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Electrons confined on the surface of a sphere in a magnetic field
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We derive an analytic expression for the quantum-mechanical spectrum of noninteracting electrons re-
stricted to move on the surface of a sphere in a uniform external magnetic field. The field dependence of
the energy levels leads to a complex level crossing structure which is manifested in the magnetic proper-
ties. For a fixed number of electrons, the magnetization exhibits irregular discontinuities at low fields
while aperiodic oscillations occur at higher field values. The magnetic susceptibility exhibits sharp
spikes and "jumps, "as the chemical potential crosses the energy gaps between adjacent energy levels.

Simple model systems have often served as useful para-
digms to gain insight into the behavior of real systems. A
notable example is the energy spectrum of a free electron
in a magnetic field' (Landau levels), which provides the
basis for understanding a wide range of physical phenom-
ena, such as oscillations in thermodynamic and transport
properties in metals and semiconductors. In a two-
dimensional electron-gas system, as a consequence of the
Landau quantization, the magnetization and the mag-
netic susceptibility y exhibit exponentially sharp (pro-
portional to inverse temperature) "jumps" and spikes, re-
spectively, at low temperatures. These aspects of electron
gases in confined geometries have been the subject of
many investigations. For example, Azbel', and Sivan
and Imry showed that edge states reduce the sharpness
of diamagnetic susceptibility spikes. Nakamura and Tho-
mas showed, in a temperature-independent context, that
susceptibility spikes arise from a complex network of
avoided level crossings. The diamagnetic spikes have
been experimentally observed in inversion layers by
Fang and Stiles, and in a Brz-GIC (graphite intercalated
compound) system by Markiewicz and co-workers. Cal-
culations on a small metallic cluster also suggest the ex-
istence of sharp features that resemble the susceptibility
spikes.

More recently, the magnetotransport properties in
mesoscopic systems such as electrons confined to a ring,
and by potentials exhibiting parabolic or spherical sym-
metry, have attracted considerable attention due to ad-
vances in fabrication technology. For example, edge
states' and persistent currents in a mesoscopic metallic
ring"' have been a focus of both theoretical and experi-
mental' investigations. However, the problem of elec-
trons confined in a spherically symmetric potential in a
homogeneous magnetic field remains unsolved. An ex-
ample of this is the "diamagnetic Kepler problem, "'
which proved useful in the study of excitons in semicon-
ductors.

where, for simplicity, we ignore spin-dependent terms. R
is the radius of the sphere and we choose the symmetric
gauge A=B( —y, x,O)/2 such that the externally applied
magnetic field B points in the z direction. Since the radial
motion is absent in the limit Vp= ~ it is convenient to
express Eq. (l) in spherical polar coordinates as
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where co, =eB /mc is the cyclotron frequency and
L, = i fit3IBP is the z—component of the angular momen-
tum operator. In the magnetic field, the total angular
momentum is not conserved, but L, is still a conserved
quantity. This allows for separability in the variables 0
and P. Considering %=%a%& and using L,%=I,A% in
the Schrodinger equation results in a wave equation for

This is further simplified by changing to x=cos8

We consider the effect of a uniform magnetic field on
the quantum-mechanical spectrum of noninteracting
electrons whose motion is constrained to the surface of a
sphere. In the absence of the field, the problem is fully
degenerate and, as expected, the field breaks this degen-
eracy. However, the confined motion is analogous to
having a nonuniform field in the case of a restricted pla-
nar geometry. We demonstrate that this leads to interest-
ing level crossing effects in the spectrum that are reflected
in the magnetic response of the system.

Consider the case of a single electron confined to the
surface of a sphere by a potential Vp as described by the
Hamiltonian
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g2E+ k x + n—(n+1) P=O.
$2

(3)

Here,

A, =mR co, /2%=4/40,

and considering +&=(1 x—)" P(x). For n =~/, ~, Eq.
(2) may be reduced to a special case of the generalized
spheroidal wave equation'

2dI' dI'
(1—x ) —2(n+1)x

dx dx

where 4 is the flux through the equatorial plane and 40
0

is a flux quantum. To illustrate, for R =100 A, A, =1 cor-
responds to the field strength of 13 T.

Although P(x) may be expressed in terms of the asso-
ciated Legendre polynomials, it is difficult to calculate
the spectrum directly from this approach. We therefore
consider a Frobenius method by expressing P(x) as either
an even or odd power series corresponding, respectively,
to symmetric and antisymmetric solutions. Substituting
an even power series expansion P(x}=g" Oa2 x into
Eq. (3) leads to a recursion relation for the coeScient
az . The indicial equation leads to the spectrum being
given by the solutions of the following continued fraction:
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where f„(ij )=(n+i)!/(n+ j)!.Similarly, an odd power series P(x)= g~ obz +&x
+' results in
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Each of the continued fractions admits an infinite number
of roots that correspond to bound states of an electron in
an infinite confining potential. By contrast, in a real sys-
tem the number of bound states is limited by the finite
value of Vo (work function} as well as by the field
strength. In the zero-field limit, the roots are given by
E=I(I+ 1), where the (orbital angular momentum) quan-
tum number I labels the quantized energy levels. Each I
level is (2l+1)-fold degenerate. The degeneracy in I, is
lifted in the magnetic field, and the field dependence of
the energy level is given by

E~l ( ~(A, }=
& [E(I I ~(A, )+1, +2l k] ~ (6)

2mR

where E are the roots of Eqs. (4) and (5). For the
remainder of the paper, we denote each state by (I, I, ).
Note that in low fields, the energy of a —I, state is lower
than its zero-field value.

In Fig. 1 we show the variation of EI I I ~
with magnetic

flux 4/4o, for l &9, where the continued fractions were
solved numerically. The complicated field dependence of
the energy spectrum is clearly illustrated. The solid and
dotted lines represent energy levels for the even and odd
value of I, respectively. There are several features of the
spectrum that are worth noting. Although the states
(I, /, ) and (I+1,/, } are nondegenerate in low fields, they
become degenerate at higher field values. Furthermore,
the field strength at which this occurs increases with
(I, I, ). The complex level crossing behavior shown in the
figure arises from the field dependence of (I, —I, ) states.

The relative importance of the linear versus the quadratic
dependence on the magnetic field leads to a decrease at
low fields while an increase results at high fields. The
critical field where the trend reverses increases with l, .

As a result of the level crossings, it is clear that on con-
sidering N noninteracting electrons, the quantum number
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FIG. 1. The energy spectrum as a function of a magnetic field
for states with I &9. The solid and dotted lines represent even
and odd values of I, respectively. In high fields, the formation of
manifolds of states resembling Landau levels is also illustrated.



46 ELECTRONS CONFINED ON THE SURFACE OF A SPHERE IN. . . 9503

(I, I, ) for the highest occupied state is changed with

4/40. For small values of N, the level crossing structure
is simple but it becomes more complicated as N increases.
For example, when N=2 the level crossing pattern with
the increase in the field is given by the sequence

(0,0)~(1,—1)~(2,—2)~(3,—3)~
where each level crossing changes the quantum numbers
by l~(I+I) and by I,~(I,—1). For N=10, the low-

field sequence is given by

(2, —2)~(1,—1)~(2,—1)~(3,—3)~ ' '

while the high-field structure is

-+(5, —5)-+( I, —I )-+(6, —6)~(2, —2)-+ .

At low fields, a simple pattern for the changes in (I, I, )

due to level crossings is absent but it appears as the field
is increased. This appearance is the direct consequence
of states forming manifolds that resemble Landau levels.
Although the number of states in a given manifold in-
creases with the field, the degeneracy does not. As shown
in Fig. 1, with increasing field strength (I, —I) and
(I, —I+1) states form the lowest manifold while the
next-lowest manifold consists of (I, —I +2) and (I, —I +3)
states.

This level crossing behavior leads to complicated struc-
tures in the field dependence of the magnetization and the
magnetic susceptibility. We calculate these properties
from the free energy F=Q —p for fixed N. Here, the
thermodynamic potential

Q=(1/P) g in[1+exp[ P(E —p)]]—,

where p denotes the chemical potential and P=l/kT.
We express the magnetization per unit area as

in the temperature-independent formalism of Ref. 6.
There, the curvature of the energy levels is solely respon-
sible for the spikes in y, and this allows for the correla-
tion of nonmonotonic variations in y with nonintegrabili-
ty in the classical treatment of the problem.

We plot the magnetization as a function of 4/No in

Fig. 2 for N=2, 10, and 30 electrons on the sphere. In
all cases, we consider the temperature P= 500, in units of
A /2mR . The magnetization exhibits irregular sawtooth
oscillations with the field. The discontinuous jumps cor-
respond to level crossings that lower the free energy.
Furthermore, these oscillations become more pronounced
as well as more irregular as N (Fermi energy) is increased.
In contrast, with increasing field value, the magnetization
exhibits regular sawtooth oscillations. This is most clear
for the case of N =2 and occurs due to the highest occu-
pied state changing (I,I, ) with a regular pattern at a level

crossing, as shown earlier. These oscillations are similar
to the de Hass —van Alphen effect for electron gases. It is
the absence of such a pattern (in low fields) that gives rise
to the irregular oscillations seen in the curves for N =10
and 30. However, the magnetization oscillations become
regular as the field is increased although they are aperiod-
ic in the normalized flux 4/4o. The transition from the
irregular to regular oscillations depends on N. For few
electrons, this transiton occurs in low fields, but a
stronger field is necessary as the number of electrons in-
crease.

In Fig. 3, we plot the magnetic susceptibility as a func-
tion of 4/4o for N=2, 10, and 30. In understanding the
variations in g, it is worth noting that both diamagnetic
and paramagnetic contributions have been considered.
The discontinuities in the magnetization curve in Fig. 3
appear as spikes (diamagnetic) in the magnetic suscepti-
bility. These spikes are followed by a paramagnetic sus-
ceptibility jurnp because two levels that cross do not have

M= g f(E)
o l, l

whe;e f (E) is the Fermi function. From Eq. (7), we ob-
tain the magnetic susceptibility
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where gz =cosh [P(E—p)/2], and the derivative of the
chemical potential with respect to the field is obtained
from the normalization condition N =g& & f(E), I I I I I I
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For fixed N, the chemical potential oscillates with the
field. These oscillatory features in p as a function of
W/40 arise from level crossings that decrease the free en-

ergy. As we show below, this variation is crucial for the
existence of discontinuities in the magnetization and
spikes in the magnetic susceptibility. It is worth noting
here that the last two terms in Eq. (8) are not considered

8 4 6

FIG. 2. Curves showing magnetization as a function of A, for
electron occupation number N=2 (bottom), 10 (middle), and 30
(top panel). The temperature P=500 in units of A'~/2mR'.

Discontinuities in the magnetization correspond to decreases in
the free energy due to the level crossing structure in Fig. 1.
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FIG. 3. Magnetic susceptibility as a function of A, for N=2
(bottom), 10 (middle), and 30 {top panel). The width of the
spikes arise from the temperature dependence of the magnetiza-
tion discontinuities.

the same field dependence. Furthermore, the width and
the amplitude of the spikes are not identical, since each
discontinuity has a slightly different temperature depen-
dence. A small jump in the magnetization curve leads to
strong temperature dependence in the magnetic suscepti-
bility. In low fields, the paramagnetic contribution de-
pends on the field as well as the number of electrons N.
The field dependence of y is most pronounced for N =30
where the susceptibility gradually decreases as the field is
increased. This trend reflects that as the highest occu-
pied state is in the lowest manifold (at high fields), there
is an approximate linear dependence of the spectrum on
the field. Furthermore, the paramagnetic contribution to
y increases with the number of electrons (from bottom to
top panel). When N exceeds some critical value N„g
may become larger than the value I/4sr. In this situa-
tion, the system becomes thermodynamically unstable
with respect to the magnetic phase separation. '

In summary, we have solved the quantum-mechanical
problem of noninteracting electrons confined on a sphere

in a magnetic field. We recognize simple patterns in (l, 1, )

that account for the complex level crossing structure in
the energy spectrum, which arises from the field depen-
dence of (l, l, ) states. These patterns are manifested in
physical effects such as the magnetization oscillations and
discontinuities and spikes in the magnetic susceptibility.
We observe that, at higher field values, the magnetization
for electrons in the ground state exhibits regular oscilla-
tions with the flux 4 through the equatorial plane. There
is no clear period, although an approximate one would be
close to the flux quantum 40. The first several oscilla-
tions indicate variable periodicity, always larger than 40,
which decreases with the field. This is consistent with the
Aharonov-Bohm effect in the spherical geometry where
the wave function is centered away from the equatorial
plane. With increasing number of electrons, the low-field
magnetization oscillations are irregular, while the regular
oscillations discussed above appear as the field is in-
creased. The complicated low-field energy spectra con-
dense into well-defined manifolds in the high-field limit.
These manifolds resemble the Landau fan of energy levels
and, for example, the lowest manifold consists of (l, —l)
and (I, —l+1) states. In general, the nth manifold con-
sists of all states with labels ( l, l +2n) —and
(I, —l+2n+1) and the number of states in each mani-
fold increases with the magnetic field.

In conclusion, we suggest a model for mesoscopic sys-
tems where the interesting thermodynamic properties
arise from the interplay between the confined geometry
and applied magnetic field. This model may be realized
in a small hollow spherical conductor where our solutions
can be modified to account for finite, uniform thickness
or in members of the fullerenes. ' More realistic analysis
may require inclusion of electronic interactions that
would lead to nonintegrable dynamics, as would nonsys-
tematic deformations, such as variable thickness, of the
confining geometry.
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