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Models with inverse-square exchange
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A one-dimensional quantum N bod-y system of either fermions or bosons with SU(n) "spins"

(or colors in particle physics language) interacting via inverse-square exchange is presented in this
paper. A class of eigenstates of both the continuum and lattice version of the model Hamiltonians is
constructed in terms of the Jastrow-product-type wave function. The class of states we construct in
this paper corresponds to the ground state and the low-energy excitations of the model that can be
described by the efFective harmonic Quid Hamiltonian. By expanding the energy about the ground
state we find the harmonic fluid parameters (i.e., the charge, spin velocities, etc.) explicitly. The
correlation exponent and the compressibility are also found. As expected, the general harmonic
relation [i.e., vs = (v~vg) j is satisfied among the charge and spin velocities.

I. INTRODUCTION

In this paper we report an exact treatment of a one-
dimensional system of particles with SU(n) "spins" in-
teracting with the inverse-square, two-body exchange in
continuum space. In particular, we show that a class of
eigenstates of the Hamiltonian is given by the Jastrow-
product type of wave function. We also show that this
model can be put on the lattice for all the positive integer
values of the dimensionless interaction parameter which
is defined in Eq. (2.1). The continuum version is a direct
generalization of Sutherland's model of interacting spin-

less fermions (or hard-core bosons). i The lattice version
corresponds to the SU(n) t demode-l, which, at n = 1,
maps to the Haldane-Shastry model. z

Figure 1 shows how various models with the inverse-
square exchange have evolved from the original Suther-
land model. In the figure the models that already exist
are in rectangular boxes and the models that we present
in this paper are in ovals. The solid arrows mean "gener-
alized from" or "evolved from. " Two equivalent models
that are represented in difFerent ways are connected by a
dashed arrow. We emphasize that while the bosonic tJ-
model (A odd) is a direct generalization of the bosonic
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rectangular boxes and new models that are
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are lattice version. The solid arrows mean
"evolved from" or "generalized from. " The
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supersymmetric case (A = 1), the fermionic t J-model (A
even) is not directly related to the fermionic supersym-
metric t J-model that Kuramoto and Yokoyamas found.

II. MULTICOMPONENT GENERALIZATION
OF SUTHERLAND)S MODEL

For convenience we consider a periodic system, where
the Hamiltonian in units of h /rn is given by

H= —-' +A
2 A P. .

i
(2.1)

where A is the dimensionless interaction parameter. P,j
is an operator that exchanges particle spins at x, and xj,
and d(x) = (L/vr)~ sin(xx/L)~. d(x, —xj) is the chord
distance between particles at x, and xj on a circle with
circumference L. If all particles have the same spin, this
model reduces to the system of spinless particles studied
by Sutherland. Note that Sutherland's couphng parame-
ter A' corresponds to A —1 in our notation. For example,
the spinless free Fermi gas corresponds to A' = 1, but in
our notation A = 0.

It is easily found that the wave function 4 must vanish
as ~x, —xj

~

"+i (~x, —xj ~") as x, —xj —+ 0 in the case of
symmetric (antisymmetric) spin configuration of the two
particles at x, and xj. And if 0 ( A ( 1 the effective
interaction strength is attractive for the antisymmetric
spin configuration and there is some ambiguity in this
case as it must be further specified whether 4' vanishes
as ~x, —xj~ or as ~z, —xj~

" as particles approach. If
we choose the first boundary condition the free fermion
limit is obtained as A ~ 0.

There are two possible interpretations for this system.
The first is to consider the system as a ring embedded
in a plane. Hence, even though the particles are con-
strained to move in one dimension, the interaction is two
dimensional in nature. The other is to regard the system
as strictly one dimensional by taking 1/d(x, —xj) as the
effective interaction after summing the pairwise interac-
tion of the particles around the ring infinite times. The
following identity,

n&m

x exp[i 2vrsgn(o' —o )]. (2.4)

~ ~ ~
& Z)C7)& ~ ~ ~

& Zj 0j &
~ ~ ~

= (—1)*+'@(.. . , z, o;, . . . , z,o, , . . .). (2.5)

Hence, for bosons (fermions), x = 1 (x = 0).
We write the total Hamiltonian as H = H +Hi+ H2,

where Hs, Hi, and H2 are the kinetic, potential, and
spin exchange Hamiltonian, respectively. We will show
that each operator acting on the wave function gives two
types of terms, "wanted" and "unwanted. " "Wanted"
terms are defined to be the terms that depend only on
the global variables such as the total number of particles,J, etc. "Unwanted" terms explicitly depend on the lo-
cal variables such as z, . Since the eigenenergy should de-
pend only on the global variables, the "unwanted" terms
for H, H, and H should cancel or combine to give
"wanted" terms.

We first examine Ho acting on the wave function. We
define the following derivatives:

Z' —Z' 2Zj

6, , (2.6)

(ij —= ~z, Fij ) (2.7)

Here, 6 is the Kronecker delta function and z„
exp(2mix„/L). cr„ is the ordered spin index and J the
global current of particles with 0. spin. We take J to be
an integer and will discuss the restrictions on the allowed
values of J~ later in this paper. Note also that the wave
function with A = x = 0 is the Slater determinant that
corresponds to the states of free SU(n) fermions.

The symmetry of the wave function with respect to the
exchange of particles is given as

1 1

(x+ nL)~ d(x)2' (2.2)

(i) Bz @Q
f/~

—Zj = Zj g (P~j,
~o

i(Aj)
(2 8)

was used by Sutherland to show the validity of the latter
interpretation.

In analogy with the states previously constructed for
the SU(2) spin chain in Ref. 2, we propose the follow-

ing Jastrow-product-type wave functions for our Hamil-
tonian:

~() ' )- ( +(q())
0 '(sj)

(2 9)

In terms of these derivatives we find that H 4
2(vr/L)2+ [r) + (2J,. + 1)rI + Jz ]4. After some

algebra one can show that Ho acting on the wave func-
tion gives "wanted" (WJi.) and "unwanted" (VIr) terms.
We write these terms as follows:

4(fzo.)) = 40 z„", (2.3)
H 4=2 — W~+U~ @, (2.10)

where where
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WR = —N(N —1) + z(A+ 1)) M (M —1)

+-,') M (M —1)(M —2)

—) M J (AN —M —J —A + 1) + E(x),

(2.11)

)+A
.ZiJ,. —ZjJ,,

Zi Zj
iV3

) z, (z, + zl, )

(iAjA&)
(z, —z )(z; —zg)

(2.12)

P,,C

M )
. d(x, -x )'

))) (

'
)z@(( ')) (2.13)

where E(x) = xs N(N — 1)z/4

+(x/2)(N —1)Q M (M —1) + x(N —1)Q M J .
M is the total number of o particles in the system. We
can now anticipate U~ to be canceled or combined with
the "unwanted" terms from Hi and Hz to give local vari-
able independent terms.

H acts trivially on @ to give Az Q,.&. 1/d(x, —xz)z.
The action of Hz on the wave function is less trivial. We
need to evaluate the following expression:

z;zi 0'((zo ))
+- (z, —z, )' @((z'o'))

&A
J~.—J~,.

&&4'

z, ) ~~&~a ' a

x
(zg —z )kgij 2

(2.14)

The action of P is the same for both boson and fermion
cases and is independent of the interaction parameter A.

We use the following identity:

q=O

to rewrite Eq. (2.14) as

+I
l 8(-~))z

(2.15)

I~. -~-l
P(M) = Po+) ) Pq

a,o' q=1
(2.i6)

8 in Eq. (2.15) is the step function with 8(0) = z, and

Po and P~~ are given by

where (zo') is a configuration with o, and o~ exchanged
with respect to (zo). Similarly, we let (z'o) be equal
to (zcr) with z, and zz. exchanged. Using the identity,
@((zo)) = (—1)*+i@((z'o')),we may then rewrite the
exchange operation as

X~~, ~a ~* a

(2.17)

Pq
——2) ' s6, b ~, (1 —b )

ivy j
(z z. ) ~~~a ~'~a

k

(zg —z~ )
q

l~(J —J ) I

q j q z
(2.1S)

It is useful to consider separately the terms with q = 0, 1 and the terms with q & 2. For the terms with q = 0, 1 we
introduce two sets of site indices (n) and (P). The set (a) ((P)) includes all the locations of particles with the spin
o(o'). Using the identity

(zi —z, ) Zk Zj Zk Zi
(2.19)

the products in P~M~ may be expanded and the typical terms in P~M~ can be simplified using the following two
theorems.

Theorem 1. Let (o.) and (P) be two sets of distinct integers between 1 and N, and let 0 & q & 1 and 6 =
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). ). ). ). zz' '(z —z)"+ -2+~

—z, ) (z „—z, )(zS, —z~) (zS —z~)

min(M, M i)

k=1

)
min(M~, M I }

k=1

(M —k)(M —k) for q = 0

(M —k) for q = 1.

Theorem 2. For q & 2 the following identity will hold for M & M
q —2 6 i —6

M ~ forq=2
0 for2&q&M —M +1.

Proofs of these theorems are given in Appendixes A and B.
After reorganizing some terms we obtain the following results:

P(M) ——W~ + UP)

where

Wp = —- ) M (M —1)(M —2) ——) M (M —1)(3M —M —1),

(2.20)

—) M (M —M )(J —J)+) M (J —J),
o (o'

1 —26, , )+) ' ' ' ' —2 )
'A " '2 (~s~sk)

(2.21)

(2.22)

2h' '
E=, [E, + E, + E(x)j, (2.23)

where E1 and E~ are energies due to one- and two-spin

Because of symmetry we can choose M1 & M2 &
M„and 0 & J~ —J~ & M~ —M~ + 1 for o' ) cr without
loss of generality. And, one can easily check that U~,
Up, and the potential-energy term combine to give local-
variable-independent terms.

Before we give the full expressions for the eigenenergy,
we discuss the allowed values of the integer currents.
Theorem 2 gives a simple rule for selecting allowed cur-
rents. If we choose —1 & J —J & M —M ~ + 1
for M~ & M, then Pq: 0 for q & 2. Otherwise, the
energy will not in general be independent of the local
variables and the corresponding wave function will not
be an eigenfunction. Pictorial illustration of the allowed
currents is shown in Fig. 2. Each row of M„boxes rep-
resents M~ "particles" of the same spin. A single box
gives a unit of current. Figure 2(a) is the reference state
with no current. If the current is j ) 0 (( 0) for a row,
the row is moved j boxes to the right (left) as shown in

Fig. 2(b). In order for a state to be an eigenstate, the
following condition must hold true: For a given pair of
rows of boxes, all except the first and the last boxes in
the rom tvith smaller number of boxes must be positioned
within the other rovj Figure 2(c.), for example, cannot
be an eigenstate because the last two boxes in the second
row are not within the Grst row.

Finally, the eigenenergies of the model can be given as
follow:

FIG. 2. Illustration of allowed values of the currents for
the sector (14, 12, 10, 6, 4, 2). (a) Allowed. All currents are
zero. (b) Allowed. Ground state for the sector. (c) Not
allowed.
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interactions, respectively, and are given by

2

Ey —— N—(N —1) + 2AN ) M~(M~ —1)

state for the model Hamiltonian:

I@{ )) = ) &(( ))I( ))
{zcrl

(3 2)

+s(1 —A) ) M (M —1)(2M~ —1)

+) JM(M +J —1),

Eg = —
s A ) M~ (M I —1)(3M~ —M~1 —1)

o &cr'

—A ) M. (M —M )(J —J )
o &cr'

+A ) M.(J. —J.)'.

(2.24)

(2.25)

Since the total number of each spin is a good quan-
tum number, we classify the eigenstates into sectors
labeled by (M) = (Mq, Mq, . . . , M„), where M„ is
the number of vth spin and P„" &M„= N. We
also represent the particle configuration as (zo')
(zqoq, . . . , z;o;, . . . , zzoz, . . . , z~o~), where z, and o; are
the location and spin of the ith particle. The sum in Eq.
(3.2) is over N, !/(Mh! Mq! M„!)distinct spin config-
urations of the sector (M), where N and Mg are the
total number of sites and the number of holes, respec-
tively. The function P in Eq. (3.2) is given by the follow-

ing Jastrow-product:

The ground state for fermions (bosons) is given by the
following two conditions: (i) M = M = M and (ii)
J~~ = J~ = J = —(M —1)/2, (N + M——1)/2 for
fermions and bosons, respectively. The currents should
be integers. If condition (ii) does not give an integer
current, the ground state is degenerate and the ground-
state currents are two integers closest to the half odd
integer value.

III. SU(n) t-J MODEL

In Ref. 2, Sutherland's model for a system of spinless
particles in continuum space was extended to the lattice.
Using similar procedures we put our model on the lattice.
We propose the following Hamiltonian:

(3.1)

I is a positive integer. N~ is the total number of sites and
N the total number of particles. d(n) = (N /rr)

~
sin(n) ~.

t~ hops a particle at the jth site to the (j + n)th (mod
N ) site. n~ is equal to 1 (0) if the jth site is occupied
(empty). P,r is, as before, the spin exchange operator.
P is the projection operator that insures the absence of
multiply occupied sites.

In analogy with Ref. 2 we propose the following eigen-

4({z)l(~))=

(3.3)

(zlo 1 ~ ~ ~ zlvoN[H [@{My)H' -=
(zlo 1 &

~ ~ ~ ) zN&N ~@{M))
N N~ —1

=4) ).z""(1-z") '(1-z ") '
i=1 n=1

(z;z" —z, ) +" ~
&+6 .

x .".
q z, —z

~(~ )

(3.4)

where zqoq, . . . , zNo~) is one of the basis states of the
sector 4'{Ml). In order to evaluate (HL) we need the
following theorem (a slightly different version of this the-
orem can be found in Ref. 2).

Theorem S. Let J and p be non-negative integers and
z = exp(2rri/N~). Then,

Considering the symmetry of the wave function we take
odd (even) l to be a bosonic (fermionic) state.

As in the continuum case we break up the total Hamil-

tonian into the kinetic, potential, and spin exchange
parts (H&o, H&~, and H&~, respectively). The actions of
H&~ and Hls are the same as the corresponding operators
in the continuum case. For Hro we have the following

relations:

N —1 N~ —1) z(1 —
)
—

&(1 )~—& s ( & )
12 2

N —1= —J+ for p= 1,

= +1 for p = 2, 0 & J & N~ —2

(N —1) forp=2—, J=N —1

=) (-1) "--'~, ~N. for p&3.
m&0

m is a positive integer and the restriction on the current is 0 & J & N~ —1 unless speci6ed otherwise.
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If we take t ) 0, we can multiply out the product in Eq. (3.4). The resulting expression will be a sum of
terms containing a factor (1 —z")j'. Since the maximum value of p is t(N —1) + M —1, if we choose 0 & J
N~ —t(N —1) —M + 1, we may ignore terms with p & 3. We combine the remaining terms with those from Hz~ and
Hl and obtain the following eigenenergies for the lattice model:

EL EL+ EL

where

l2 l
Eg ——

s N(N —1) + —N(N —l)(N —2) —-(N —t)N(N —1)

(3.5)

—l(N —1) [ ) M~(M~ —1) + s(1 —l) ) M (M —1)(M —2)

—) M J (N, —tN —M —J +(+1), (3.6)

E2 E2'I

where E2 is given by Eq. (2.25). We emphasize at this point that the above expressions for the eigenenergies for the
lattice model are valid only for tN + M~ & N + l + l.

For l = 1 (bosonic supersymmetric case) we can find another expression for the energy for N + M & N, + 2. We
proceed by rewriting the kinetic-energy term as

J +1
(Hs) = 2) ) (1 —6 „)6,. 6 „,. i

—
i

zz, = —= (zA, —zl
(z —z )2 ". (zg —z )2

(3 8)

where cry represents the hole. The above expression is almost identical with the expression for the spin exchange
operator and can easily be evaluated using theorems 1 and 2. The energy is then given by

E(l = 1) =
~ [EA, (l = 1) + Wp], (3 9)

where

Eg(t = 1) = — —sMh, (Mg —1)(Mg —2) + Mh, ) J~(J~ —M~ —1)
M„(N2- 1)

N. —1 (
+ ) M (M —1) + Mh, (Mh —1) —sMh(Mg —1)[3N —n(Mh, + 1)]

+MhN + ) (J~ —1)[2M~Mh —Mh, (Mh + 1)], (3.10)

where the currents are restricted to —(M —Mh, ) & J
0. Wp in Eq. (3.9) is given by Eq. (2.21).

For l = 0 the wave function in Eq. (3.2) is that
of Gutzwiller projected free fermions and no longer an
eigenstate of the Hamiltonian in Eq. (3.1). However, the
wave function is an eigenstate of the following Hamilto-
nian:

(3.11)

Ei, (l = 0) = — + 2(N, —1)) M (M —1)
N(N2 —1)

+MI, ) J (M + J —1). (3.12)

The currents are integers restricted to —M & J & 0.
The ground-state energy is obtained if J = —(M —1)/2
and M~ odd. If M are not all odd, the ground state is
degenerate.

This Hamiltonian is the SU(n) generalization of the
SU(2) fermionic supersymmetric t Jmodel which -Ku-
ramoto and Yokoyama5 solved. If we employ a similar
technique to that used for the l = 1 case we may find the
eigenenergy given by Eq. (3.9) with EI, (l = 1) replaced
with EI, (t = 0) which is given by

IV. SU(n, ) SPIN CHAIN

If we take the spin-exchange Hamiltonian as our full
Hamiltonian for a system of spins on a lattice ring, we
obtain the SU(n) spin chain model. This is equivalent to
taking the "half-filling" limit (N —+ N ) of the lattice tJ-
model. In this model the eigenenergies for the boson and
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fermion systems are identical. Since every site is occupied
with a spin, Up in Eq. (2.22) can now be summed and is
equal to N—,(Nz —1)/12+((N —1)/2) P M (M —1).
Hence, Up is now local variable independent, and the
eigenenergy is given by Eq. (2.20).

V. THE HARMONIC FLUID DESCRIPTION

We now turn our attention to the low-energy excita-
tion spectrum of our model in the thermodynamic limit.
The low-energy excitation spectrum of a one-dimensional
quantum fluid may be described by a sum of two inde-
pendent harmonic fluid Hamiltonians, one for the charge
and the other for the spin. This is a slight generalization
of the spinless particle system in Ref. 3. In general the
efFective Hamiltonian can be written as follows:

H=) ) A...II.„II., „+B...k'y. „y., „.
Al did

(5 2)

We now construct normal mode fields as II& ——P a"II g

and P&
——P b" re i, If we cho. ose Q b"a" = 6„„,then

[P&, II"&, ] = i6I,i, 6„„.We have the following equations
of motion: [H, [H, II&]] = —(v"k)zII&, [H, [H, gP&]] =
—(v"k)2$&. For the II field we obtain the following equa-
tion:

[apbp —(v") ]a" + (aibp + apbi + naibi) ) ap ——0.
P

(5.3)

The same equation with a" replaced with b" holds for the
(t) field. There are only two possible values for (v")z: apbp
and (ap + nai)(bp + nbi). The first value corresponds to
the case P& a& ——0 and the second P& a& g 0. Hence,
the first would be the spin velocity and the second the
charge velocity. The Hamiltonian can now be written as

H = ) (ap + nai)II&II A,
. + (bp + nbi)k ()t)i, ()tP &

8=1
(apIIi, iI' „+bpk'Pf (t' (5.4)

We have one charge mode and n —1 spin modes; and
because of the SU(n) symmetry all the spin modes have
the same velocity. We define the following velocities as-
sociated with II and ())) fields for the charge (denoted as
c) and spin (denoted as a) modes: viv

——ap+ nai, v& ——

bp + nbi, viv
——ap, v~& ——bp. The charge and spin veloci-

+B...Vy. (x)V'y. .(z)]. (5.1)

II (x) is the local-density-fiuctuation field as in Ref. 3.
P (x) is the canonical conjugate field to II(z),
[P (z), II (x')] = i6 6(z —x'). Because of the SU(n)
symmetry we have A = ai + ap6 and 8
bi + bp6 . We now express the Hamiltonian in terms of
the Fourier-transformed fields, II g and P k,

+28 .hJ 6J ., (5.5)

where

(rrhpp)z ( 1(
ep= %+-

6m g n)
(zhpp) ( 11

2m ( nj

~ =&
I
&+ —

I
+

I
&+ —16n) )(, n)

8 ~ = ——+i A+ —i6
n ( n)

(5.6)

(5.7)

(5.8)

(5.9)

where pp = N/L. We can now just read off the velocities,

~hpp )
m ( n)

~hpp (
n +

m ( n)

S 8
vs =vN = 'u

cVN=

rrhpp 1
Vg =

m n'

vc =vs

(5.10)

(5.11)

(5.12)

(5.13)

The charge and spin velocities are the same for all A and
n. As expected from the singlet nature of the ground
state, the ratio v&/v& does not get renormalized. The
coefflcient vz is independent of the interaction term,
as a consequence of Galilean invariance, but v& gets
renormalized due to nonlinear interaction terms not in-

cluded in the linear form of the harmonic Hamiltonian.
The renormalization coupling constant for the charge is

exp( —2(p) ~ (v&/v&)i)'z = nA+ 1 in the limit of long
wavelength (i.e. , k ~ 0). Because of the scale invariance
of the model the dimensionless coupling constant (p is
independent of the particle density.

The compressibility per particle is (z~h pp~/m)(A +
1/n)2. We also find the chemical potential and the
ground-state energy to be m'v&2/2 and (N/3)(m'v&z/2),
respectively. The chemical potential (or the Fermi energy
at zero temperature) and the ground-state energy of this
one-dimensional system are that of free fermions with the
renormalized mass per particle m' = m/(nA + 1)~. The
Fermi velocity is given by vz = rrhpp/(nm').

The low-energy excitation of the lattice version is given
by Eq. (5.5) as well if we set rn = h = 1 and replace L,
ep, and ((i with N~, —rr /3+2ep, and —rr2/3+2@, respec-
tively. The crucial difference is that this expression for
the lattice model is true only for pp(= N/N~) & pp [=
(l+1/n) ]. Hence, the charge velocity is linear in pp only

ties are then v, = (vivv&)
)' and v, = (v&vz)i)'2.

Since the eigenstates for our model correspond to the
low-energy excitations of the model, we can easily obtain
the harmonic fluid parameters by examining the energy
expanded about the ground state. By Taylor expansion
we obtain the energy for the continuum model as follows:

E = eoN+ pN+ zhpp zh ) zA hM hM ~

m L
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0 (a) ) Po o (b) n/(1+n) 1

sponding eigenenergies. We claimed in this paper that
the class of eigenstates corresponds to the ground state
and the low-energy excitations of the model. We checked
this by the exact numerical diagonalization of the lattice
version of Hamiltonian for small systems. The systematic
construction of the other eigenstates, thermodynamics,
and the general n-point correlation functions for these
models are yet to be found. As Minahan showed, 7 the
Hamiltonian of the type given by Eq. (2.1) also arises in
a matrix model as a representation of one-dimensional
open string theory.¹teadded. After the completion of this paper we
became aware of work by N. Kawakami, whose work is
related to ours, and the Hamiltonian given by Eq. (2.1)
is also independently identified by Polychronakos. s

0 (1+1/n) '

(c)
) Po ACKNOWLEDGMENTS

FIG. 3. Charge and spin velocities of the lattice models.
(a) Fermionic supersymmetric t Jmodel. T-he velocities are
independent of the number of spin species. (b) Bosonic super-
symmetric t Jmodel. -Up to the density n/(1+n), v, and v,
are equal. (c) Bosonic and fermionic t Jmode-ls with t & 2.
The charge and spin velocities are the same up to the density
(l + 1/n) . Beyond the density the ground state is no longer
the Jastrow-product type.

up to po
'". We expect v, to vanish as po ~ 1 due to the

metal-insulator transition at the density. v„ therefore,
should exhibit nonanalyticity at pc '". This behavior is
attributed to the long-range interaction in our model. In
Ref. 4 this type of nonanalyticity in the spinon veloc-
ity was observed for the SU(2) spin chain model. In the
nearest-neighbor interaction models the sharp change in
the charge velocity is smoothed out.

For / = 1 the energy for pp & (1+1/n) i is explicitly
found and the harmonic fluid Hamiltonian is given by
Eq. (5.5) with A = (1 —po)(n+ 2) —po/n+6 and
B = po/n+ 6 —. Therefore, v, = 7r(l —po)(n —1)
and v, = m. The spin velocity is independent of the
density in this region. Similarly, for l = Owe have A~
B ~ = pp/n+ b«— for 0 & pp & 1. Thus, v, = 7r(1—
po) and v, = rr. This agrees with the results obtained
by Kuramoto and Yokoyama. s However, it is unexpected
that the charge and spin velocities are independent of
the number of spin species. Figure 3 shows the charge
and spin velocities for the lattice models with various
interaction parameters.

This work is supported in part by NSF Grant
No. DMR-91-96212.

APPENDIX A: PROOF OF THEOREM 1

We first discuss a diagrammatic way of writing the ex-
change operation. A labeled diagram is shown in Fig. 4.
The amplitude of the labeled diagram shown in Fig. 4
ean be evaluated using the following rules: (i) the dashed
line connecting the indices i and j gets a factor z, z& (z, —
z~) (1—b~ I )b'~,.6«, , (ii) each solid line connecting the
indices i and nk gets a factor (z, —z~)(z „—z, ) ib

(iii) each solid line connecting the indices j and pi, gets a
factor —(z, —zz)(zp, —zz) b«~ . Weight of the dashed
line vanishes whenever the spins at the sites i and j are
the same. On the other hand, weights of the solid lines
that are connected to i(j) vanish whenever the spins at
the sites (n) ((P)) and i(j) are different. Hence, we may
think of the diagram as a two-spin interaction diagram.
Since the Hamiltonian has only the two-spin exchange
operator P,z, three-spin and higher number of spin inter-
actions are missing.

The amplitude of the labeled diagram is undesirable
since it depends on the local variables. A more desirable,

VI. CONCLUSION

We have shown in this paper that Sutherland's model
of spinless particles interacting with inverse-square ex-
change can be generalized to the multicomponent system
of particles We further gene. ralized the continuum model
to lattice for the integer values of the dimensionless in-
teraction parameter. We explicitly constructed a class
of eigenstates for these models and calculated the corre- FIG, 4. Labeled diagram for n o spins and m o' spins.
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local-variable-independent diagram (unlabeled diagram)
can be obtained by summing (n + l)(rn + 1) cyclically
permuted labeled diagrams. This fact will be proved in
this appendix.

We note that the indices (i, o.i, . . . , o;„j and

(j,pi, . . . , p~} are dummy indices. Consequently, the
sum will be invariant under any permutation of the
indices. We further observe that h. is invariant un-

der any permutation of the indices except when there
is interchange between the two sets (i,ai, . . . , o,„jand

(j,Pi, . . . , P~}. On the other hand, the prefactor to b
remains invariant with respect to the permutations of in-
dices (aj and (Pj. It is convenient to consider only the
cyclic permutations which give (n + 1)(rn+ 1) distinct
prefactors. We then sum the (n+ 1)(m+ 1) factors as
follow

(—1)" z,z' '(z; - z )"+ -'+~

n. m. (z, —z, ) (z, —z „)(z, —zp, ) (z, —zp„)

(—1)
„;(n+ ). (m, +1).(z„„--z, )" (z,„- -z,)" (z,„- -z „)

1
X )(z p —zp ) (z p —z ) (z p —zp )l 1 ~l

(Al)

where (p j —= (i, o;i, . . . , o.„jand (p j = (j,pi, . . . , p~ j.
We let D = +A&1,, (z~„—z~, ) and Dp = pl&&, (z p —z„p). Using the binomial theorem we expand the numerator

in Eq. (Al). We then multiply and divide the expression by D Dp and obtain the following:

(A2)

where

V

Z

n —1
Zt.

Z

ZQr y

n —1Z i
SZ l

n —1Z
SZ

and VP is defined the same way. We further note that V' = 0 if 0 ( s ( n —1 and VP = 0 if 0 & k ( m —l.
Therefore, if 0 ( q ( 1, the only nonzero contribution in (A2) is the term with s = n. Since V" = D~ and V~ = Dp,
we obtain

(—1)"+ '+~ (n+ m 2+ q& ) ).—( + 1)' ( + 1)' & i+j Ia'), (p)

=(-1)-.--" i'"' ""ii' 'i™'i
n —1 ) (n+ I) pm+ 1)

Evaluating p,.&. QI & I&&
6 in (A4) is the same as calculating the total number of ways of putting n+ 1 out of

M blue balls in a box and m+1 out of M ~ red balls in another box. The sum, therefore, is equal to M (M
1) . (M —n) M (Mp —1) . . (M~ —m).

It is straightforward to prove the following useful identities:

(n+ m —2+ q) . (n —I) fm —1+q)
n —1 0 0( s &( s

(A5)
S

k=0
S

(A6)
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' —M +1
M —1 —M

I,iii+1) (
, 0 if 1&

for q =0,
if k=0
if k=1
if 2&k&M
0 forq= l.(

Using (A5) we may sum the terms depending on n and m in P„separately. Using (A6) and (A7) th«ollowing
relation can easily be obtained:

P

Q.E.D.

(M —k) (M —k) for q = 0,)
min(M~, M~1 )

k=1
min(M, M I)

) (M —k) for q = 1 .
k=1

( 8)

APPENDIX B:PROOF OF THEOREM 2

We replace the product over k with two new sets of integer indices, {nj and {P), and rewrite the expression in
theorem 2 as

x 9—21 z, (z, —z~'i, z, —
z~ z, —z~

~ ~ ~

(M —1)!(M —1)!z, ( z, ) z, —z, z~, —z,

M I —1«). ("-')"f.({z~)) &&
r=o

ZcLM ] Zg

(B1)

Here, 6 is the same as in theorem 1. The factor in the curly brackets in (Bl) is obtained by writing the terms like

(zp, —z, )/(zp, —z~) as {1—(z, —z~)/(zp, —z~)) and by multiplying out all the factors that depend on {P). f, in
(Bl) is some function of {zp), however fo = 1.

As in Appendix A, we rewrite the expression by summing over the factors obtained by the cyclic permutations of
the indices {i,ni, . . . , n~. i) and obtain

&- M (M 1)
("-')('- -')

i~),ip) r=o
(B2)

(B4)

Q.E.D.

where WP is given by the Vandemonde determinant whose last row is modified to z~, (z~, —z~) i+" s/z~

{i,ni, . . . , n~ i). It is straightforward to show that

( y) M~ DM~

(Z, —ZZ)(Z &
—Z~) "(Z ~ 1 —Z~)M

- ifq=2andr =0
(B3)

0 if0 & q+r —3& M —3

) ) a=M. !M. !.
'&& i~) i&)

The only nonzero contribution to Q is given by the terms with q = 2 and r = 0. Since 0 & r & M —1, the sufficient
condition for W = 0 is 3 & q & M —M +1. Therefore, we have for M & M ~

M~ for q = 2, (B53
0 for3&q&M —M ~ +1.
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