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Low-temperature ac conductivity of adiabatic small-polaronic hopping in disordered systems
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Electronic hopping is commonly treated as occurring between localized states that are so widely

separated that the motion is limited by the electronic transfer energy linking the sites. Then, the jump
rate is usually assumed to fall exponentially with increasing intersite separation. However, this ap-

proach is inappropriate in many situations where the separation between the hopping sites is small

enough that electronic carriers adiabatically follow the atomic motion. For adiabatic motion, the jump
rates are essentially independent of intersite separation. Here the low-temperature ac conductivity for
adiabatic small-polaronic hopping between close pairs of sites is calculated presuming a distribution of
local site energies. Low-temperature relaxation of each such carrier is assumed to occur primarily

through the emission of a very-low-energy acoustic phonon. For sma11-polaronic hops, low-temperature
one-phonon emission rates are extremely slow. Dispersion of the transition rates arises from the depen-
dence of the relaxation rates on the energy separations between the sites. In the low-temperature limit,
the polarization conductivity is proportional to both temperature and frequency. Above this low-

temperature limit, the severity of this temperature dependence increases with increasing temperature. In
this higher-temperature regime, the temperature dependence of the conductivity also decreases as the

frequency is increased. These results are in accord with observations in many systems with hopping con-
duction, including those for which there is explicit evidence of adiabatic small-polaronic hopping (e.g.,
p-type MnO, boron carbides, and many transition-metal-oxide glasses).

I. INTRODUCTION

Phonon-assisted electronic hops may be divided into
four categories. These four categories result from the
two pairs of complementary regimes that define the elec-
tronic and vibrational dynamics associated with a jump.
First, a hop is either small-polaronic or nonpolaronic.
Second, a hop is either adiabatic or nonadiabatic. Taken
together these two dichotomous situations define four
distinct types of electronic hops: adiabatic or nonadiabat-
ic small-polaronic hops as well as adiabatic or nonadia-
batic nonpolaronic hops.

A small-polaronic hop is one that involves at least one
small-polaronic state, an electronic state with a strong
net electron-lattice coupling. Since an electronic state is
generally strongly coupled only to vibrational modes with
wavelengths that exceed the electronic state's spatial ex-
tent, ' a severely localized electronic state has a strong
net electron-lattice coupling strength. By contrast a non-
polaronic hop involves only nonpolaronic states, states
with weak net electron-lattice coupling strengths. Non-
polaronic hops exclusively involve large-radius electronic
states, states that encompass very many atoms. The
atomic transition-metal-ion states between which hop-
ping occurs in transition-metal-oxide glasses are small po-
laronic. However, the large-radius shallow donors and
acceptors in silicon and germanium are nonpolaronic. '

The temperature dependences of the hopping mobility
at high enough temperatures distinguish small-polaronic
hops from nonpolaronic hops. At temperatures above a
fraction ( = —,

'
) of the characteristic phonon temperature,

small-polaronic hops predominantly involve the absorp-

tion and emission of very many phonons. ' ' Small-
polaronic hopping yields thermally activated mobilities
with activation energies that typically lie between 0.1 and
1 eV. However, nonpolaronic hops, dominated by the ab-
sorption or emission of a single phonon, have jurnp rates
that only increase linearly with temperature in this tem-
perature regime. ' In other words, the "differential ac-
tivation energy" associated with nonpolaronic hopping
rises to a value in this temperature regime that is only the
thermal energy kz T, where k~ is the Boltzamnn constant
and T is the temperature. Thus, the temperature depen-
dence associated with the hopping mobility, at say room
temperature, indicates whether the hopping is small pola-
ronic or nonpolaronic. With this criterion, hopping ob-
served above cryogenic temperatures is typically small-
polaronic hopping.

As the temperature is lowered below this "semiclassi-
cal" thermally activated regime, the temperature depen-
dence of a small-polaronic jurnp rate becomes progres-
sively milder. * This "multiphonon freeze-out"
phenomenon provides a non-Arrhenius temperature
dependence that is qualitatively similar to that often as-
cribed to variable-range hopping. Generally, the freezing
out of multiphonon processes and the percolative aspects
of hopping in a disordered material act in tandem and
produce similar effects. Frequently, the temperature
dependence of the dc conductivity is nearly independent
of changes that should affect percolative aspects of hop-
ping (e.g., altered disorder or dimensionality). ' One then
infers that the rnultiphonon-freeze-out phenomenon is
the dominant effect at the temperatures ~here this behav-
ior is observed. "

Adiabatic hops occur between sites between which the
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tween the hopping sites of the polarization center are
very small. In particular, low-temperature rates of
small-polaronic hops in which few phonons are emitted
become extremely small because of their suppression by
the small-polaron factor exp( —2S), with S »1, in con-
ventional small-polaron notation.

Thus, the ac conductivity for adiabatic small-polaronic
hopping motion is ascribed to polarization centers
formed by charged carriers that move between nearly de-
generate localized states. Because sites that are especially
close to one another share a common environment, such
pairs are especially likely to be nearly degenerate with
one another. Figure 2 illustrates polarization centers
formed by pairs of sites that occur among a random dis-
tribution of localized states. These pairs of sites are con-
sidered two-site polarization centers, since the energies of
the two sites of these polarization centers are closer to
one another than are those of the sites that limit the dc
transport. That is, dc transport requires hopping away
from these polarization centers. As illustrated in the
lower portion of Fig. 2, such hops require the absorption
of relatively large amounts of energy. Thus, in this
scenario, as the temperature is lowered, phonon absorb-
ing hops are suppressed, freezing out the dc transport.
However, since the ac conductivity is not limited by
phonon-absorption processes, it survives.

In Sec. II, the contribution to the ac polarization con-
ductivity of a carrier that hops between the two sites of a
two-site polarization center is calculated. In Sec. III, a
formal expression is found for the net ac conductivity
arising from the adiabatic hopping of polarons among
sites with a distribution of energy levels. The relaxation
rate for low-temperature acoustic-phonon-assisted hop-

ping between pairs of states is determined in Sec. IV. The
calculation is completed in Sec. V when the rate derived
in Sec. IV is combined with the formal expression found
in Sec. III. The calculated ac conductivity rises sub-
linearly with applied frequency and rises with an increas-
ingly strong temperature dependence as the temperature
is raised. These behaviors are similar to those measured
in very many systems, including those in which adiabatic
small-polaronic hopping has been firmly established.
Some examples of systems in which the ac conductivity
measured at low temperatures is similar to that calculat-
ed here are the transition-metal-oxide glasses and the bo-
ron carbides. The physical arguments and results are
summarized in Sec. VI.

II. MODEL: A TWO-SITE POLARIZATION CENTER

Here, the ac conductivity is modeled as arising from
polarization centers comprising two sites between which
a carrier adiabatically transfers in response to an ac field.
The two-site picture should give at least a qualitative ac-
count of the effect of polarization centers on the ac con-
ductivity.

The two sites that share the single carrier are denoted
as sites 1 and 2. The local ground-state energies associat-
ed with a small polaron occupying either of these sites are
c., and c.2, respectively. With the polaronic transfer ener-

gy associated with moving a small polaron between the
two sites being denoted as t, the two eigenvalues of the
eigenstates of the pair are (e, +E2)/2+[[(e, —E2)/2]
+t~]'~. For adiabatic polaron hopping t~ is indepen-
dent of the intersite separation. Its adiabatic value is
=V'Eb h v,»»„/~ exp( —S).'"

In terms of the average energy of the pair
e=(E, +cz)/2 and the energy difference between the two
sites b, =@2—E„ the eigenvalues of the pair are a+5/2,
where 5/2—= [[(c,, —E2)/2) +t ]'~ . The occupation
probabilities of these two states p, and p2 are also denot-
ed by the subscripts 1 and 2, since these state occupation
probabilities correspond to the site occupation probabili-
ties in the limit of t ~0. The master equation for the
rate of change ofp, and p2 is

Bp, (t)/dt =p (t)R (2 1)—p, (t)R (1 2)

=R(2~1)—p, (t)[R(1~2)+R(2~1)], (2)

FIG. 2. In a two two-site polarization centers among a ran-
dom distribution of sites, depicted as solid dots, are highlighted
by being enclosed within circles. In b the energy levels of the
sites of these two centers and of an intermediate {high-energy)
site are shown. The horizontal line depicts the chemical poten-
tial p. The dashed arrows indicate that dc transport requires
hopping to an intermediate site with higher energy.

where

1/r:=R (1~2)+R(2~1), (4)

and the condition of detailed balance in equilibrium
p&( ~ )R (1~2)=p2( ao )R (2~1) has been used.

To calculate the frequency-dependent conductivity,

where R(2~1) and R(1~2) are the rates for transitions
between states 1 and 2. The conservation of probability
condition p, +p2 = 1 has been used in obtaining the
second equality of Eq. (2). This differential equation is
readily solved to yield the relaxation from an initial value
p, (0) to the equilibrium value p, ( ~ ):

p, (&)=p, ( ao )+ [p, (0)—p, ( ~ )]exp( r/r), —
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consider the turning on of an electric field parallel to the
two sites of the pair at t =0. The imposition of the elec-
tric field E alters the energy difference between sites 1

and 2 from 5 ( =ez —e, ) to b +qER, where R is the sepa-
ration between sites 1 and 2. The imposition of the small
electric field shifts the equilibrium occupation probability
for the carrier occupying site 1 from its value without the
field (at t =0) to that with the field (at t = oo )

p i (0)—/z i ( oo )= —(Bp, /85)(B5/Bb, )qER

=sech (P5/4)(b, /5)PqER /8,
where

p, =1/[exp(P5/2)+1] .

Here p is I/k&T with kii representing the Boltzmann
constant and T representing the absolute temperature.

The polarization current density for motion of a carrier
between a pair of sites in the volume V after the field is
applied at t =0 is

J ( t ) = —
( qR / V)Bp, ( t )I8t

=(qR/Vr)[p, (0)—p, ( oo )]exp( t/r)—
=E(pq R /8Vr)( ~h~/5)sech (p5I4)exp(

tlat)

.—

Then, taking the Fourier transform of both the current
and the electric field, the real part of the polarization
conductivity from a pair of sites is found to be

op„,(co) =Re[J(co)/E(co)]

= (Pq R co/8 V)(
~
6

~
/5)

Xsech (p5/4)[oil/[I+(~r) ]j .

It is noted that the ac conductivity of the pair Eq. (8)
vanishes both when the energy difference 5 vanishes and
when 5, and hence 5, approaches infinity. As noted pre-
viously, the first situation occurs because the charge
transfer that accompanies a transition between states 1

and 2 is ~b, ~/5. The polarization conductivity also van-
ishes as p5~ oo, since the ability of the electric field to
alter the polarization falls with the extent of the preexist-
ing polarization.

III. ac CONDUCTIVITY

To obtain the net polarization conductivity, the contri-
butions of all polarization centers in the solid must be
summed. To begin, the number of polarization centers
whose two sites have an average local energy c. lying be-
tween c. and @+dc. and an energy difference lying be-
tween 6 and 5+de is written as Vpz(e, b)dade, . The
subscript 2 on pz(e, b, ) is employed to emphasize that this
function has the dimensions (energy) (volume) ' rather
than that of the density of states, (energy) '(volume)
For example, if a density of sites n has a Gaussian distri-
bution of energies with a rms spread of 8', for any pair
of sites one has pz(E, 5)=(n/2m. W )exp[ —[e
+(b/2) ]/W ].

A transition between states requires that one of the two
states be initially occupied while the other is initially
unoccupied. For states labeled as 1 and 2 the probability
of one and only one of the two sites of a pair being occu-
pied is given by the occupancy factor,
P„=f,(1 fz)+fz(l —f, ). The—occupancy factors f,
and fz are taken as Fermi functions to ensure that the
carriers do not doubly occupy a state. The energies of a
carrier in states 1 or 2 are then written as e —5/2 or
c.+6/2, respectively. After some algebraic manipula-
tions, one obtains

P,„, =cosh(P5/2) I [2 cosh[P(e —5/2 —/z)/2]

X cosh[P(v+5/2 —
/z) /2] ]

=cosh(p5/2) /[ cosh[p( e —
p, ) ]+cosh(p5/2) ]

where p is the chemical potential for the carriers. Sum-
ming up over all polarization centers the net real part of
the polarization conductivity becomes

cr „(co)=(q (R )co/8) f db(~b, ~/5) f d(PE)pz(e, b, )/[cosh[P(e —/z)]+cosh(P5/2)] .
cosh (P5/4) [I+(cor) ]

(10)

In writing this equation, it is presumed that the relaxa-
tion time for charge transfer between the two sites of a
center, ~, is not a strong function of their average energy,
C.

To carry out the integrations of Eq. (10), some
simplifications are now made. First, it is anticipated that
the principal contributions to the pc, integral will occur
when c is close to p. This presumption is based on the
observation that the two energies of the two sites of the
pair must straddle p for only one of the sites to be occu-
pied as T~O. Then, presunring pz(E, b, ) to vary slowly
with e when c, is in the vicinity of p, pz(e, b, ) is replaced
by pz(/z, b, ) in the integrand. Noting that the integrand
falls off exponentially for large values of ~p(s —

p, )~, the

range of integration of pE may be extended to be from
—~ to ~. Carrying out this procedure yields a known
integral. Performing the integration and rearranging
terms yields a simple result,

f d (Pe )pz(e, 4)I[cosh [P(e—p )]+cosh(P5/2) ]

=pz(/z, b )f dx [cosh(x)+cosh(P5/2)]

=pz(/z, b, )(P5 )csch(P5/2) .

Inserting Eq. (11) into Eq. (10) and employing identities
of hyperbolic functions yields another expression for the
polarization conductivity:
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o ~i(co) = ( q ( R ) co )f d 6 p~( p, 5 )

@lb, l coth(P5/2) 2cor

16cosh (P5/4) 1+(cor)

(12)

The occupation probability and polarizability of a
given two-site center produce the P-dependent factor in
the integrand of the integral in Eq. (12). This factor rises
from a value of zero at 6=0 to a maximum and then falls
exponentially within increasing 5 as exp( —P5/2). The
final factor in the integrand of the integral in Eq. (12) is a

dynamic factor that describes motion between the two
sites. This factor achieves its peak value of unity at the
value of 6 for which cow.=1. The temperature depen-
dence of o,i(co) arises both, explicitly, from the P-
dependent factor and, implicitly, from the dynamic factor
through the temperature dependence of ~. With the pri-
mary contributions to cr~,i(co) coming from the vicinity of
cov =1, one can interpret the polarization conductivity of
Eq. (12) as being the product of the carrier's charge q, its
"mobility" when it moves between sites at the frequency
co, q(R )co/k sT, and the density of polarizable centers
at temperature T that can respond at frequency co:

l hl coth(P5/2) 2cor

16 cosh (P5/4) I+(cur)

0 f d5 5coth(p5/2) 2cor

8 cosh (P5/4) I+(cur)~

(13)
In obtaining the second line of Eq. (13), (1) it is noted that
r is an even function of 5; (2) it is presumed that pz(p, , b )

depends only weakly on 6 within the regime of principal
importance in the integration; and (3) the integration
variable is converted from 6 to 5, noting that
Bh!85=5/h. A factor of 2 is introduced with this
change of variable because 5 is an even function of b, .

Consider the frequency dependences of cr „(co) of Eq.
(12). If the frequency is sufficiently high so that cur)) 1

throughout the region in which the remaining factors of
the integrand are appreciable, there is negligible frequen-

cy dependence of cr i(co) Alterna. tively, if the frequency
is sufficiently small so that co~((1 throughout the region
in which the remaining factors of the integrand are ap-
preciable, cr~,i(co) is both relatively sinall and proportion-
al to co . These limits, where either co~&&1 or cow&&1

throughout the entire integration region, essentially
reproduce the limiting results for a single pair, Eq. (8).
However, if the domain of integration includes values of
l
b, l for which cor = 1, an intermediate frequency depen-

dence is obtained.

IV. LOW-TEMPERATURE RELAXATION RATE

To proceed further, an expression for the relaxation
time, ~, as a function of 5 must now be introduced. As
discussed in the introductory section, the low-
temperature low-frequency ac conductivity due to adia-
batic small-polaronic hopping in disordered materials is
dominated by very slow transitions that arise from hops
between sites of nearly equal energy. Thus, r of Eq. (4) is

evaluated with transition rates appropriate to low-
temperature adiabatic small-polaron transitions for
which 5 is sufficiently small that the predominant transi-
tions occur with the absorption or emission of only a sin-

gle acoustic phonon of energy 5.
The relaxation time ~ is associated with transitions be-

tween states 1 and 2. However, states 1 and 2, l
1 ) and

l
2 ), may be expressed as superpositions of (orthogonal-

ized) localized states associated with the carrier residing
on either site 1 or site 2, P, and Pz. In particular,

and

l 1)=c;y,+c;y,

l2) =c,+y, +c,+y, ,

(14a)

(14b)

where the minus sign corresponds to state 1 and the plus
sign to state 2. For this two-site problem, the expansion
coefficients are

and

C+, = 2t
P

Q(2t, )'+(5+6, )'

5+6

Q(2t, )'+ (5+6,)'

(1Sa)

(1Sb)

Since the dominant phonon-assisted transitions be-
tween nearly degenerate states at low temperature involve
the emission or absorption of long-wavelength acoustic
phonons, the deformation-potential model can be em-
ployed. That is, the electron-lattice interaction energy
for a carrier at position r is written as

V(r)=iED&A/2psVQ&lql[bqexp(iq r) c c ]-, . .
q

(16)

where ED is the deformation-potential energy, p in the
solid s density, s is the longitudinal sound velocity, V is
the solid s volume, and bq is the annihilation operator for
a phonon of wave vector q. The matrix element of V(r)
between states 1 and 2 is then evaluated to yield

(2I vl 1 ) =c,+c; (y, l vip, )+c~+c; (y, l vip, )

=(t, /5)[(p, l vlf, ) —(p, l vip, ) ]

=(t~/5)(g, l Vlgi ) [1—exp(iq R)] . (17)

In the first line of Eq. (17) the customary step of neglect-
ing terms involving matrix elements of the electron-
lattice interaction between different localized states is em-
ployed. ' In the limit of long-wavelength phonons the
orthogonality of the local (Wannier) wave functions en-
sures that these terms vanish. In obtaining the second
line of Eq. (17) the products of the expansion coefficients
have been evaluated. In obtaining the last equality, R is
defined as the position vector from the centroid of site 1

to that of site 2. Evaluation of the matrix elements of Eq.
(17) is completed by noting that the only factor in the de-
formation potential that depends on the electron's posi-
tion is exp(iq. r). Matrix elements of this factor are
essentially unity when the wavelengths of the involved
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sponding to cow=1, defined as 50. Expanding the dynam-
ic factor about its peak value one obtains

=exp[ —f (5—50) /2],1+(coi.)
(23)

where f=c}(—cor)/c}5 evaluated at co~.= l. In general, f
may be written as —n/50, where n is a function of tem-
perature and 50 is a function of both co and temperature.
In the low- and high-temperature limits of Eq. (22) these
functions are very simple. For example, at low tempera-
tures where P50/2& 1, one readily finds from Eq. (22)
that f= —3/50 and 50 ~ co'~ . Alternatively, when
P50/2«1 one finds from Eq. (22) that f= —2/5o and
50 ~ co' . Here, interest will focus on the low-
temperature limit, although f shall be written as n /5O—
for generality. In Fig. 3, the Gaussian approximation to
the dynamic factor, given by Eq. (23), is compared with
the exact result in the low-temperature regime where

'~5 . This approximation is seen to be reasonably
good.

The remaining factor of the integrand of Eq. (13) is
(5/8)coth(P5/2)sech (P5/4). At low temperatures
where P5/2»1 this factor may be approximated as

l

(5/2)exp( —P5/2). Presuming that the principal contri-
butions to the integral of Eq. {13)occur at such values of
P5, the integral may be approximated as

n „„(co., T ) = [pi(Ic,O) /2]

X f d 5 5 exp( —P5/2)

Xexp[ —n (5—50) /2(5O) ], (24)

where it is noted that the minimum value of 5 is 2t .
Introducing the change of variable x =5/5O transforms

Eq. (24) to

n „„(co,T) =[p2(p, O)50/2]

X f dx x exp( —P50x/2)

Xexp[ n—(x —1) /2] . (25)

The product of the exponential factors of the integrand
of Eq. (25) is peaked at a value of x that shifts from unity
to smaller values of x as P50 is increased. This effect is
evident upon completing the square of the arguments of
the exponentials contained within the integrand of Eq.
(25):

n&„„(co,T)=[pi(p, O)50/2]exp[ —(P50/2)+(P50/2) /2n ]f dx x exp[ n[x——I+(P5o/2n )] /2]J . (26)

The integral of Eq. (26) can be evaluated with changes of variable to z and z, where z =(n/—v'2)[x —I+(p50/2n )]
and zo—= (n/i/2)[2t /50 —1+(P50/2n )]:

n~„„(co,T)= [pz(p, O)50/2]exp[ —(P50/2)+(P50/2) l2n ]

X f d(z /n )exp( —z )+[1—(P50/2n )](v'2/n) f dz exp( —z ) .
Zp ZQ

(27)

n&„„(co,T)= [pi(p, O)/2](50/n) exp[ (zo) (P—5OI2)+—(P50/2) l2n ]

[1—(P5o/2n )]
X 1+ — [1—1/2(z ) ] .

zo 2/n

= [pz(JLc, O)5O/2]exp[ —(P50/2)+(P50/2) /2n ]

X [(1/n )exp[ —(zo) ]+[1—(P50/2n )]+n./2n erfc(zo)] .

At low temperatures, with zo being large, zan'm. exp[(zo) ]erfc(zo)=1 —1/2(zo) . Using this relation and the
definition of zo, Eq. (27) becomes

=[pi(}It,,O)/2](50/n) exp[ —{n l2)[1 (4t /50)+(2Pt~ln )—{2t l5O—) ]J

1/2(zo) +(2t /50)/[(P5o/2n ) —1]
X

1+(2tp /5O)/[(P50/2n ) —1]
(28}

Presuming that t~ (generally & 10 ~ficoD } is much smaller
than any other physical parameter in Eq. (28), Eq. (28) is
simplified by letting t —+0. Then, Eq. (28) reduces to

ni,„,.(co T}=p2(p, O)(50/nzo) exp( —n2/2)/4

(k~ T)2
=2P2(P~O)

2 exp( —n /2) .[1—(2n ks T/50)]2
(29)

Equation (29) may be obtained more directly from Eq.
(25) if its integral is evaluated in a less general and
methodical manner. In particular, in this more direct ap-
proach, the focus on small values of x is anticipated as
exp[ n(x —1) l2] —is replaced by exp( n l2)—
Xexp(n x) in the integral's integrand. In addition, the
lower limit of integration of the integral is set equal to
zero. Direct integration of the simplified integral then
immediately yields Eq. (29).
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Multiplying n „. (co, T) contained in Eq. (29) by

q (R )co/kz T yields an expression for the low-
temperature low-frequency polarization conductivity that
may be expressed as

(~/~op)( T/To )
(J

p )( co ) =cT o
[1—( T/To )(~p/~) ' "]'

where two constants are introduced:

o p= 2q —(R )p2(p, O)ct)ok' Tpexp( n—/2)

and

(~o) "/To=2n kaa)' "/&o .

(30)

Here coo and To serve as nonindependent scale factors for
the frequency and temperature. Note that 5o generally
rises with e. In particular, in the low-temperature re-
gime, n =3 and 50 is proportional to co' . Thus, the tem-
perature and frequency dependences of the denominator
cause cr~„(co) to manifest a progressively weaker rise with
increasing temperature as co is increased. As the temper-
ature is lowered sufficiently, the conductivity becomes
simply proportional to both temperature and frequency.
These findings are illustrated in Fig. 4, where
log, o[o~,~(co)/crp] of Eq. (30) is plotted against Tp/T for
four values of co/~o where n is its low-temperature value,
3. The plots of Fig. 4 are in qualitative agreement with
measurements in systems for which there is evidence that
adiabatic small-polaron or small-bipolaron hopping
occurs. '

3
O

C4
O

0-

I

6
To/T

FIG. 4. The normalized polarization conductivity of Eq. (30)
with n =3 is plotted against the dimensionless reciprocal tem-

perature To/T at reduced frequencies of co/coo=1, 10, 100, and

1000.

VI. SUMMARY

For many, if not most, systems with small-polaronic
hopping the intersite separations are sufficiently small
that the hopping is adiabatic. In this adiabatic regime,
the small-polaronic jump rates are insensitive to intersite
separations. As the temperature is lowered, dc conduc-
tion in disordered systems with adiabatic polaronic hop-
ping is progressively suppressed as carriers find it increas-
ingly hard to negotiate diffusion-limiting difficult hops
that require the absorption of athermal amounts of vibra-
tional energy. However, since ac conduction does not re-
quire carriers to perform these difficult hops, the ac con-
ductivity is generally very much larger than the dc con-
ductivity at low temperatures.

In many systems, such as transition-metal-oxide glasses
and the boron carbides, ' the low-temperature low-
frequency ac conductivity is associated with a very small
fraction (e.g. , O. l%%uo) of the carriers that contribute to the
dc conductivity. For this reason, the ac conductivity
may be viewed as arising from isolated polarization
centers. A polarization center is a rare cluster of sites
among which carriers can move with relative ease. In
particular, the energy differences between a center's sites
cannot be much greater than k~ T. That is, the polariza-
tion centers are composed of sites whose energy levels are
nearly degenerate with one another. Since pairs of sites
that are unusually close to one another tend to experience
nearly equivalent environments, such pairs of sites natu-
rally form polarization centers.

Since the energy differences between the sites of the po-
larization centers are much lower than the Debye energy,
relaxation can occur with the emission or absorption of
only a single acoustic phonon. In fact, for low-
temperature small-polaronic hopping between nearly de-
generate states, hopping is predominantly due to the
emission or absorption of only a single low-energy acous-
tic phonon.

Since the low-frequency ac conductivity measures the
carriers' response at rather low frequencies ( &10 Hz),
the carriers of the polarization centers must move be-
tween nearly degenerate sites at these very low frequen-
cies. That is, the relaxation rates must be very much
lower than vibrational frequencies. For small-polaronic
hops, the rates for single-phonon emission are especially
small. In particular, the rates for low-temperature
single-phonon hops of small polaronic carriers are pro-
portional to the factor exp( —2S), the so-called band-
narrowing factor of small-polaron theory. ' ' Typically,
S is at least 10. Thus, this factor reduces the low-
temperature rate for a small polaron's emission of a single
phonon by at least nine orders of magnitude
[exp( —20)=2.5X10 ] from that associated with hop-
ping between shallow-impurity centers (where S~O). '
It is for this reason that the adiabatic hopping of small
polarons and small bipolarons can account for the low-
frequency ac conductivity observed at low temperatures.

The presence of disorder produces a distribution of en-

ergy differences between the sites of polarization centers.
This spread of energy differences 6 produces dispersion
of the relaxation rates. The polarization conductivity is
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the sum of contributions that arise from polarization
centers with different energy differences. The net polar-
ization conductivity, given by tT~&(co) of Eq. (30) and il-

lustrated in Fig. 4, rises with increasing temperature.
This temperature dependence also decreases as the fre-
quency is increased. In the low-temperature limit the po-
larization conductivity is proportional to both tempera-
ture and frequency. These results are in accord with ob-
servations in many systems with hopping conduction, in-
cluding those for which there is other evidence of adia-
batic small-polaronic hopping.

These findings are obtained with very general con-

siderations. The generality of the theory is compatible
with is predictions consistency with experimental obser-
vations of dissimilar systems for which there is evidence
of adiabatic small-polaronic hopping.
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