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We have applied a scaled version of the Kohn-Sham equations of density-functional theory to study

the charge distribution at the condition of resonant tunneling in coupled quantum dots. We find that the

tunneling process is governed by the symmetry properties of the resonantly coupled quantum-dot states.
At resonance, the coupled atomiclike quantum-dot states form bonding and antibonding molecular

resonant-tunneling states. The charge distribution of the bonding-type state is given. In addition, we

find asymmetries of the charge in the barrier vs voltage (analogous to I- V curves) as a result of electron-
electron interactions between electrons in the excited tunneling and ground states.

I. INTRODUCTION

Resonant tunneling (RT) in low-dimensional quantum
nanostructures has recently attracted considerable atten-
tion due to the unique electronic and optical properties
they exhibit. ' ' With recent advances in microfabrica-
tion, it is now possible to make zero-dimensional
quantum-dot (QD) nanostructures in which carriers are
confined in all three dimensions. The electronic states of
these structures resemble giant artificial atoms. RT in
single-QD structures can occur through coupling of elec-
tronic states at the Fermi level of the emitter with the
discrete levels of the QD. ' '" As the emitter Fermi level
is brought into resonance with the discrete QD states, an
increase in current is observed. In double- or coupled-
QD structures, RT can occur through several channels:
(I) when the bias voltage brings discrete states of a single
QD into resonance with the emitter Fermi level (a rela-
tively weak channel due to non-RT through the other
QD); (2) when the bias voltage brings two neighboring
QD states into resonance; and (3) when the bias voltage
brings resonantly coupled QD's into resonance with the
emitter Fermi level. In the latter case, RT will occur
across the entire structure. All three channels have been
used to explain the fine structure observed in the tunnel-
ing current versus voltage (I V) curves of sampl-es com-
posed of an emitter coupled to a column of QD's. "

Many of the theoretical models used to examine RT
processes in quantum-well (QW) structures have been ap-
plied to QD RT." ' In most cases, the I Vcurves are-
obtained by either calculating the transmission

coeScients by matching the logarithmic derivatives of
the wave function at the barrier, or by the density-matrix
approach in which the current is expressed through the
Fermi functions of neighboring wells. In the density-
matrix approach, the applied voltage appears in the ener-

gy dependence of the Fermi functions and the detailed
matching condition of the wave function does not explic-
itly appear. Neither approach clearly demonstrates how
the electronic charge distribution varies as the bias volt-
age (the main driving force for the RT process) passes
through resonance. Furthermore, although Presilla,
Jona-Lasinio, and Capasso' have studied the effects of
electron-electron interactions in double-barrier QW
structures and several authors' ' have studied the
electron-electron interactions in single QD's, the effect of
the electron-electron interaction on the resonance voltage
has not been considered for the case of coupled QD's.

In this paper, we use a self-consistent scheme based on
a scaled version (dielectric and effective-mass scaling) of
the Kohn-Sham equations of density-functional theory
to investigate RT in coupled or interacting QD nano-
structures. The dynamics of the tunneling process are
modeled by incrementally changing the static potential in
each QD to simulate the effects of an applied voltage. In
this way, the detailed nature of the wave-function evolu-
tion, illustrated through electron-charge-density contour
profiles, can be investigated near resonance. In our
scheme, ' the electron-electron (Hartree and exchange-
correlation) interaction is explicitly included through the
local-density approximation (LDA) (Refs. 22 and 23) of
density-functional theory. In addition, by artificially
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modifying the strength of the electron-electron interac-
tion we are able to examine the effects of the electron-
electron interaction on the strength of the bias voltage.
Our studies also suggest the possibility of a light-switch
device, based on control of the tunneling through modu-
lation of the electron occupation in the QD array.

In the rest of the paper, a description of the cornputa-
tional supercell and scaled Kohn-Sham formalism is
presented in Sec. II, in Sec. III we present and discuss our
results, and in Sec. IV we summarize our work.

II. COUPLED QD MODEL
AND SCALED KOHN-SHAM METHOD

The computational supercell shown in Fig. 1 contains
three GaAs rectangular QD's of dimension a c separated
by thin Alo &Gao 5As barriers of length d, and surrounded
by thick Alo 5Gao 5As barriers of width b. The 43-A bar-
riers b are sufficiently thick to effectively isolate periodic
arrays of dots in neighboring supercells, thereby allowing
RT to occur only in the z direction within a supercell.
The lateral and longitudinal dimensions of a QD are arbi-
trarily taken as 81 and 133 A, respectively. To allow
sufficient tunneling to occur along the z direction, the
thin Alo 5Gao &As barriers d are taken as 8.4 A. Thicker
barriers drastically increase the computational time due
to the weak wave-function overlap between the dots.
Therefore, the total x, y, and z dimensions of the super-
cell are 167, 167, and 502 A respectively.

In our model system of coupled QD's given above, the
potentia1 in the A105Ga05As barriers are taken to be
zero, while the inside GaAs rectangular QD's the poten-
tial is set at a constant value of —37.7 mRy, or about
50% of the GaAs/AIAs conduction-band discontinuity
(900.0 meV). '

To simulate the tunneling process between the GaAs
QD's under an applied voltage, we vary the static poten-
tial values in each QD linearly. To simplify the computa-
tion, we take an average of the linear potential within
each QD and assume it to be constant within each QD.
This simplification does not alter the general features of
the RT process discussed below. For later reference, we
label the three QD's, starting from left to right, as left-
hand-side-dot (LHSD), the middle-dot (MIDD), and the
right-hand-side-dot (RHSD), respectively.
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FIG. 1. Model of the computational supercell containing

three quantum dots. The dimensions of the supercell are
a = 167 A, c =502 A, b =43 A, and d =8.4 A. The small value
for the QD barrier d allows for sufficient coupling between the
QD states.

To calculate the electronic energies and charge densi-
ties, we employ a simple scheme ' to scale the Kohn-
Sham self-consistent equations of density-functional
theory. This scheme was developed by us to treat in-
teracting electrons in quantum nanostructures with corn-
plicated boundary conditions. In Ref. 21, the QD is as-
sumed to consist of a semiconducting dielectric such as
GaAs, and interacting electrons within the QD derived
from ionized donors. The electrons are assumed to be de-
rived from a single isotropic, parabolic band (k =0, zone
center) with an effective mass of 0.067mo (mo is the free-
electron mass), and to interact through a screened
electron-electron interaction treated within the LDA of
density-functional theory. Let us first consider the
Kohn-Sham one-electron equation:

—
Irt /2moV2+ V(r)+ f e p(r')/~r —r'~dr'

+ V„,[p(r)] %(r)=E„V(r) . (1)

The dielectric constant c. and effective-mass scaling for
the quantum-dot problem can be seen by replacing mo by
m * and the interaction by the screened interaction, then
applying a dimensional analysis. For example, using a
value of 10 for e, m ' of 0. 10m o, a potential V(r) in units
of (1/1000 Ry), and length units of 100 a.u. , we can scale
each term by (1/1000):

[( —A /2)(1/O. lm )(1/100 a.u. ) V ]+(1/1000)V(r)+(e /e)(1/100 a.u. )

X(1/100 a. u. )(100 a.u. ) fp(r')/~r —r'~dr'+( I/e)(1/100 a.u. ) V„,[p(r)]%(r)=E„V(r) .

Then,
T

(1/1000) ( —Iri /2mo)V + V(r)+e fp(r')/~r —r'~dr'+ V„,[p(r)] %(r) =E„V(r) .

After the scaling, the energies E„are now in the units of
mRy, and the length scales are in units of 100 a.u. A
similar approach has been used by Ghazali and Hugon
to study the metal-insulator transition in doped semicon-
ductors.

In this work, we have assumed that three electrons are
contained in each supercell. Therefore, the lowest-energy
state will be fully occupied and the second state will con-
tain one electron. The second state, which is half occu-
pied, wi11 be referred to as the first excited state.
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III. RESULTS AND DISCUSSION

To illustrate the evolution of the wave-function near
resonance, we present results for five applied voltages or
potential differences between the LHSD, MIDD, and
RHSD of vo, v, , v2, v3, and v4, vo corresponds to zero
applied voltage. Without the applied voltage, the poten-
tial in each QD is the same (

—37.7 mRy), and for
infinitely separated QD's the energy levels would be de-
generate. Since we have made the barriers (d) relatively
thin, 8.4 A, the states in each QD can couple and the de-
generacy is lifted. The x, y, and z degeneracy is also re-
moved by the rectangular symmetry of our QD's; the
confinement energy in the lateral directions (x,y) is
larger than along the z direction. As will be seen, a value
of v2 for the applied voltage corresponds to a near-
resonance condition.

The electronic charge distribution of the lowest two
eigenstates of the zero-field case vo are given in Fig. 2.
The barriers are indicated by dashed lines so that the
three QD's can be easily identified. The charge density of
the lowest energy state E, IFig. 2(a)] is symmetric with
respect to the MIDD. The kinetic energy of the E, state
is lowered by the spread of the symmetric charge distri-
bution. The E& state can also be viewed as a linear com-
bination of the lowest energy states of three uncoupled
QD's. In Fig. 2(b), we depict the charge distribution of
the first excited state (one-half occupied) E2. This state
can also be viewed as a linear combination of the lowest

(b)

energy states of uncoupled QD's, but in this case, the
charge density is localized in the LHSD and RHSD to
reduce the Coulomb interaction with the E, state. The
calculated splitting between E, and E2 is 2.0 meV.

The lowest occupied states E, and E2 shown above
represent linear combinations of isolated QD sinelike
solutions. We also expect to see higher energy states that
are linear combinations of isolated QD p-like solutions
(single QD states with a node in the center of the QD).
An example of a p-like state is given in Fig. 2(c). This
state exhibits p, character in the LHSD and RHSD. Be-
cause of the rectangular symmetry of our QD's, similar
states can be found at higher energy with p character.

A schematic energy-level diagram summarizing the
electronic energy levels in the zero applied voltage case is
given in Fig. 3. The two groups of the threefold degen-
erate states are listed for finite d. In the presence of an
applied voltage, these states become localized in a partic-
ular QD due to the Stark ladder effect ' and the energy of
the RHSD is lower than that of the MIDD, which in turn
is lower than that of the LHSD. For convenience, we
concentrate on the RT between the MIDD and the
RHSD. With the assumption of three electrons in our
system, energy level E& of the system, which is located in

the RHSD, will be fully occupied by two electrons. The
third electron will be in energy level E2, which is local-
ized in the MIDD. As the applied voltage is increased,
level E2 of the MIDD will move into resonance with E3
whose charge density should exhibit p, character and is
confined in the RHSD. Therefore, at resonance we
should see a coupling of the s-like Ez and the p, -like E3
states. Note, however, that in the following discussion,
we will continue to refer to the state which is localized in
the MIDD as E2 and the state which is localized in the
RHSD as E3.

We now proceed to a more detailed discussion of the
dot system under an applied dc electric potential of in-

creasing strength. With a potential difference of v
&

=3~ 7

mKy between the RHSD, MIDD, and LHSD, the two
lowest eigenstates are E&, which is localized in the
RHSD, and E2, which is localized in the MIDD. These
states are shown in Figs. 4(a) and 4(b), respectively. The
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FIG. 2. Zero-field (Uo) charge-density contours in a (100)
plane passing through the center of the computational supercell
for (a) the fully occupied states, (b) the partially occupied first
excited state, and (c) a higher-energy (fifth) excited state with p,
symmetry.

FIG. 3. Schematic energy-level diagram for the zero-field
case (Uo). Numbers in brackets are the degeneracies. p„, p~,
and p, are referred to the symmetry of the states in an isolated
dot (d~ ~ ).
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FIG. 4. Charge-density contours (same plane as Fig. 2) for an

applied voltage of v
&

=3.7 mRy. The two lowest states for this

applied voltage are the sinelike "uncoupled" QD states E, of
the RHSD (a) and E2 of the MIDD (b) ~

FIG. 6. Charge-density contours for applied voltages of
v3 8. 14 mRy (a) and u4 = 1 1.5 mRy (b). Voltage v3 is just
above resonance and v4 well out of resonance.

coupling between the low-energy states, which is evident
in the zero-field case (Fig. 2), has been removed, and the
states are completely localized in one of the QD's. A po-
tential difference of v, =3.7 mRy is not large enough,
however, to bring Ez of the M IDD in resonance with the
E3 state of the RHSD.

By further increasing the potential difference to
v z

=7.4 mRy, states E2 and E3 are brought into reso-
nance. The discrete QD states E2 and E3 combine to
form bondinglike and antibondinglike molecular RT
states with a splitting of 4.0 meV. The charge density of
the bonding state is depicted in Fig. 5, and clearly
demonstrates the resonance condition. The density is
evenly distributed over the MIDD and RHSD. Further-
more, the symmetric character of the E2 state in the
MIDD dot and the p, character of the E3 state in the
RHSD is maintained at resonance. In fact, tunneling can
only occur between these states because of the wave-
function matching condition at the barrier: specifically,
neither wave function has a node in the xy plane. In con-
trast, the lowest-energy E2 state of the M IDD cannot
couple to p„- or p -like states in the RHSD, since their
lobes point in the xy directions and the additional nodes
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FIG. 5. Charge-density contours (same plane as Fig. 2) of the
bonding resonance state, v 2

=7.4 mRy (coupling of the E2 state
of the MIDD and the E3 state of the RHSD) ~ Note the even
distribution of this state over the MIDD and RHSD, and the re-
tention of the symmetry of the individua1 states at resonance.

FIG. 7. Charge-density profiles along the [001] direction for
applied voltages v

&

—v4. Notice the evolution of the charge den-

sity from the sinelike E2 state in the MIDD to the p, -like E3
state in the RHSD. (a) u

&

=3.7 mRy; (b) u2 =7.4 mRy; (c)
u3 8. 14 mRy; and (d) v4 = 1 1.5 mRy.
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FIG. 8. Barrier charge between the MIDD and the RHSD vs

applied voltage. We use this as a static measure of the current
flow from the MIDD to the RHSD as the voltage is passed
through resonance. The asymmetric shape of the curve is a re-
sult of the electron-electron interactions between the tunneling
electrons (E2 or E3 states) and the completely occupied E& state
of the RHSD.

in the xy plane cannot match the E2-state wave function
in the MIDD.

With further increases in the potential difference to
U3 =8. 14 mRy (just above resonance) and v4=11.5 mRy
(well above resonance), the E2 and E3 states are brought
out of resonance and are in reverse order. The charge
distributions of the first excited state (either Ez or E3) for
voltages of U, and U4 are given in Figs. 6(a) and 6(b), re-
spectively. For an applied voltage of u3, the E3 state of
the RHSD is slightly lower in energy than the E2 state of
the MIDD. Although the states still exhibit a resonance
character, the corresponding charge density is more lo-
calized in the RHSD. At an applied voltage of u4, the
states are completely uncoupled: the E3 state is lower in

energy than the E2 state of the MIDD and is localized in

the RHSD.
The dynamics (or sequence of static profiles) of the

charge evolution between the MIDD and RHSD for volt-
ages u, —u4 are summarized in Fig. 7. As discussed
above, the distribution changes from the symmetric E2
state in MIDD [Fig. 7(a)], to the resonance condition be-
tween E2 and E3 [Fig. 7(b)], and to the p, (E3) state in

the RHSD [Fig. 7(d)].
Since we have performed static calculations to simulate

the quasisteady-state flow of charge in the RT process,
we can use a static criterion as a measure of the RT con-
dition. Our criterion is taken as the value of the total
charge in the barrier between the MIDD and the RHSD;
this quantity is plotted in Fig. 8. The maximum of the
barrier charge occurs at the resonance potential value v2,
although the shape of the curve is not symmetric. This
asymmetry is caused by electron-electron interactions be-
tween the first excited states, E2 or E3, and the lowest-

energy state E&, which is fully occupied and localized in

the RHSD. As the potential difference passes through
the resonance condition, electrons flowing to the RHSD
from MIDD are repelled by the Coulomb interaction
with the E, state in the RHSD. Furthermore, the
electron-electron interaction affects the value of the reso-
nance voltage. A smaller value of the resonance voltage
is expected when electron-electron interactions are
neglected. To test this expectation, we reduced the
electron-electron interaction to 1% of its normal value
and searched for the new resonance voltage. The new

voltage was found to be one-half (3.7 mRy) the value ob-
tained using the full electron-electron interaction (7.4
mRy).

The sensitivity of the RT voltage to the electron-
electron interactions suggests the possibility of a light-
switch device, which could be made by controlling the
occupation of the electrons in the ground state (in our
case this would be the E, level in the RHSD). If elec-

trons can be removed from the ground state, the tunnel-

ing electrons, i.e., electrons flowing from the MIDD to
the RHSD, can make a transition from the p, (E3 ) state
to the ground state E, with the emission of light. The di-

pole matrix element will be large, since the transition
occurs between even and odd states within the RHSD.
The radiation can be stopped by injecting electrons into
the ground state of the RHSD.

IV. SUMMARY

In summary, we have applied a scaled version of the
Kohn-Sham equations of density-functional theory to
study the evolution of charge distribution at RT in cou-
pled QD's. We have shown that the tunneling process is

governed by the symmetry properties of the resonant
states. At resonance, the coupled atomiclike QD states
form bonding and antibonding molecular RT states. In
addition, we have found asymmetries of the charge in the
barrier vs voltage (analogous to I Vcurves) a-s a result of
electron-electron interactions between the tunneling elec-
tron and ground-state electrons. Finally, our results have
demonstrated that it is possible to obtain qualitative
dynamical information concerning transport properties
from static calculation, when the processes involved are
in a quasi-steady-state.

ACKNO%'LEDGMENI'S

C.Y.F. would like to thank the Sandia National La-
boratories for financial support. This work was partially

supported (J.S.N. ) by the U.S. Department of Energy un-

der Contract No. DE-AC0476P00789, and the U.S. DOE
Office of High Performance Computing and Communica-
tions. L.A.H. would like to thank Office of Naval

Research for support.

'L. Easki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).
~J. N. Randall, M. A. Reed, R. J. Matyi, and T. M. Moore, J.

Vac. Sci. Technol. B 6, 1861 (1988).
3S. Tarucha, Y. Hirayama, T. Saku, and T. Kimura, Phys. Rev.

B 41, 5459 (1990).
4H. Y. Sheng and J. Sinkkonen, Superlatt. Microstruct. 7, 341

(1990).
~H. Xu, Y. Wong, F. Zhang, and G. Chen, Phys. Status Solidi



46 RESONANT TUNNELING IN COUPLED QUANTUM DOTS 9543

B 163, K25 (1991).
W. Hansen, T. P. Smith III, K. Y. Lee, J. A. Hrum, C. M.

Knoedler, J. M. Hong, and D. P. Kern, Phys. Rev. Lett. 62,
2168 (1989).

Ch. Sikorski and U. Merkt, Phys. Rev. Lett. 62, 2164 (1989).
8U. Sivan and Y. Imry, Phys. Rev. Lett. 61, 1001 (1988).
9K. Kern, D. Heitmann, P. Grambow, Y. H. Zhang, and K.

Ploog, Phys. Rev. Lett. 66, 1618 (1991).
~OFor example, see Science and Engineering of One o-nd Zero

Dimensional Semiconductors, Vol. 214 of NATO Aduanced
Study Institute Series B: Physics, edited by S. P. Beaumont
and C. M. Sotomayer Torres (Plenum, New York, 1990).
G. W. Bryant, Phys. Rev. B 44, 3064 (1991).
A. Lorke, U. Merkt, F. Malcher, W. Weimann, and W.
Schlapp, Phys. Rev. B 42, 1321 (1990)~

A. Kumar, S. E. Laux, and F. Stern, Phys. Rev. B 42, 5166
(1990).
B.Ricco and M. Y. Azbel, Phys. Rev. B 29, 4356 (1984).
H. Schneider, K. von Klitzing, and K. Ploog, Superlatt. Mi-

crostruct. 5, 383 (1989).
~ C. Presilla, G. Jona-Lasinio, and F. Capasso, Phys. Rev. B 43,

5200 (1991).
P. A. Maksym and T. Chakraborty, Phys. Rev. Lett. 65, 108
(1990).
U. Merkt, J. Huser, and M. Wagner, Phys. Rev. B 43, 7320
(1991).
D. Pfannkucke and R. R. Gerhardts, Phys. Rev. B 44, 13 132
(1991).
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
C. Y. Fong, R. F. Gallup, J. S. Nelson, L. L. Chang, and L.
Esaki, Superlatt. Microstruct. (to be published).
D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980).
J. P. Perdew and A. Zunger, Phys. Rev. B 33, 5048 (1981).
A. Ghazali and P. Leroux Hugon, Phys. Rev. Lett. 41, 1569
(1978).
See, for example, C. Y. Fong, R. F. Gallup, L. Esaki, and L.
L. Chang, Superlatt. Microstruct. 7, 147 (1990).


