original LID but is based on col-
lisions of the absorbing particles with the walls of the
confining cell rather than with the buffer gas.

LID of electrons in semiconductors predicted in Refs.
6 and 7 and later observed relies on parallel electron-
energy bands in a quantizing magnetic field, where an
electron moves freely in the field direction, and light ex-
cites transitions between the Landau levels. The transla-
tional motion of electrons in the field direction yields
velocity-selective excitation, which can be interpreted in
terms of the Doppler shift, as has originally been suggest-
ed in Ref. 9 (see also Ref. 10). Because the electron

translational relaxation depends on which of the Landau
states the electron occupies, LID takes place.

Another case of parallel energy bands mentioned in
Ref. 6 is that of electrons in two-dimensional quantum
structures, such as inversion layers, thin films, etc., where
the quantum state in the perpendicular direction plays
the role of an internal state of the particle. Provided the
translation relaxation depends on this state, LID occurs
along the projection of the light wave vector k onto the
plane of the structure. However, no theory of such an
effect is given in Ref. 6.

The photon drag effect (PDE) in semiconductor quan-
tum wells has been suggested"' and observed experi-
mentally. ' Like in Ref. 6, velocity-selective excitation in
Refs. 11 and 12 is due to parallel subbands, and a
difference of the lifetimes of the subband states is in-
voked, which makes this type of PDE similar to LID.
Characteristically, this difference is due to optical pho-
non emission, which is energetically possible in the excit-
ed subband. "'

The effect of LID in single quantum wells' is based on
a different structure of the electron wave function in the
normal direction, along the lines of Ref. 6. Specifically,
the state-dependent relaxation in Ref. 14 is due to an in-
creased intrusion of the electron wave function into the
barrier regions in the excited subband (see also Ref. 15).
Provided that the doping of the barrier and well regions
is different, the scattering rate is different in the ground
and excited subbands.

The present paper is devoted to the theory of the LID
effect in coupled quantum wells. Such systems allow one
to fully capitalize on the different structures of the wave
functions in the ground and excited states to achieve
state-dependent relaxation, which originates from quan-
tum delocalization of the electron driven by resonant
coherent tunneling between the wells. Because of the im-
portance of polarization relaxation (dephasing}, the
density-matrix approach is invoked, similar to Ref. 14.
The qualitative description of the effect and equations of
motion for the density matrix are presented in Sec. II.
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Analytical solutions and numerical examples are con-
sidered in Sec. III. The results are discussed in Sec. IV.

II. QUALITATIVE DESCRIPTION
AND DENSITY-MATRIX EQUATIONS

We consider the LID effect driven by electron delocali-
zation over coupled quantum wells. This effect can exist
in different quantum structures, where coherent tunnel-
ing of electrons between individual quantum wells is pos-
sible. For the sake of definiteness and simplicity, we re-
strict ourselves to the simplest of such structures, a dou-
ble quantum well (Fig. 1). The excited state ~2) in the
right well (numbered I in Fig. 1) and, say, the ground
state ~3) in the left (II) well are aligned by the bias field
as shown, or by the corresponding design of the double
well to allow the resonant tunneling of electrons. The
barrier regions are supposed to be modulation doped to
yield the electron population of the structure and allow
pure electronic intersubband transitions, which only will
be considered.

One of the wells, say II, is supposed to be doped to
create neutral scattering centers. When an electron is ex-
cited, by virtue of the resonant tunneling, it is delocalized
over both the wells. The electron experiences more fre-
quent collisions in the doped II well, resulting in faster
translational relaxation in its excited state than in the
overall ground state ~1), because state ~1) is mainly lo-
calized in the undoped I well.

For the system under consideration, LID can be de-
scribed as follows. The light has frequency close, but not
exactly resonant, to the intersubband transition from the

~
1) state to an excited state. Electrons move in the well

plane due to their thermal motion for the nondegenerate
electron gas or inside their Fermi surface for the degen-
erate gas. Those electrons for which the Doppler shift
compensates the light detuning are excited, delocalize
over the two wells, and, consequently, experience faster
translational relaxation, i.e., greater friction force than

the electrons moving in the opposite direction. Com-
pelled by this force, the electron gas moves as a whole.

We emphasize that the effect is fundamentally based on
quantum-mechanical delocalization, i.e., on the presence
of an electron simultaneously in two wells. In this case,
the collisions of electrons in the doped (II) well imply
translational relaxation of the electron gas as a whole,
which is required for LID. The quantum-mechanical
delocalization over two wells is brought about by
coherent tunneling, the condition for which is that the
tunneling amplitude ~ is much greater than the
polarization-relaxation rate I . In the opposite case
~r~ && I, the tunneling is incoherent, and the electron gas
separates into two distinguishable weakly coupled com-
ponents, one in the I well and the other in the II well.
For both the components, the relaxation is not state
dependent, and consequently LID is absent; albeit the
concentration of electrons in the II well may be not very
small as is the case in Ref. 16. In this respect, the present
effects resemble the resistance resonance' and, similarly,
can also be considered as an independent test of quantum
mechanics.

The present effect differs from the phenomena de-
scribed in Refs. 11 and 14 because it requires coherent
tunneling and quantum delocalization of electrons be-
tween the wells. This brings about a different excitation
spectrum and enhanced sensitivity to dephasing (polar-
ization relaxation).

To describe the effect, we have to take into account the
processes of intersubband excitation, the population, and
polarization relaxation along with tunneling between the
wells and the translational movement and relaxation in
the plane of the quantum structure. As an adequate tech-
nique, we will use the quantum Liouville equation for the
one-electron density matrix p, b in the Wigner representa-
tion. This quantity is defined as

p b(p r)=+exp(iqr)p b(p q)
q

where p,b(p, q) ( b, p
—(1/2}q p+((/2}q) is the Fourier

transform' of (o,b(p, r) over r, a is the electron annihila-
tion operator, a and b denote the states in the well

(a, b =1,2, 3), r is the coordinate vector, and p, q are the
momentum vectors that all lie in the plane of the wells.

The Hamiltonian of the electron plus an external opti-
cal field has the form

FIG. 1. Schematic of the coupled potential wells I and II.
The overall ground state

~
l ) belongs in the I well. The excited

state ~2) in the I well and the ground state ~3) in the II well are
aligned by the bias. The optically exicted intersubband transi-

tion is denoted by the wavy arrow.

H =X( a+EE ) pa(petra, p+ P Uab(q hara p+(}/2}qtxb, p —((/2}q
a, p a, b, p, q

where c., is the energy of the ath level in the wells, e is
the electron kinetic energy, and U,b(q) is the Fourier
transform of the perturbation matrix element between
states ~a ) and ~(b ). The independent nonzero matrix ele-
ments of the perturbation are

U2, (r) = —d2([E exp(i kr iIIt)+ c c—.], .

where d is the dipole operator, Q is the frequency, k is
the wave vector, and E is the electric-field amplitude of
the light wave, and U32=~, where the tunneling ampli-
tude ~ coincides with the transfer integral I; of Ref. 19.
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The independence of e& from the quantum state ~a) im-

plies that the subbands in quantum wells are parallel,
which is of principal importance for the theory, as dis-
cussed in Ref. 6.

The exact equation of motion for p, i.e., the quantum
Liouville equation, can be obtained in a conventional way

by commuting the pair operator cz, p+(1/2)qCKb p( 1/2)q
with H and adding the relaxation matrix ("collision in-
tegral") S which arises from the interaction of an electron
with the thermal bath represented by other electrons,
scattering centers, and phonons. This equation has the
form

. Bp(p, r} =[a,p(p, r)]++exp(iqr)(e'+', zz'q
—e' ', &2'q)p(p, q)+g exp(iqr)[U(q)p(p —

—,'q, r) —p(p+ —,'q, r) U(q)]+iS .
Bt

q q

In the first sum on the right-hand side of Eq. (1), the
shift of p by +—,'q takes into account the velocity-selective
excitation needed for LID, and such a shift describes the
recoil effect in the second sum. As determined by U(q}
in Eq. (1), the magnitude of q is on the order of the pho-
ton momentum k and is much less than the typical elec-
tron momentum p. This justifies the lowest-order expan-
sion in q in Eq. (1). The first order in q suffices for the
first sum, and neglect of the recoil effect is possible in the
second sum in Eq. (1), giving the quasiclassical Liouville
equation

C}
i —+v p(p, r) =[a+ U(r), p]+iS,

Bt Bt
(2)

where v=Be&/Bp is the electron group velocity.
We employ the strong collision model for the popula-

tion and translation relaxations and the relaxation-
constant model for the dephasing, i.e., we adopt the fol-
lowing form of matrix S:

S„=yt(n, n, ), S—n=yt(n2 n2),—(0) — (0)

S33 y»(n3' n3), S—,&= I,&p,&
fo—raAb. (3)

Here n, =p„ is the population of the ~a) state
(a =1,2, 3), n,' ' is the equilibrium population of the ~a)
state, n,' '=[1+exp(e, +ez e')/T] ', w—here s' is the
Fermi energy, T is temperature, '

y& and y„are the pop-
ulation relaxation constants (collision rates) in wells I and
II, and I,b is the polarization-relaxation constant for the
transition ~a )~~b), which is expressed in terms of the
pure dephasing rate I,b in the form
1,&

=
—,'(y, +y»)+I,z. Note that the condition y,Xy»

is necessary for the existence of the effect.
The structure of the diagonal matrix elements of S irn-

plies that an electron after a single collision (an event of
interaction with the thermal bath) acquires the equilibri-
urn populations n,' '. It is worth noting that collision in-
tegral S in Eq. (3} does not conserve the total electron
concentration, which is clear because Tr(S)%0 for
y&Wy&& ~ This is a well-known general problem for the
strong collision model. It is possible to overcome this
problem and conserve the total electron concentration by
introducing effective equilibrium concentrations n,' '* as
in Ref. 4. However, such a modification does not bring

about any substantial changes of the solutions. There is
another possible interpretation, namely, that the total
electron concentration may, indeed, be changed due to
optical excitation. This is a likely situation in quantum
wells because they are open systems in which the elec-
trons are produced by outside donors and their equilibri-
um may be shifted by optical excitation. We accept this
interpretation and will not modify S.

To solve Eq. (2), we will use the rotating-wave approxi-
mation (RWA}, which is equivalent to retaining only
terms in p with frequencies close to the exciting light fre-
quency Q and neglecting multiple harmonics. This reso-
nant approximation is well known to be good for a not
too strong exciting wave, so that the field broadening of
levels is much less than Q. In any case, if the exciting
field is strong enough to violate the validity of the RWA,
then the three-level scheme of Fig. 1 is not applicable,
and excitation to higher levels and the continuum should
be taken into account.

In the RWA, the space-t™dependence of p, b can be
isolated in the form p&z=P&2expi(kr —Qt),
p&3 -p, 3expi(kr Qt), p23—=p23, where the amplitudes

p&2, p23, and p&3 are slowly [with respect to expi(kr —Qt)]
varying functions of r and t. The equations for these arn-

plitudes follow from Eqs. (2) and (3):

—+v n, =2Im(Gp, 2)+y, (n& n, ), —

a—+v n2= —21m(Gp, 2+rP23)

+y, (n' ' n), —

a a—+v n3=2Im(rP23)+y»(n3 ' n3), —
Bt Br

(4)
8 e—+v p, z=iG*(n2 n, )—

+ i rP13 —g 12P12

a c}
P13 P23 + P12 g13P13 ~

8 e—+v p23= —ir*(n3 n2)—
+ ' P13 g23P23
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The populations of these states n+ and n can be found
as the eigenvalues of p, Eq. (5), in the form

' 1/2
41.1'

n+ ]]2+ 3]+](1p]]]3) 1+
cz3+ I 23

(6)

The problem is that in the generic case the populations
n +], Eq. (6), do not conform to equilibrium because they
do not have the required form of the Fermi distribution
nz =[1+exp(ez+e —eF)/T] ', provided that the pop-
ulations n,' ' do [see text following Eq. (3)].

However, as we show below, this problem is eliminated
in limiting cases that are determined by the validity of at
least one of the following three inequalities:

Here g„=i(Q—kv —e„)+I „and g,b
= —i eb,

+I,b, where a, b =2, 3, c,b =c., —cb is the transition fre-
quency, and G =(d, )]2E, with the z axis perpendicular to
the structure plane (note that IGI is the Rabi frequency).
We point out that the Doppler shift kv in these formulas
is not introduced phenomenologically, but rather appears
as a result of a consistent theory derived in the RWA
from the microscopic Hamiltonian.

The strong collision model for the collision integral S
has been successfully used previously to describe LID in
gas mixtures, ' surface LID, and LID in a single quan-
tum well. ' However, there is a problem in its applica-
tion to double quantum wells and generally to systems
with coherent quantum tunneling, which we would like
to point out and discuss before using this model. This
problem exists even without the light-wave Geld, i.e., for
G =0, in which case Eq. (4} can easily be solved for the
two upper levels (a =2, 3) giving

]]."'+21 I'123(e23+123) (~2 y]] +~3 y]
n, =

I+2lrl'I'z3(e23+ I'23) (y]] '+y] ')
(5)

Ip231'=«2 —]]3)'lrl'«23+123} ' .

The problem mentioned above is evident in the case of
completely coherent tunneling, i.e., for Irl »I 23. In this
case, states 12) and 13 ) are mixed to form new stationary
states

I
+ ) and I

—) with energies

e+ ——[s2+ a+3( s2+341TI ) ]

(7)

e2] e31» T, I rl

T»lrl .

(8)

(9)

III. SOLUTIONS AND NUMERICAL ILLUSTRATIONS

From symmetry considerations, the LID current is
directed along the projection of k onto the quantum
structure plane (say, along the x direction). Its density j
can be expressed in terms of the solution of Eq. (4) in two
equivalent forms:

j=e v n&+n2+n3 p 2m.

=e(1—y], /y]) I u„n3d p/(2]r) (10)

where v„=Be&/]3p„ is the x component of electron veloci-

ty and e is the electron charge. The second expression in

Eq. (10) corroborates the fact that the driving force of
LID in the system considered originates from the
difference of the relaxation rates in wells I and II.

The part of the homogeneous stationary solution of Eq.
(4) needed to find the current (10) can be exactly found as

Let us consider these three cases in some detail. (i) The
inequality in Eq. (7) means a large mismatch of levels and
ensures that the mixing of states 12) and 13) is small. In
this case, from Eq. (6) we obtain n+ = n 2

' and n = n 3

i.e., the populations n+ are the equilibrium ones. (ii)
From Eq. (8) it follows that both the I+) levels are al-
most unpopulated, confirming to equilibrium. (iii) In the
case of Eq. (9), two subcases are possible. First, if

e23~ ((T, then from Eqs. (5) and (6) it follows that
n+ =n =n2 =n3, as expected for the equilibrium.(0) (0)

Second, if le231& T, then we return to the case of Eq. (7).
The inequalities (7)—(9) do not contradict each other.

We point out that any or all of these conditions may be
valid experimentally. For instance, setting realistic
values (see Ref. 16 for the details of computing these
values) for GaAs quantum wells of —100 A thickness as
r=0. 5 meV, e2]=e»=30 meV, and T=5 meV (60 K),
we conclude that both Eqs. (8) and (9) are valid. This
justifies the use of the collision integral (3).

n3 'D +nz 'y](B —A)+n'] 'y]A +(n'] '+nz '+n3 'y]]/y])(BC —A )
n3=

+y] +( +y]]/y]}(B

where D =y,y»+ y»[B +2( C —A }]and

A—:21&G
I

Re(F '},

B =2lrl'Re[(g]2g]3+ lrl')F-'],

C—=2IGI'Re[(g]3g23+ IGI')F '],
g23 (g ]2g ]3 +

I
rl') +g» I

Gl'

Let us consider some limiting cases of the solution (11).
In the absence of tunneling (&~0), n3 =n'3 ' and, conse-
quently, LID is absent as expected, because the effect is
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driven by quantum delocalization due to tunneling. In
the optically nonsaturated case, which is determined by
the condition

~ G~ ri 'I ]2' && 1, we see from Eqs. (10) and
(1 1) that j~

~
G~, i.e., the LID current is proportional to

the light intensity, as expected. The analytical expression
for this limiting case is cumbersome. To simplify it, we
set n '2

' = n 3
' [see Eq. (9) and the discussion after it] and

obtain from Eq. (1 1)

ni n3 —'=2~Gr~ (n' ' n' ')—
2cI 23+0 yi(E32+ 32

r ]r]I(e32+ 1.32) +2
I r I

'1.
23( r ]+r]])

'

a = Re(f '), c = Re(g]3g23f '), f—:g23(g]2g]3+ I~I') .
(12)

j+ =2m IeNK+Q '~(d, )]2~ (y ' —
y ')Z

X [ 1 —exp( —e2]/T) ]C (g+ ) cos 8, (13)

where Z =g, exp( —e„/P is the partition function, I is
light intensity, d, is the normal component of the elec-
tron dipole operator, 0 is the angle between the light-
polarization vector and the z direction (the normal to the
well plane), and E+ are dimensionless coefficients and C
is a function' of the complex arguments g+ defined as

&~ =+4I I'r] '«23+4I I ) [2~23(E ] e2])+E23r]]

X [E'23+2I ~l'r2, ( r] '+ y, i
'

) ]

C(g')=ReIg exp( —g )[1+erf(ig)]}

g+ =(0—E+])/ku, +i I +/ku,

—[ ]3( +] e2] ) ]2( +] 3]}]( 32+41 rl )

(14)

For the large level mismatch
~ e32~ &&I 32, the LID current

[see Eqs. (1 1} and (12)] tends to zero, as expected for an
effect driven by resonance tunneling . It can be easily seen
from Eq. (12) that when the temperature is relatively
high T))e2„ the LID current vanishes by virtue of
n ', ' —n z

' ~0. Since for the nondegenerate gas LID also
vanishes for T~0 because of v ~0, it is clear that there
exists an optimum temperature T, —e.2 &

.
It is possible to obtain an analytical expression for the

LI0 current only in a special case, which we consider
below. We adopt optically nonsaturated conditions.
Also, we assume the effective mass m ' to determine the
electron dispersion by setting v =p/m ', and suppose the
electron gas to be nongenerate using the Maxwell-
Boltzman distribution

n,' '(v)~Nexp( —e, /T —u /u, )

where u, =(2T/m ' )'~ is the thermal velocity and N is
the 2D density of electrons. Additionally, we assume
that the tunneling is coherent, i.e., ~r~ && I ]2 I ]3 I 23.

In this case the LID profile (12) consists of two non-
overlapping contours j+ arising from the excitation of
the corresponding components

~
4 ) of the split doublet.

Each of these contours centers about the corresponding
transition frequency

[e2] 3]—( 23+41~1')'"]

From Eqs. (10) and (12) we obtain

Each of the contours in Eq. (14), j+ and j, has the
same antisymmetric form with respect to its central fre-
quency c.+ &

as for LID in a single well. ' However, the
magnitudes of these contours are different, determined by
the E~ coefficients. In the case of exact level matching,

e23 =0, Eq. (14) is greatly simplified, giving

&+ =r]]/( r]+r]]), I' = -,'( I + I 12) . (15}

In this case, E+ and ? + do not depend on ~ and on the
~+ ) state index. Consequently, the LID current (13) does
not depend on the interwell-barrier thickness, which is
the principal property of the coherent tunneling regime.

Let us consider numerical illustrations for the struc-
ture shown in Fig. 1 in the effective-mass model for the
nondegenerate electron gas adopting the following realis-
tic parameters: m ' =0 067m (m is the free-electron
mass}, e2] =30 meV, y]=0. 1 meV, yi]=0.2 meV, and
~~~

= 1 meV. These correspond' to the GaAs wells with
a width of 150 A for the I well, and the Alo, oao 9As cen-
tral barrier with a thickness 80 A. The temperature T is
set in the calculations as 10 meV (1 16 K}.

Figure 2 displays the spectral profiles of the LID
current for different polarization-relaxation rates in the
optically nonsaturated regime with exact level alignment
(e23=0). These profiles are calculated with Eqs. (10) and
(12) in terms of the drift velocity ud =j /eN normalized to
u, and to

~ G~ (meV } to exclude the light intensity.
For the case I',b « ~ r~ (weak polarization relaxation or

nearly coherent tunneling), the LID profile [see Fig. 2(a}]
consists of two nonoverlapping dispersion-type contours.
Both these contours are antisymmetric with respect to
the corresponding centers which are positioned at the
transition frequencies of the split doublet levels c.+,.
These contours are quantitatively described by the terms
j+ and j of Eq. (13). As the calculations show, in the
case under consideration the LID profile does not
significantly depend on v, i.e., on the interwell-barrier
thickness, as expected for coherent tunneling [see the dis-
cussion of Eq. (15)].

For intermediate polarization relaxation I,b
—

~ ~~, Fig.
2(b) demonstrates that the contours are overlapped, and
the antisymmetry with respect to their centers is lost.
The magnitude of the LID current is decreased 20 times,
while the increase of I,b is only fivefold. This drastic de-
crease of vd is indicative of the separation of the electron
gas into two distinguishable gases localized in the wells I
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I'~3=1.4 rneV

0.00—

—0.03
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and II, as discussed above. A further fivefold increase of
I,b Isee Fig. 2(c)] causes complete disappearance of the
two-contour structure, which is replaced by a single
dispersion-type antisymmetric profile centered near the
transition frequency c.z, in the I well, as expected for
completely incoherent (stepwise) tunneling. The LID
current is further reduced 20-fold, manifesting nearly
complete loss of quantum coherence and separation of
the electron gas into two almost uncoupled distinguish-
able components. These findings directly confirm the

coherent quantum nature of the effect. Note that the in-
termediate relaxation case illustrated in Fig. 2(b) is often
realistic experimentally.

The dependence of the LID spectral profiles on the lev-
el mismatch E&3 calculated from Eqs. (10) and (12) is
presented in Fig. 3, where the series of curves is shown
with cz&=const and c,» being increased. The curve for
the case of perfect matching (v~3=0) is the same as in Fig.
2(b). The change in profile with an increase of the
mismatch is rather nontrivial. For moderate mismatch,
E~, =2 meV, the left ("red") component of the profile,
which corresponds to the transition

~
1 ) ~ ~

—), is
broadened and blue-shifted, and its amplitude is in-
creased. The last feature is counterintuitive, because the
effect is driven by the quantum tunneling which is
suppressed with the level-mismatch increase. The
enhancement of the LID in this case is the result of the
increased localization of the

~

—) state wave function in
the I well. This localization brings about better overlap
of the wave functions in the ground state

~
1 ) and the ex-

cited state
~

—), which results in an increase in the
strength of the dipole transition ~1)~~ —). Another
reason for the LID enhancement is the increase of the
electron lifetime in the

~

—) state, because of the electron
localization in the undoped well I with low collision rate.
These two factors bring about the increase of the

~

—)
state population and, consequently, LID, counteracting
the decrease in the tunneling caused by the intermediate
mismatch.

The right ("blue" ) component of the profile (Fig. 3),
which corresponds to the transition ~1)~ ~+ ), in all
cases is strongly diminished with the mismatch. This is
because the ~+ ) wave function localizes in the II well,
and all the factors mentioned above bring about a de-
crease of LID. When the mismatch becomes large
(e3$ 8 meV), both the left and right components of the
LID spectral profile decrease in magnitude due to the di-
minished tunneling. However, the right component de-
creases much more, in accord with the discussion above.
In the case of the large mismatch, the left and right com-
ponents of the spectral profile are centered at the transi-
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I"gg=I'g =5 meV
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FIG. 2. Spectral profiles of the normalized I.ID velocity for
the polarization-relaxation constants I » and I » as indicated in
the figures, with I &3= 1.4I ». Other parameters are given in the
text.

FIG. 3. LID spectral profiles plotted for different values of
the level mismatch c», as shown in the graph, with c»=30
meV. The relaxation constants are I »= I »=1 meV, I Q3 1 4
meV.
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FIG. 4. LID velocities plotted against ~G~2. The quantity

~G~ is proportional to the light intensity, and ~G~'=1 meV ap-
proximately corresponds to I =30 kW/cm . The constants I »
and I &3 are indicated in the 6gure, and I »=1.4I ». Note the
double logarithmic scale.

tion frequencies in uncoupled wells, c,2& and c.», as expect-
ed.

The dependence of the drift velocity on ~G~, i.e., on
the light intensity, calculated with Eqs. (10) and (11) is
shown in Fig. 4. This dependence at small intensities is
linear in accord with Eqs. (12) and (13), then reaches its
maximum and starts to decrease sharply due to field
broadening of the levels. With the increase of dephasing
(cf. the dashed and solid curves), the current reaches a
lower maximum value at higher intensities, which is due
to the separation of the electron gas into two distinguish-
able components, as discussed above, and diminished ve-
locity selectivity of the excitation. For the realistic
values I I2=I »=1 meV, the maximum LID current
occurs at ~6~2=0. 1 meV, corresponding to the light in-
tensity I=3 kW/cm, which is easily reachable experi-
mentally [as an estimate, we adopted (d, )i&=30 e A].
The maximum drift velocity is fairly high,
vd =2 X 10 v, . For a typical 2D electron density
N-2X10' cm and well width (in the y direction)
L =0. 1 cm, this yields the total current per double well
ofJ =eNLvd = 1 pA, which is indeed easily detectable.

IV. DISCUSSION

The theory of the effect of light-induced drift (LID) of
electrons is presented in this paper. Both qualitative and
quantitative properties of the effect are discussed above in
Secs. II and III, in particular, in connection with the nu-
merical illustrations (Figs. 2—4). Here we do not attempt
to repeat this discussion, but rather pursue two alterna-
tive interrelated goals, namely, to show the place of this
effect among other electron-transfer and photocurrent
effects in quantum wells, and to indicate the features of
the effect which may be useful for its experimental obser-
vation and identification.

LID in coupled wells requires the tunneling of elec-
trons between wells. Among the large number of effects

involving such tunneling, most are based on any type of
tunneling, coherent or incoherent (step wise). The
transfer of an electron is what is observed, usually by
recording photoluminescence spectra (see, e.g. , Refs. 20
and 21). In such experiments, the specific mechanism of
tunneling manifests itself only through the tunneling rate
and its dependence on the barrier thickness. In this con-
nection, we point out that even incoherent tunneling in
some realistic cases can yield an appreciable electron
transfer. ' However, the coherence of tunneling is an
essential property for time-resolved experiments, includ-
ing a recent one in which coherent electron oscillations
have been observed.

The present effect manifests itself as the lateral station-
ary photocurrent which depends on coherent tunneling
between wells. The coupling of lateral and normal move-
ment induced by the optical excitation makes LID
unique. Once again, we emphasize that coherent tunnel-

ing is required, because collisions in one (doped) well
should transfer momentum to the electron gas as a whole.
In contrast to this, incoherent tunneling brings about
separate existence of two distinguishable electron gases in
the different wells, in which case the collision rate is not
state dependent and LID is absent.

There is another effect, namely, the resistance reso-
nance, ' which is also based on the coupling of lateral
and transverse motion and requires coherent tunneling.
However, the effect of Ref. 17 is purely electric, there is
no light, and intersubband transitions and excited elec-
tronic states do not participate. Consequently, different
tunneling and relaxation processes contribute. There is
another important distinction of LID. When there is no
coherent tunneling, LID is absent. By contrast, the tun-
neling changes resistance typically by -20% only. '

Therefore, distinct from the resistance resonance, LID in
the coupled quantum wells is a background-free probe for
coherent tunneling. Note that different rates of polariza-
tion relaxation, i.e., different degrees of tunneling coher-
ence, correspond to essentially different forms of the LID
profiles (see Fig. 2). Therefore, LID allows one to obtain
quantitative information on the tunneling coherence.

Now we discuss the features of LID in the coupled
wells pertinent to its experimental observation. As es-
timated at the end of Sec. III, the maximum current is
achieved under rather low light intensity (-1 kW/cm )

and is comparatively large, J= 1 pA. We emphasize that
this is the current induced in one double well. Certainly,
such a current is easily detectable. The fundamental
property' of the LID current in a single quantum well of
being antisymmetric with respect to the detuning from
the intersubband-transition center is absent for two cou-
pled wells in the generic case. However, as inspection of
Eqs. (10) and (11) shows, in the case of exact level match-
ing (ez, =0), the spectral profile of LID is almost antisym-
metric with respect to the frequency c2, =c3„i.e., to the
center of the split doublet. This property can be easily
traced in Fig. 2.

Another distinctive feature of the effect is that it
changes its sign if well I, and not II, is doped. Of course,
it is not necessary to have a different specimen with
another well doped. It is sufficient to change the bias sign
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to have the optical excitation in the doped well. This is
equivalent to switching wells I and II (see Fig. 1), which
changes the sign of the current. It is advantageous exper-
imentally to have a geometrically syrnrnetric double well
with one of the individual wells doped. The double well
should be biased so that the ground state in one well is
aligned with the first excited state in the other well
achieving the scheme shown in Fig. 1. When the bias
reverses its sign, the current also does.

We point out the importance of the alignment of the
excited level in one well with the ground state in the oth-
er, as shown in Fig. 1. Such a scheme excludes the
counterfield electron transfer' which may have inter-

fered with LID if two excited states were aligned.
The response-relaxation time of LID, as follows from

inspection of Eq. (4), is on the order of the reciprocal col-
lision rates y& ', y, , '. Consequently, the realistic values
of this time are on a subpicosecond scale. Such a fast
response makes LID in double quantum wells promising
for applications.
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