PHYSICAL REVIEW B

VOLUME 46, NUMBER 15

15 OCTOBER 1992-1

Paired Hall states in double-layer electron systems

Martin Greiter
School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, New Jersey 08540

X. G. Wen
Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

Frank Wilczek
School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, New Jersey 08540
(Received 16 June 1992)

We present evidence that a universality class of incompressible electron liquids incorporating p-wave
pairing has been observed in the recent experiments of Suen and collaborators. Exact diagonalization
studies for small numbers of electrons in a spherical geometry with realistic potentials indicate that a
uniform incompressible ground state develops at the correct (displaced) flux. We relate states containing
two distinguishable species of electrons to ones with indistinguishable electrons, and propose that in-

stances of each have been realized in different double-layer electron systems at filling fraction v= 3.

I. EXPERIMENTAL CONFIGURATION

In a recent paper, Suen et al.' report the observation
of a v=1 fractional quantized Hall state in a low-
disorder double-layer electron system. Prior to detailed
theoretical analysis of this exciting observation, which we
shall argue provides strong evidence for the existence of a
qualitatively new universality class of incompressible
quantum liquids, the following remarks are essential.

The experiments are performed in strong magnetic
fields B2 12 T, so that the Zeeman energy splitting for
the two directions of spin is of order 6 K, which is much
larger than the correlation energies (gap =230 mK) re-
ported. Thus, the relevant electrons are completely po-
larized and the spin degree of freedom is frozen out.

The experiments were performed by injecting charge
into a 680-A-wide layer of GaAS—forming the well —
bounded by Al 35Gag 4sAs layers. The electrons trapped
in the well distribute their charge toward its two extremi-
ties, so as to minimize the electrostatic energy. In this
way, an effective “double-layer system” develops. In dis-
cussing the wave functions of individual electrons, in the
spirit of Hartree and Fock, the potential due to the
charge density is crucial. This potential is, roughly
speaking, of a double-well type, concentrating the elec-
trons in the two layers just mentioned. The energy gap
between the symmetric and antisymmetric wave func-
tions (in the direction perpendicular to the GaAs layer,
which we shall call the third direction) is estimated’ to be
Ag 4525 K for all densities relevant to the experiments.
This splitting is much larger than the correlation energies
and the temperatures at which the experiments were per-
formed. Although at zero magnetic field the Fermi ener-
gy would be sufficiently high to populate both symmetric
and antisymmetric states, in the strong magnetic field of
interest here, the Landau bands are sufficiently flat that
only symmetric states are occupied.

1

With both the spin degree of freedom and motion in
the third dimension frozen out, the problem is reduced to
a two-dimensional electron gas restricted to the lowest
Landau level. Within this framework, the most impor-
tant element introduced by thie double-layer geometry is
simply that it takes us into a new regime of effective in-
teractions between the electrons, as compared to previous
experiments. Roughly speaking, the wave function is
much more spread out in the third dimension. The pri-
mary effect of this spreading out is to soften the short-
range component of the Coulomb repulsion among the
electrons.

II. NUMERICAL WORK

The possibility of an incompressible state at v=1 for
electrons in this ideally simple configuration, for suitable
interactions, has been suggested by Halperin,”> Moore and
Read,’ and us.* Important aspects of the theory include
the following.

(1) The existence of pairing correlations, resembling
those occurring in the BCS theory of superconductivity.
Indeed, the existence of these correlations is the element
that enables one to transcend the traditional restriction to
odd-denominator filling fractions in the hierarchical con-
struction of fractional quantized-Hall-effect states. In the
strong pairing limit one imagines that the pairs are bosons
with filling fraction 1} that of the original electrons.
Even-denominator fractional quantized Hall states for
bosons are of course easily constructed; the simplest ones
are the Laughlin 1/m states with m even. For m =8, we
obtain an incompressible state with v=1 for the elec-
trons.

(2) Since spin-polarized states are assumed, the pairing
must involve odd orbital angular momenta. The simplest
possibility is p wave. One concrete consequence of this
pairing is that, for a finite system of N electrons on a
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sphere subject to a uniform normal magnetic field with
total flux N, Dirac quanta, the incompressible state
occurs for

Ny=2N-3, (2.1)
with N even. This relation is very valuable in guiding nu-
merical work.

(3) The charged quasiparticles around the ground state
are expected to be charge e /4 anyons with statistical pa-
rameter 6/m=+%. A pair of these halberons will be
present if N, differs by one unit from the ground-state
value given by (2.1).

(4) We also expect the existence of neutral fermion
quasiparticles, which correspond to the pair-breaking ex-
citations of BCS theory. One of these quasiparticles will
be present when (2.1) is satisfied but N is odd.

(5) There is a beautiful trial wave function for the
ground state at v=%, which involves a Pfaffian:

¥, =Pf I1(z; —2z)*T] exp( —LteBlz;|?) .

i<j i
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(2.2)

This wave function is known to be exact for some ideal-
ized model Hamiltonians involving three-body interac-
tions.

(6) The existence of an incompressible state satisfying
(2.1), and of quasiparticles as indicated in the two preced-
ing points, has been demonstrated numerically for simple,
quasirealistic interactions.

(7) It is straightforward to generalize the theory to oth-
er filling fractions v=1{n; the generalization of (2.1) reads

Ny=2n(N—-1)—1. (2.3)

The double-layer experimental geometry of Suen
et al.,! although its qualitative effect is clearly to soften
the short-range repulsion, does not match the simple pa-
rametrization of modified Coulomb potentials adopted in
Ref. 4. To make a quantitative comparison, fresh calcu-
lations are required.

The charge distribution in the third direction calculat-
ed in a self-consistent approximation for the double-layer
electron system of Suen et al. is modeled rather accurate-
ly by
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as depicted in Fig. 1. Here d is the distance between the

two layers, or peaks in the charge density. The effective

(two-dimensional) electron interaction is given by
plz)p(z,)

v(r)= | dz, | dz —
f lf 2‘/(21‘*‘22)2"}'7'2

The pseudopotential V,, for relative angular momentum
m is obtained by projecting down to the first Landau lev-
el, and separating the appropriate partial wave. This

(2.5)

9587

Charge density

Pmax

4

W
IR T
N

FIG. 1. The charge distribution (2.4) used in our numerical
work. It closely resembles the experimental charge distribution
of Ref. 1.

yields

v, =f0°°dq e L (—1%*F(q) , (2.6)
where [ is the magnetic length, L, is the Laguerre poly-
nomial, and

F(@)= [dz, [ dz,p(z,)p(z,)

Exact diagonalization studies of the appropriate model
Hamiltonians for small numbers of electrons in a spheri-
cal geometry (we neglect finite-size corrections to the
pseudopotentials) allow for the following conclusions.

(1) As displayed in Fig. 2(a), there appears to be a clear
energy gap separating a homogeneous ground state from
the remaining part of the spectrum. The magnitude of
the energy gap is of order 1 K for the values quoted. It
should be borne in mind, however, that the simulations
are limited to disturbingly small numbers of particles.
Thus, while they are certainly suggestive and encourag-
ing, they do not conclusively demonstrate the existence of
a gap in the thermodynamic limit. (Indeed, the experi-
mentally observed gap at v=1 is only 250 mK, so a
significant decrease is expected.)

(2) The gaps become much smaller or zero as d /I is
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FIG. 2. The spectra for (a) 17 flux units and 10 particles and
(b) 19 flux units and 6 particles, in (cgs) units of e’/el. The
ground state is homogeneous and displays a significant gap. As
explained in the text, these are relevant for paired Hall states at
v=% and I, respectively. Note that the latter could also be in-
terpreted, using particle-hole conjugation, as the spectrum for
19 flux units and 13 particles, relevant to a v=% state.
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FIG. 3. The spectra for (a) 16 flux units and 10 particles and
(b) 15 flux units and 9 particles. The first shows the even-odd al-
ternation to be expected if two identical particles are present;
also, the fact that the energy is lowest for small angular momen-
ta is consistent with these particles repelling one another. The
second shows a roughly parabolic shape with a minimum at a
nonzero angular momentum, consistent with the interpretation
of a single pair-breaking excitation around the nominal Fermi
surface.

varied outside the range 3 <d /I S10, for the same flux
and particle number.

(3) As displayed in Figs. 3(a) and 3(b), the spectrum is
consistent with that expected for two halberons or a neu-
tral fermion, when there is a unit flux deficit or an odd
number of electrons, respectively.

(4) The overlap of the exact ground states for d /I =7
with the Pfaffian state (2.2) is found to be 0.8684, 0.8785,
and 0.8786 for 6, 8, and 10 particles, respectively. Note
that the overlap increases slightly with the number of
particles, much unlike conventional Hall states. This is
not really surprising, since we do not expect (2.2) to be
such a good trial wave function for very small numbers of

(my,my,n)
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At present, the most interesting case is m,=m, =3,
n =1. This state, denoted (3,3,1) in an obvious notation,
has filling fraction v=1. Indeed, in another very recent
experiment on double-layer electron systems, Eisenstein
et al.' also found incompressible v=1 states. The pa-
rameters of their experiment, and the nature of the states
(as reflected in the response to field tilting and the magni-
tude of the gap) are quite different from Suen et al.!
Most important, the two layers in the experiment of
Eisenstein et al. are well separated by a narrow but
high-potential barrier, so that to a first approximation
one may regard electrons inhabiting the two layers as two
distinct species. Indeed, these authors tentatively identi-
fy their observation with the distinguishable or indexed
(3,3,1) state proposed in Refs. 5 and 6. Assuming this to
be correct, we suggest that the two groups, while they
have both observed fractional quantized Hall states in

w;)"T] exp(— LeBlz;|*)[] exp( — LeBlw;[*) .
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particles. For in this case the pairing drastically affects
the Laughlin-Jastrow correlations, which are the essential
advantage of the state as compared to a Wigner solid or a
charge-density wave.

(5) The situation is less clear for paired Hall states at
other filling fractions. Exact diagonalization for N =6
with the correct flux displacement (2.3) indicates a clear
gap for v=1, as shown in Fig. 2(b). However, it is not
clear whether this gap is present in the thermodynamic
limit. The paired Hall states definitely become less stable
as v decreases. For the model potentials considered here,
no incompressible ground state emerges for small systems
(N =4) at filling fractions | and 1.

III. INDEXED AND INDEX-FREE STATES

The experiments reported in Ref. 1 were largely in-
spired by a different class of theoretical proposals.>>~’
The primary assumption in these proposals is that the
electrons in the two layers are essentially distinguishable,
so that there is a two-valued “quasispin” variable neces-
sary to specify the state of an electron, in addition to its
two-dimensional coordinate. This situation can arise if
the tunneling between layers is extremely small, so that
the gap Ag s is negligible compared to correlation ener-
gies and to temperature, and the symmetric and the an-
tisymmetric states are equally populated. Presumably,
intermediate cases are also possible, where the popula-
tions are both nonzero but significantly different (see the
remarks below).

Let the two species of electrons be distinguished by cal-
ling the two-dimensional coordinate of electrons of the
first species z and the two-dimensional coordinate of elec-
trons of the second species w. Then, a natural generaliza-
tion of the Laughlin trial wave functions for a single
species is the set (studied in Ref. 6 for the special case
m;=m,)

(3.1

r

double-layer geometries at the same filling fraction v=1,
have, in fact, observed distinct universality classes.

Actually, there is a remarkable relationship between
the two states. A celebrated identity due to Cauchy (see
Ref. 8), which underlies the equivalence between bosons
and fermions in (14 1)-dimensional physics, reads as fol-
lows:

1z —z) (w; —w;)

1 :(_l)n(n71J/2i<l'
H(z,-—wj)
Lj

z,—w;

det

(3.2)

Using Cauchy’s identity, it is easy to demonstrate that
the result of antisymmetrizing W'>*! between the vari-
ables w and z is to produce precisely the Pfaffian trial
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wave function for paired Hall states. A similar identity
for O functions, due to Frobenius,’ is useful for numerical
work on paired Hall states in the torus geometry.

IV. POSSIBLE EXTENSIONS

There are two possible extensions to the above experi-
mental work.

(1) Paired Hall states may be used as the starting point
for hierarchical constructions similar to those used in the
traditional treatment of the fractional quantized Hall
state.!! At the level of identifying the filling fractions for
the universality classes of these states, presumably the
simplest procedure is to consider the strong pairing limit,
wherein fictitious pairs of electrons are regarded as con-
stituting an effective bosonic fluid. The filling fraction for
the electrons is four times the filling fraction for the
effective bosons, since there are half as many bosons each
with twice the charge. The hierarchy may be generated
by combining the two elementary operations of adiabati-
cally attaching an even number of flux tubes (which does
not alter quantum statistics) and particle-hole conjuga-
tion. These operations generate the respective changes
v '>v7142p and v—1—v in the filling factor. In this
way, one generates the continued fractions

v=4X[2p, +1,2p,_1,...,2p,+1], 4.1)

whose first and last entries are odd, with all intervening
ones even. Thus, for example, for n =2 we have the
filling fractions

=4 1 —4 2p;+1
20, +1+1/(2p;+1)  (2p;+1)(2p,+1)+1
4.2)

v
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For p,=0 this is simply v=2/(p,+1), that is, an arbi-
trary fraction with numerator 2; these arise simply from
the primary Laughlin 1/(2p,+2) states for the effective
bosons.

(2) As mentioned by one of us in Ref.12 and above, in-
compressible states with unequal values of the m; are also
possible, and experimentally attainable in the separated
geometry of Ref. 10. For these states, the densities in
the two layers are locked in a definite, predictable ratio.
For narrow layers, only odd values of m; can be expected,
since the pairing states seem to require softening of the
short-range part of the Coulomb repulsion. However,
one can also consider combining the two experimental
geometries, that is, juxtaposing a well of the type de-
scribed by Suen et al. with a narrow well, separated by a
barrier, or, for that matter, two wells of the type de-
scribed by Suen et al. We believe there are real prospects
for a rich two-dimensional spectroscopy in the separate
filling fractions of the layers, with plateaus filling areas
bounded in both these parameters.
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