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The nonresonant excitonic optical Stark effect is calculated for quasi-one-dimensional semiconductor
quantum wires up to first order in the pump intensity. For quasistationary situations a large blueshift
with an oscillator strength that decreases with pump intensity is predicted. This result is due to the
dominance of the phase-space filling effect in quantum wires and is in striking contrast with results for
corresponding three-dimensional (3D) and 2D systems.

I. INTRODUCTION

The increase of the exciton binding energy in low-
dimensional systems in comparison with that in bulk ma-
terial allows the observation of excitonic effects even at
room temperature. This, together with recent progress in
crystal-growth techniques of various quantum confined
systems, has led to an intensive investigation of semicon-
ductor quantum wells, quantum wires, and quantum
dots. ' Parallel advances in ultrashort-pulse spectroscopy
methods made it possible to observe coherent optical pro-
cesses in semiconductors. Examples are the observation
of the optical Stark effect, of quantum beats, and of the
photon echo in bulk and quantum-well semiconductors.

In this work we will calculate the nonresonant exciton-
ic optical Stark effect in a quasi-one-dimensional (Q1D)
system, i.e., in a semiconductor quantum wire. We fol-
low corresponding theories for 3D and 2D structures.

Since the pioneering work of I.oudon on a one-
dimensional hydrogen atom, many papers have been con-
cerned with different aspects in semiconductor quantum
wires, such as the exciton or biexciton binding energies
and connected nonlinearities, ' band-to-band absorp-
tion, "' carrier-induced optical nonlinear effects, '

etc.
Our paper is organized as follows. In Sec. II we recapi-

tulate the general formulation of the nonresonant exci-
tonic optical Stark effect, which is then applied in Sec. III
to the calculation of the level shifts and the total oscilla-
tor strength in semiconductor quantum wires. In Sec. IV
a comparison of our QID results with corresponding re-
sults for 2D and 3D systems is given.

tors of the electron in the conduction and valence bands,
respectively. The stationary equations of motion for the
interband polarization operator ok=(a,ka,k) and for
the density operators of the electrons in the conduction
and valence bands n«=(a, ka«) and n kv=(a kva kv),
can be derived easily in the Hartree-Fock approximation,
taking into account the presence of the pump field'
alone (the units used throughout this paper are fi=c = 1):

(evk evk top )hark ( 1 2nk ) d Ep + y Vk —k'~k'
k'

where

nk n,k=
——1 n„k =—

—,'[1—(1—
4~srk~ )'~ ] (2)

and

ke;k=+Ett/2+ + g Vk k,nk .
2m, - k,

Here the prefactor (1 2nk) in—the right-hand side of (1)
accounts for the phase-space filling (PSF) effect while E
is the band gap, Vk k. is the Coulomb potential, and d,„
is the interband electric dipole matrix element. In gen-
eral, mk and nk depend on time that requires a fully quan-
tum kinetics treatment and the coupled equations (1) and
(2) form a complicated set of nonlinear integral equations.
However, in a nonresonant regime and at low pumping
intensities one can develop a linear-response theory in
which nk ——~nk~ ~ ~E ~

. Then perturbation theory can
be used that allows us to expand ~k in terms of a series of
unperturbed exciton wave functions g„(k) as

II. GENERAL FORMULATION
OF THK OPTICAI. STARK EFFECT

m.k= g C„Q„(k) .

The pump-field-induced polarization is in lowest order

(4)

Consider a direct-band-gap semiconductor with the re-
normalized conduction- and valence-band energies e,k
and e,k which is externally pumped by a coherent radia-
tion field of amplitude E and frequency co . Denote by
a,„(a,+„) and a„k (a„k) the annihilation (creation) opera-

%„*(r=0)g„(k)
7Pj =dcvEp ip~

CO~ COp l 5

where g„(r) is the exciton wave function in real space.
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The pump-field-induced effects, i.e., the optical Stark
effect, can be measured with a weak resonant test field E,
with a frequency co, . Linearizing the polarization
irl, =6irI, +Q in the presence of both the weak test field
and the stronger pump field, one finds up to second order
in the pump field the following optical susceptibility for
the test beam g(co, ) (for details, see, e.g. , Refs. 1, 5, and
7)-

y(co, ) =2
CO„CO l I „

where I „ is the damping of the level n f„. and co„are
the resulting exciton oscillator strengths and energies, re-
spectively, which are influenced by the pump field direct-
ly and in contrast to the atomic Stark effect modified fur-
ther by Coulomb interaction effects. The oscillator
strengths are found to be

an effective potential can be found, e.g. , in Ref. 9. Here,
we take the electron-hole Coulomb potential in the form

—e
U(z) =

e,(lzl+aR )

e0 the static dielectric constant inside the wire. k is a
fitting parameter which is chosen to be 0.3 in order to fit
the effective potential in Ref. 9. Note that Eq. (12) looks
like the regularized Coulomb potential introduced by
Loudon but with the cutoff proportional to the wire ra-
dius, expressing an important physical connection.

Since the exciton wave functions are not explicitly
available in momentum space, we cannot directly use the
formulas given in the previous section. The exciton wave
functions in real space can be written as

O'J' (z) =[8(z)+(—1) 8( z)]N„—

f„=d~, l+„(r=o}l —2 g 1(„(k)leg l
i(„*(k')

X IV &&&[2(AR + lz l ) /na ] (13)

with

kk' mWn

kk'

g„(k )H„P' (k ')+ (n ~~m )

~(0) (0)m n

where IV„,&2(x) are the Whittaker functions, ' and p
specifies the parity state of the exciton (p =0 and I for
even and odd states). a is the 3D exciton Bohr radius and
X„ is the normalization coefficient given by

(14}
Hnm Dnm +~nm

where

and

D„=2d,„E~g g„'(k)(mg )'1(t (k)
k

(8)

(9)

Note that the integration in Eq. (14) is performed not
from zero but from R„ to infinity, where R„ is propor-
tional to the ratio between the wire radius and na. n is the
energy quantum number:

=2+ Vi, z g„'(k)[(mg)* —(i' )']
kk'

2A,R
na

(15)

X [n(tj (k')+i' P (k)] .

The renormalized exciton energies are

(lo)
To evaluate the pump-induced level shifts and oscillator
strength, we introduce as in Ref. 7 the following dimen-
sionless quantities:

p
——e„*(z=o)gq„(k)lg (k)l',

III. APPLICATION TO SEMICONDUCTOR
QUANTUM WIRES

For simplicity, let us consider a simple symmetry of a
semiconductor quantum wire with circular cross section
of radius R. Extensions to wires of other symmetries
with, e.g. , rectangular or square cross sections are
straightforward. By assuming an infinite quantum
confinement in the lateral directions of the wire, one can
carry out the averaging over the standing envelope states
in the plane transverse to the wire axis z. Considering
only the lowest wire subband reduces the Q1D exciton
problem to an ideal 1D electron-hole Schrodinger equa-
tion with an effective Coulomb potential which depends
on the wire radius R. ' The explicit expression for such

I

le„(z =o)l'
g VI, I, i}'j„*(k)[itt„*(k)—g„'(k')]

E0

X [g„(k)g (k')+i'„(k')P (k)],
(17)

where E0 is the 3D exciton Rydberg. p and p are the
enhancement factors of the Stark shift of a given exciton
level m due to the anharmonic exciton-photon and
exciton-exciton interactions, respectively. With a Fourier
transformation for the exciton wave functions in momen-
tum space, we have after a proper change of variables the
following analytical expressions for the enhancement fac-
tors of the exciton ground state p, p and of the band

edge p, p

p =
—,'M W', ~z(R )f dx f dy W', ~z(R +x)W, ~, (R +y}[W,~, (R +x+y)+ W, ~, (R +Ix —yl)],

0 0
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p = M—'IW r/z(R )I'2
a
X f dx f dy f dzu(z)W»2(R +x)

0 0 0

X [ W, /2(R +z)[W, /z(R +x+y)+ W &/2(R + I» —
y I)]

W &/2(R +y)[W &/z(R +x+z)+ W &/2(R +Ix zl }]]
X [ W& ~/z(R&+y +z)+ W+ ~ /p(R&+ ly zl )]

p =M~ W~ 1/2(R~ }f dx Wa 1/2(R~+x ),
(19)

(20}

p„=—M IW, &/z(R. )l' 2f dx W, „,(R +x)f dy u(y)W, i/z(R +y)a 0 0

f—"dx f "dy u(x)W, (R +y)[W „,(R +x+y)+W ~/z(R +I» —yl}]
0 0

(21)

In Eqs. (18}—(21) a is the energy quantum number of the
exciton ground state connected with the wire radius R by
the following relation:

where

a p

EO
(30)

1 +1 2AR
O

2a aa

where u (z) and M are given by

(22) and

2ld, „E I'I=
E2 (31)

and

1

I I+R.

M =&aaN

(23)

(24)

With the aid of an integral representation for the Whit-
taker function for the exciton ground state (0 ~ a & 1),

a
xe "" „, 1

W~, /2(x)= f dt e "' 1+—, (25)I 1 —a o

are the scaled detuning and pump intensity, respectively,
and I= 1 corresponds to an intensity of about 2
MW cm for typical parameter values. The dependen-
cies of the resulting shifts on R /a, D, and I are shown in
Figs. 2 and 3. The figures show that the blueshifts are
larger for thinner wires, stronger pumping, and smaller
detuning. The exciton ground-state level at, e.g., I=4
may be shifted to energies exceeding the unpumped band
edge (see Fig. 2). For any values of wire radius R, pump
intensity I, and detuning D, the band edge shifts by a
larger amount than the exciton ground-state level does.

limp =—', ,R~0
(26)

we can numerically evaluate various enhancement fac-
tors, which are plotted in Fig. 1 as functions of wire ra-
dius. An interesting feature is that in the limit of small
wire radius, p and p„diverge as 1/a [see Eqs. (19) and
(21)], whereas p and p„ tend to the following finite
values:

8 )q

~ &0-

8
CY

o 30—
w( (p

I ) I ) I

limp =2 .
R~0

(27)
(A
fX
O 20—
O

ECOa COa COa

E

aE, E,—E,'"
Eo Eo

Pa I
D D '

D D

(28}

(29)

These results can be obtained by using analytical proper-
ties of the Whittaker functions. The total Stark shifts of
the exciton ground-state level hco and of the band edge
EEg are given by

z 10
Vo,

v Q Q

0.06 0.1 0.14 0.18 0.22 0.26 0.3

Of

0 M Ti M i T

SCALED WIRE RADIUS R/a

FIG. 1. Enhancement factors p, p, for the Q1D exciton
ground-state level and p„,p„ for the band edge as functions of
scaled wire radius R /a.
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FIG. 2. Total Stark shifts (bco )/Eo for the QlD exciton
ground-state level and (AEg)/Eo for the band edge vs scaled
wire radius R /a for scaled detuning D =

( ~
co —

cop ~
) /Eo = 10

and different scaled pump intensities 1=2~d„EpI'ED=2
(dashed lines) and 4 (dotted lines).

FIG. 4. Contributions to the exciton oscillator strength due
to the phase-space filling effect (solid line), the exciton-photon
interaction (dashed line), and the exciton-exciton interaction
(dotted line). D and I are taken to be 10 and 6, respectively.

2XR
ln

a

(32)

This leads to an increase in the exciton binding energy
similar to the 2D and 3D cases.

We turn now to the calculation of the pump-induced
changes of the oscillator strength for the Q1D exciton.
To this end we need also to include in our consideration
the excited states of the exciton. Because the exciton is
strongly bound in low-dimensional systems, particularly
in 1D (Q1D) systems, we shall take into account only the
first excited level of the exciton whose main energy quan-
tum number is denoted by p (to distinguish it from that
of the ground state a). Following the approximate for-
mula of Loudon, we have

For the exciton wave function in the first excited state
(1 ~ p (2) we have to use the following integral represen-
tation of the Whittaker function:

P~e-"
8

xx I/2(x)= x J dt e t 1+r(2 —P) 0

'P —1

PJ —dte "' 1+—
0

(34)

In order to see clearly the various contributions to the to-
tal oscillator strength f, we split it into different parts
f ",f, and f, which are due to the phase-space
filling effect, the exciton-photon and the exciton-exciton
interactions, respectively:

and

limP=1 .
R~0

(33)

f —
f !0!(1 fPSF fX —P fX —X)

For the unexcited case one has

f —=f' '=d i% (z=o)i

(3&)

(36)
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FIG. 3. Same as Fig. 2 but for I=5 and D =5 (dashed lines)
and D = 8 (dotted lines).

FIG. 5. Same as Fig. 4 but in dependence on scaled detuning
D. I and R are taken to be 6 and 0.2a, respectively.
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I=0 (solid curve), 6 (dashed curve), and 12 (dotted curve). The
I=0 peak is located at —4, i.e., as were the position to the 2D
exciton ground state, because we have taken R =0.3a, which
corresponds to a=0.5 (following Loudon's formula) yielding
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FIG. 7. Exciton oscillator strength as a function of the pump
intensity for D =8 and R =O. la (solid line), 0.2a (dashed line),
and 0.3a (dotted line).

With a Fourier transformation for the exciton wave func-
tions in both the ground state and the first excited state,
we have obtained from Eq. (7) the following and analyti-
cal expressions:

fX —X—

where

x- p a'p
fa —

p, , QapD

ap I
pz z ~PD2

(3g)

(39)

Q P=M~PWP &/2(a/PR )

X J dx f dy W, i/2( +x ) Wp, 1/2[a/p(R +y)][W &/2(R +x+y)+ W &/2(R + Ix —y I)],
I ~p ™Wp Wa 1/2 ( R a ) Wp 1/2 (a /PR ~ )

X d~ dy dz~ zW i/2R +x W 1/2R +p+z+W j/2R +x —y

X(3W, /2(R +z)[W»/2[a/p(R +x+y)]+ Wp &/2[a/p(R Ix —yl)]]
+ Wp I/2[a/P(R +z)][W )/2(R +x+y)+ W )/2(R + Ix y I)]
—4W~ &/2(R +y){Wp &/&[a/P(R +x+z)]

+ Wp ]/2[a/p(R + IX —ZI)]] ),

(40)

(41)

and

with

oo 1/2J I Wp ~/p(x)I dx
Rp

(42)

R R
P

(43)

From Eqs. (37)—(39) it follows that f "~p (p as al-
ready known is weakly dependent on wire radius and
remains finite when R or a tend to zero), whereas

f ~a and f o-a will vanish in the limit of
small wire radius. This means that in the Q1D systems
the phase-space-filling effect plays a predominant role' as
compared with the effects due to the exciton-photon and
exciton-exciton interactions. In Figs. 4 and 5 we plot the
various contributions to the total oscillator strength as
functions of wire radius and detuning. One sees clearly
the predominance of the phase-space-filling effect over
the others. Figure 6 is the absorption spectrum of the
test beam for three values of the pump intensity. Since
the resulting oscillator strength f decreases with in-
creasing pumping (see Fig. 7), it is predicted that the ab-
sorption peak should also decrease with pumping (Fig. 6).
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IV. COMPARISON WITH 2D AND 3D CASES

The above derived results will now be compared with
corresponding results of the 2D and 3D systems. Quali-
tatively one finds in all three dimensions blueshifts of the
exciton levels and an even larger blueshift of the band
edge. However, the amounts of the shifts are distinctly
different in the various dimensions. In Table I we show
the numerical results for the Stark shifts. From the table
we note that when dimensionality decreases, the anhar-
monic exciton-photon enhancement factors of the Stark
shift p and p„decrease, while the corresponding
exciton-exciton enhancement factors p and p„ increase.
The changes in p and p„with the dimensionality can be
expressed approximately in terms of the following rela-
tions:

(d) 2d +1
Pa (44}

(d) =2dp~ (45)

TABLE I. Numerical comparison between the various
enhancement factors for the excitonic Stark level shifts in 3D,
2D, 1D, and QID systems.

where d =1, 2, and 3 describes the dimension. The diver-
gence of p and p as I/a (or 1/R) in the limit of van-
ishing confinement length is a peculiar feature of purely
1D systems due the singularity in the Coulomb poten-
tial. A qualitative distinction is obtained for the changes
of the exciton ground-state oscillator strength in different
dimensionalities. In the 3D structure, the contribution to
f due to the phase-space-filling effect is always overcom-
pensated for by those due to the exciton-photon and
exciton-exciton interactions leading to a slight enhance-
ment of f . On the other hand, the different contribu-
tions nearly quench each other in the dimension 2„result-
ing in almost total exciton oscillator strength which is
nearly unaffected by the pump intensity. In contrast with
both 3D and 2D situations, the contributions f, and

f vanish in the purely 1D case, and remain finite in
the Q1D case, but they are very small as compared with

f " (see Figs. 4 and 5). The reduction of f is thus
mainly due to the phase-space filling effect in 1D and
Q1D systems. This dominance of the phase-space filling
in Q1D, which has also been found in the plasma-density
dependence of QlD absorption spectra, ' is the origin of
the decrease of the absorption peaks with increasing
pump intensity (Fig. 6).

The experience with bulk and quantum-well materials
showed that in a pulsed experiment the resulting Stark
shifts are considerably smaller, and the decrease of the

oscillator strength is considerably larger than predicted
by the calculations under stationary conditions. The ad-
vantage of the presented analysis for stationary pump and
probe intensities is that it provides much more insight,
e.g., into the dimensionality dependence of the various
contributions in comparison with the purely numerical
simulations of pulsed experiments. So far no experiments
on the excitonic optical Stark effect in quantum wires
have been reported, but such experiments will certainly
be attempted as the quality of the quantum wires im-
proves further.
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APPENDIX A

This appendix gives a derivation of the normalization
coeScient for the exciton wave function in a cylindrical
quantum wire having circular cross section of radius R.
The electron-hole Schrodinger equation in such a wire is
of the form

1 d e2
+ +co„%„(z)=0,

2m„dz2 &o(Iz I+~R }
(Al)

with m„being the electron-hole reduced mass and
co„= Eo/n . Wi—th the variable changes

2z~z'= (AR+z)
an

(A2)

for z &0, and

z~z'= —2
(A,R —z )

an
(A3)

for z & 0, Eq. (Al) becomes

d2 1 n——+ —, %„(z')=0 .
dz' 4 z' (A4)

%„(z)=X„W„,~~[2/(an )(AR+z)], (A5)

(A4) is Whittaker's form of the confiuent hypergeometric
equation. For z' & 0, one of the two linearly independent
solutions of (A4) which vanishes in the limit z ~ co is

W„,&2(z'). In this case the exciton bound-state wave

function can be written as

3D'

pa
p~
Pa
p~

3.5
8

8.66
24

'Reference 7.
This work.

2D'

2.3
4

15.4
26.3

1Db

1.5
2

—1/a
—1/0.

Q1Db

R dependent
R dependent
R dependent
R dependent

=An W„,y~[2/(an }(AR —z }] (A6)

where X„ is another constant which is in general different

where X„ is some normalization constant to be deter-
mined later on. On the other hand, for z' &0, the solu-
tion of (A4) that tends to zero for large z' is W„&&2(

—z').
In this case the exciton wave function is of the form
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from N„given in (A5). However, because at z=0 the
functions defined by (A5) and (A6) should be joined to-
gether, i.e.,

Applying the Fourier transformation

P.(k) = f dz e "%.(z), (B3)

N„W„,&z(2AR /an ) =N„' W„»2(2AR /an ),
we find

(A7)

we cast (Bl) and (B2) into

N„:—N„' . (A8)

The normalization condition for the exciton wave func-
tion requires

1=f dz
I W„(z)l'

p =4'*(z =0)f dx' f dy'q' (x')q' (y')

X% (y' —x'},

p„=q '.(z=0)f dx'%1.(x') .

(B4)

(B5)

=N„ f dzl W„ i&2[2/(an )(AR —z)]l

+f dzl W„,&2[2/(an)(AR+z)]l
0

(A9)

In the first integral of (A9) we change variable as
z —+x =2/(an)(A, R —z) and have

f dzl W„,&2[2/(an )(A.R —z)]l

Using Eqs. (13) and (24) we can, after changing variables
as 2x'/aa~x and 2y'/aa~y, rewrite (B4) and (B5) in

terms of Whittaker functions as

p&= —M W& imp(R }

X f dx f dy W, , ~2(R +Ixl)

imp(R + lyl)

f dx
I W„~y2(x)l (A10)

X W, ~2(R, + Iy
—

x I),
p =—M f dx W iy2(R&+ IX I )

(B6)

(B7)

whereas in the second integral the change of variable is
z~x =2 /(an)(AR+z) and gives

f dzl W„&&&[2/(an)(AR+z)]l
0

f dx
I
W iy2(x)l (Al 1)

(A10) and (Al 1) together with (A9) yields the analytical
expression for N„of Eqs. (13) and (14).

APPENDIX B

In this appendix we shall derive Eqs. (18)—(21) and
prove the limits given in Eqs. (26) and (27). From the
general theory' one has

(B1)

Transforming the integrations in (B6) and (B7) from —oo

to ao into those from 0 to ~, we get immediately Eqs.
(18) and (20). Equations (19) and (21) can also be derived
in a similar manner. Note that the 1/a dependence in
(19) and (21) arises from the appropriate change of vari-
ables in the Coulomb potential, namely 2z/aa ~z, which
casts U(z) = e leo( —Iz I

+A,R ) in Eq. (12) into
4Eo/au(z), —with u (z) being defined by Eq. (23). Thus

the divergence in p and p„as 1/a is due to the singular-

ity in the Coulomb potential when the ideal 1D limit is
approached.

Now we shall prove the limits Eqs. (26) and (27). For
this purpose we invoke the following property of the
Whittaker function

lim W»~(x) —= Wo, /2(x) =e
a~0

p„='P*(z=0)g (k =0) . (B2) Then, from Eqs. (18), (20), (24), (14), and (B8), we have

—R /2

limp =— . . 2 f dxf dye
a 0 2 dx

—x 0 0
R

—(R +x )/2 —(R +y)/2 —(R +x+y)/2 —(R + ~x —
y~ )/2

e (e +e )

f dxe "f dye ~+ f dxe "~ f "dye
2 . 0 0 0 0

e
—x/2 d

—(y+x —y)/2+ d
—(y —x +y)/21

2 0 0 x

1+ dxxe + dx e
1

2 . 0 0
(B9)

and
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—R /2
e oo

limp = „dxe
dx e

R

=2 dy e ~=2 .
0

(810)

Since R also vanishes when a tends to zero, (B9) and (B10) are nothing else but Eqs. (26) and (27), respectively.
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