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Conductivity of a Luttinger liquid
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We show that the real part of the frequency-dependent conductivity of interacting spinless fermions at
incommensurate band fillings in one dimension at T=O is proportional to co for small positive frequen-
cies, contrary to statements in the recent literature. We argue that the dc conductivity of spinless fer-
mions at incommensurate band fillings diverges faster than any power of 1/T as T~O. We give the ex-
tension of our results to the case of commensurate band fillings and fermions with spin.

I. INTRODUCTION

The proper calculation of the frequency- and
temperature-dependent conductivity o(co, T) of interact-
ing fermions on a periodic lattice is an old problem in
solid-state physics. In this paper we study cr(co, T) for in-
teracting fermions on a one-dimensional lattice. We dis-
tinguish between commensurate band filling, where the
Fermi wave vector kz is a rational fraction of a
reciprocal-lattice vector, and incommensurate filling,
where it is not. For incommensurate filling we show that
for small positive co the real part of the conductivity of a
generic 1D fermion system at an incommensurate band
filling varies as co, so that it is finite at any finite frequen-
cy. It is not possible to calculate directly the dc conduc-
tivity r(c=coO, T}; however, by assuming that one may
define the dc conductivity in terms of the time it takes for
a state of finite current to decay we argue that in a one-
dimensional fermion system at an incommensurate filling
a(co=0, B diverges faster than any power of 1/T as
T~O. Our result for cr(co, T=O) is different from that
obtained in several recent papers. ' We argue that the
difference is due to the neglect, in Refs. 1 and 2, of ir-
relevant operators arising from band nonparabolicity and
in Ref. 3 to the small size of the system studied numeri-
cally. The difference we find between the small m and
small T behaviors of cr(cu, T) implies that a commonly
used approximation, the "memory function" approxirna-
tion, gives incorrect results in this case for cr(co=0, T)

4

because it does not respect a conservation law. We give
the extension of our results to the cases of fermions with
spin and to commensurate band fillings. The half-filled
band case agrees with previous results.

The rest of this paper is organized as follows. In Secs.
II—V we analyze a spinless fermion model. Section II
gives the Hamiltonian, the formalism, and an elementary
perturbation-theory result; Sec. III gives exact results for
cr(co, T=O} for incommensurate band fillings; Sec. IV
treats o(co=0, T) for incommensurate band fillings; Sec.
V extends the results of Secs. III and IV to the commen-
surate case. In Sec. VI we consider fermions with spin.
Section VII is a conclusion.

II. SPINLKSS FERMIONS:
FORMALISM AND PERTURBATION THEORY

where for our explicit calculations we take the kineti. c en-
ergy f't boe

T= g tc,+c, +, +H. c. , (2.2)

and the interaction f' to be (the summation is over
nearest-neighbor pairs i,j)

(2.3)

We are interested in cr(co), the real, dissipative part of the
frequency-dependent conductivity, at positive frequencies
co&0 and at zero temperature. This is related to the
current-current correlation function via

r(mc) 0)=limRe . f dt e' '(8 [J (t),J (0)]~8) .
q~0 1CO 0

(2.4}

Here the expectation value is taken in the ground state
~0) of the Hamiltonian Eq. (2.1). The current operator
Jq may be obtained from the density operator

iq -R,.
it~ = g; e 'tt, via the continuity equation, c}& /
Bt+iq.J =0, so that

J = [H, nq] . (2.5)

From (2.5) and (2.2) one may easily verify that if V=O,
then lim o[H,J ]=0. By inserting this result in Eq.
(2.4) we see that if P=O, cr(co)0)=0. In a Galilean-
invariant model, the current in the limit q ~0 is propor-
tional to the momentum and so commutes with the in-

We consider a model of spinless fermions created by
operators c;+ hopping via a hopping matrix element t,"
between sites i and j of a one-dimensional lattice and in-
teracting via an interaction which is a functional of the
fermion density 8'; =c;+c;. We write the Hamiltonian as

(2.1)
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teraction, so that cr(co&0)=0 always. However, in the
lattice model defined by Eqs. (2.1)—(2.3), if VWO then
lim 0[H,J ]%0; in this case lim 0J has matrix ele-

ments between the ground state ~8) of H and some excit-
ed states ~n ) of H, so that o(co) is nonzero at some finite
frequencies. To obtain further information we expand

o(co&0) in perturbation theory in f'. Because o(co&0)
vanishes for V=O, and lim „cocr(co) vanishes for any V,

such an expansion is obviously possible at sufficiently
high frequencies. Because in the metallic phase o(co)
does not diverge at a nonzero frequency, and diverges less
rapidly than 1/co as co~0, the expansion turns out to be
possible at all finite frequencies for sufficiently weak cou-
plings P. The most efficient way to generate the expan-
sion is to integrate the expression in Eq. (2.4) by parts
and use the relation c)J /dt =i [H,J ]. The result ' is

0.(co)= limRe-
q~0

3

(2.6)

From the previous remarks it is clear that o is 0( f') and
that the leading-order term in an expansion in powers of
0'is obtained by evaluating (2.6) using the noninteracting
Hamiltonian, Eq. (2.3). We have coinputed [8,J~] for
the model of Eqs. (2.2) and (2.3). We find

lim [H, Jq ]=i~V g Mkk. ~ck+ck+~ck+ck
q~0 kk' P

with

(2.7)

Mkk. =cos(p ) [sin( k +p )
—sink + sin( k ' —p )

—sink '
] .

(2.8)

Here we have set the lattice constant equal to unity.
One may pass to the continuum or Galilean-invariant

limit by considering a very low density of particles. In
this case the only relevant rnomenta are small compared
to the lattice constant, so one may set sink ~k, etc. It is
clear that in this limit Mkk ~0, so 0 (co) vanishes in the
continuum limit as it must.

We now evaluate (2.6) by the perturbation expansion in
V. The leading term at T=O is

ao(co)=
3

t V g 'Mkk~5[co [(ek —
Ek ~)—

kk'p

+(ek ek+ )]] ' (29)

Here cz is a number, c is the energy relative to the Fermi
surface of a state of momentum p, and the prime indi-
cates that the sum over the momenta is restricted to the
region where k' and k are outside the Fermi surface and
k' —p and k+q are inside the Fermi surface. Thus, the 5
function explicitly written in Eq. (2.9) ensures that all
four energies are within -co of zero; thus as co~0, all
four momenta, k, k', k' —p, and k+p, must converge on
the Fermi momentum. In the small co limit, two regimes
of p are possible: p —~co~/U~ or p-2k~. In the former
case Mkk p

is obviously of order co; in the latter case, pro-
vided 2k„does not equal m. the constraints imply k and k'
must be on opposite sides of the Fermi surface so that
Mkk p again turns out to be second order in the deviations
of the wave vectors from the Fermi wave vector. Howev-
er, if 2k~=m then Mkk. turns out to be constant. In ei-
ther case the k and k' integrals each extend over a range
of order co. Thus one obtains cr(co)-co in the incom-
mensurate case and o(co) —I/co in the commensurate

case. A similar calculation in two spatial dimensions
would yield e(~)-Inca and in three cr(co)- const for in-
comrnensurate fillings.

Thus from the elementary perturbation calculation we
learn that for 2k~@m we should expect the conductivity
to be nonzero but rapidly vanishing in the low-frequency
limit, and that to obtain a nonzero result we must have
an underlying lattice (so that the current operator is not
simply proportional to k) and we must consider the varia-
tion of the current operator as one moves away from the
Fermi surface. This variation was neglected in Refs. 1

and 2; the neglect accounts for the incorrect claim that
a(co)=0 for a finite range about co=0 for incommensu-
rate fillings. However at 2kF =~ the conductivity
behaves differently. Of course, perturbation theory is not
valid for one-dimensional Fermi systems. Thus in the
next section we present a calculation of o(co) based on
Haldane's formulation of the low-energy physics of the
model specified by Eqs. (2.2) and (2.3).

III. cr(ri)) FROM EXACT
SOLUTION-INCOMMENSURATE DENSITIES

The low-energy physics of one-dimensional spinless fer-
mion models can be described by a Hamiltonian involv-
ing boson variables. One must distinguish two cases:
commensurate density, when the Fermi wave vector of
the noninteracting system is a rational fraction of the
reciprocal-lattice vector; and incommensurate density,
when it is not. In the commensurate case umklapp
scattering may be important. In the incommensurate
case, operators involving umklapp scattering necessarily
involve states separated from the ground state by a finite
energy gap A. The Hamiltonian describing processes in-
volving energies less than this gap may be written in two
ways. One is a fermionic form involving two species of
fermions: "right movers" (which may be thought of as ex-
citations near the Fermi point on the positive k axis) and
"left movers" (excitations near the Fermi point on the
negative k axis) plus interactions which conserve the
number of right and left movers separately. An alterna-
tive formulation is in terms of bosons (which may be
thought of as particle-hole pair excitations of the original
Fermi system) and a conserved quantum number J
(which is a velocity times the number of right movers
minus the number of left movers). The boson formula-
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tion has been discussed by many authors. We use the
version due to Haldane, in which the effects of operators
coming from band curvature are discussed. In
Haldane's formulation one writes

H Ho+H

where

(3.1)

1/2

[b'+b ] .2' q
—

q
(3.3)

The noninteracting boson model Eq. (3.2) describes the
low-energy physics of the interacting fermion model Eq.
(2.1) in the approximation in which the fermion disper-
sion is linearized about the Fermi surface. In the
nearest-neighbor hopping model used in the explicit cal-
culations, this would correspond to replacing
et, = 2t cos(k—) —p by vF ~

k —kF ~, where u+ =2t sinkF.
Retaining higher-order terms in the expansion of the fer-
mion energy about the Fermi surface leads in the boson
language to the interaction term Bt, which takes the ex-

plicit form

HD= +co b+b +—,
' VJJ (3.2)

q

and Pt will be discussed below. Here b+ creates a boson
of energy co and momentum q. co is J dependent. For
J =0 and small q, co =v, ~q~; in the weak-coupling limit

u, =vF. The ground state of 8' has J=0. Vt is a param-
eter of the model which approaches UF in the weak-

coupling limit.
The operator creating an electron density Auctuation

of momentum q may be written, in the low-energy sub-

space co & 6, as '

cc(q, P ) = [8(q)cosh/ +8( —
q)sinhP& ](2'/L ~q ~

)'

(3.6)

Here the:: symbol denotes boson normal ordering and

P~ is a real even function of q which parametrizes the
electron-electron interactions. P =0, if V=O in Eq. (2.1)

and lim 0$ %0 for an interacting electron model. In
the weak coupling (V« t limit), the parameter m is
determined by the term in the fermion energy dispersion
quadratic about k =kF and the parameter A, by the term
proportional to (k —k~). In a Lorentz-invariant model
m ~~ and X/m ~0. In the weak-coupling limit of the
nearest-neighbor hopping model defined above in Eq.
(2.7), 1/2m =coskF and A, /4m uF = —sink~. In the
low-density continuum limit described earlier, uF (i.e.,
co~/q) and A, /12m uF become small relative to 1/2m. In
a true continuum model with a k /2m dispersion and a
finite density of electrons, A. =O.

Near half-filling (k~=m/2), 1/(2mu~) &&1 and a per-
turbation expansion in s=1/(2mvF) would be rapidly
convergent. Haldane argues that for general kF an ex-
pansion in 1/2mu~ will be well behaved; coefficients ap-
pearing in the fixed-point Hamiltonian may change, but
the qualitative behavior will not be affected. We shall
compute to leading nontrivial order in c and assume that
the qualitative behavior will not change even if c becomes
large.

The current operator defined using Eqs. (3.3) and (3.5)
is, in the limit q =0,

+ g —
2 ~q~cosh(28) b+b

2m 4m UF L

g ~q~sinh28(b+b+ +b b )
sm UF &

J'L dx 1 Ap(n. J/L )

6m 12m 2U~ (3.7)

with

+ cd (x) +
48m UF

4 (x)= gpqa(pq, —P )(e'~"bz++e '~"bq),

(3 4)

(3.5)

We have verified that in the noninteracting model (/=0)
we have [P,J)=0 even though both A' and J are non-
linear in Bose operators.

We now compute o(co) from Eq. (2.6). Of the many
terms generated in lim 0[H,J ] the leading-order term
which does not annihilate the ground state is

lim[HJ ]= e g g 5(q&+q2+q3)(q&q2q3)(co +co +co )
q o 48m UF u=+&q& q3

X&(pqi, —0, )&(pq2, —0, )~(pqi, —0, )b,+b,+b (3.8)

Inserting this into (2.6) and evaluating the expectation
value at T=O yields

o(co)= 1 A,

8m 12m 2uF

2 . 2sinh 2p 3+0( 5)
U

(3.9)

From this we see that in a "Luttinger-liquid" 1D system

in which umklapp scattering is irrelevant, o (co)-co; fur-
ther, the conductivity vanishes in the noninteracting limit
($~0) and in either the Lorentz-invariant or the
Galilean-invariant limit (A, /m ~0 in either case). As in
the weak-coupling calculation it is necessary to expand
the current operator to second order about the Fermi sur-
face to obtain a finite result.
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The precise coefficient appearing in Eq. (3.9) is only
correct to leading order in an expansion in the parameter
1/(2muF). We believe the general form of (3.9),
o(co)= Ac@ sinh 2P, with A a coefficient parametrizing
the departure from Galilean invariance in the underlying
lattice Hamiltonian, is correct for any Luttinger liquid at
an incommensurate band filling.

A, —kV~ /VF

c'=1/2mv, .

(4.5a)

(4.5b)

mJ

L
=(rI+2mp) . 44.6)

We now choose J to minimize Eq. (4.3); the result is

IV. cr(a) =0, T )—INCOMMENSURATE DENSITY

P =(qrJ/L )+ g qbq+bq (4.2)

g and p are Lagrange multipliers.
The free energy has two terms: the energy associated

with a given value of the quantum number J in the ab-
sence of boson excitations and the free energy of the Bose
system in the presence of a given J. At low temperatures
T the Bose free energy may be obtained from the part of
H' —gJ quadratic in Bose operators; the higher terms
may renormalize coefficients in the quadratic part but
first give a nontrivial contribution to the free energy at
0( T ). At small J and low temperatures we find

2

F(J, rl, p) = ,'uJ—m.J
L

—2(q)+ p)
mJ

L

+cxT +1 1

V U

(4.3)

Here a is a number; to leading order in 1/2mvF,
o. =~/12. v

—=lim +co /q are the boson velocities for+=
positive and negative q. Explicitly, to order J,

2

=1+Ac
V

m.J
L

~J+2 —{q+2mp)L

where v, is the boson velocity for J=0 and to leading or-
der in 1/(2uF)

We now consider the temperature dependence of the
dc conductivity. Because 0(co=0, T) diverges as T~0,
the low T dependence cannot be calculated by a perturba-
tive expansion of the current-current correlation func-
tion. We proceed using arguments similar to those used
by Peierls' to obtain the thermal conductivity of pho-
nons. The essential idea is to define the conductivity in
terms of the decay time of a state of finite current. We
show that in the Luttinger-liquid model because of
momentum conservation an initial current will never de-
cay to zero, so the conductivity is infinite.

We suppose that at time t =0 the system is in a state of
small finite current j specified by minimizing the free en-

ergy of the system subject to a constraint that the expec-
tation value of the current operator equals j. Thus we
consider the free-energy function

F(q), p) = —kT ln[Tr exp —P(H' rlJ pP)—] . —(4.1)

Here 8' is given by Eq. (3.1), J by Eq. (3.7), and P, the
momentum operator, by

We then determine g from the constraint equation

(4.7)

finding, in the small J limit,

1 4aic T

S

7l=
UJ

(4.8)

The physical content of (4.8) is that in the thermodynam-
ic state of finite current some current is carried by the
quantum number J (i.e., by a difference in the number of
right-moving and left-moving carriers) and some current
is carried by the boson excitations. The total momentum
P of the system may be found by differentiating (4.3) with

respect to p and is

dF(J, q), p)
Bp

srJ

q
—p L

(4.9)

Thus although the distribution of boson excitations car-
ries a current it carries no momentum.

The state of the system at long times is also given by
minimizing an appropriate free energy. Current is not
conserved by Eq. (3.1) (if /%0) while momentum and the
quantum number J are. Thus we minimize Eq. (4.3) at
g=O subject to the constraint that I' and J have the t =0
values. We find

nJ2mp-
L

(4. 10)

(4. 11)

Thus the current does not decay at all, in this approxima-
tion, because of the constraint of momentum conserva-
tion. We believe that (4.11) holds to arbitrary order in T
in the model of Eq. (3.1) because the free energy at small
J is a function of [(qr J /L ) 2rjqr J/L ] and—(qrJ /L
—

q)
—2m p ) only.

We now argue that in the physical system, at incom-
mensurate densities for which the Luttinger liquid model
is the low-energy approximation, the conductivity will
diverge faster than any power of T, indeed probably ex-
ponentially in 1/T, at small T. This agrees with Ref. 1;
however, we argue below in Eq. (7.1) that the agreement
is spurious. In a physical system of fermions moving on a
lattice "umklapp processes, " in which the total momen-
tum of the system changes by a reciprocal-lattice vector,
are possible. In a weakly interacting one-dimensional
Fermi system the leading such process is the second-
order umklapp, in which, say, two right-moving fermions
with wave vectors near m. /2 are converted to two left-
moving fermions with wave vectors near —m. /2 in such a
way that the total momentum of the system changes by
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the reciprocal-lattice vector 2m.. Similarly one may define
an nth-order umklapp in which n right movers are con-
verted to n left movers, and the total momentum is
changed only by an integer multiple of the reciprocal-
lattice vector. In the presence of umklapp scattering nei-
ther the Luttinger-liquid quantum number J nor the total
momentum are conserved, so that one expects that in the
long-time limit an initially imposed current would van-
ish. " We may estimate the decay time of a current from
the probability of an umklapp event. If the band filling is
not a rational fraction of m, the nth-order umklapp pro-
cess will necessarily involve n excitations, each of which
has an energy of order U~5k„=6„. Here 5k„ is the mag-
nitude of the difference between kF and the nearest ra-
tional fraction ~m/n. Thus at large n 5k„—1/n. For
temperatures T(nh„, the nth-order umklapp will be
gapped, leading to a contribution to the resistivity

(„) —nh„/T—A'"'e " . Here A'"' is the amplitude of the nth-
order umklapp. Now at any temperature T there will ex-
ist some order nT for which 5„&T, so an nT-order um-

tl z.
klapp is thermally allowed, leading to p- A'"'T where
the factors of T are from phase space. But because
b,„—I/nr we have nr-1/T, so this corresponds to a

contribution to p-exp —
I
lnT

I /T that is negligible com-
pared to the lower-order umklapps. The lower-order um-
klapps clearly lead to cr-exp(h /T, }with the power m
determined by the order of umklapp scattering with the
smallest value of m 6

V. SPINLESS FERMIONS-
COMMENSURATE DENSITY

If the fermion density is such that the Fermi wave vec-
tor kF is a rational fraction of a reciprocal-lattice vector
kF =am /n, then umklapp processes (in which, say, n fer-
mions are transferred from the right-moving to the left-
moving branch) are not gapped and may make a nontrivi-
al contribution to the low-energy properties of the model
given in Eq. (2.1). If the interaction t in Eq. (2.3) is
stronger than a critical value (which depends on n and m)
it will cause the ground state to be insulating. If it is
weaker than a critical value, the ground state will be of
the Luttinger-liquid form discussed in the previous sec-
tion; however, the umklapp processes will lead to the
presence of an irrelevant operator which will not con-
serve momentum and may be of lower dimension than
the irrelevant operators due to the band curvature con-

I

sidered in Sec. III. Thus in the commensurate case
a(co=0, T) will not have the exponential increase as
1/T ~ oo found in the incommensurate case and
o (co, T=O)-~, where as we shall see v may be a nonin-
teger and less than 3. o.(co, T=O) in the lowest-order
commensurate case has been analyzed previously, ex-
tending an earlier analysis' of the scaling of the charge
stiffness near the metal-insulator transition. For com-
pleteness we rederive these results in the notation used
here, and consider also higher-order commensurability.
The umklapp operator may be written

+ +Pi U =g& ~ ~ ckpck pck ~+qpck ~ qp
p =+1 kkq

(5 1)

Here p =+1 labels the right- and left-moving branches
of the electron dispersion and the prime on the sum
denotes the restrictions

Ik —pkFI &R

Iql&g '.

(5.2a)

(5.2b)

(5.2c)

(5.3)

Here (t) is the Luttinger-liquid interaction parameter in-
troduced in Sec. III, UJ+ is the raising operator for the
current quantum number J, and

' 1/2

g+(x}=2e~ g sgn(q)e'~"b~+ . (5.4)

We may now proceed to calculate cr(co, T=0) precisely
as in Sec. III. We find that the leading contribution to
[H,J ] comes from commuting the current quantum
number J with HU. Evaluation of Eq. (2.6) using this
leading contribution gives

Here R is the short-distance cutoff of the Luttinger
liquid; it is of order the lattice constant or kF, while

g) R is the cutoff of the umklapp operator. By following
Ref. 8, this interaction may be written in the formalism
of Sec. III. The result is

2e2$ . ' 2(2e2$ i)

X —fdx I UJ+ exp [/+ (x ) ]exp [ —P(x ) ]+H. c. ] .

4-2 4(2e ~—1)
0.(co, T=0)===g ~

'
1 '~'(gI[ 0 "' 0" ' |(t P3' ]Ig)3 I L 2 (5.5)

-2 8e ~—5o(co, T=O) g3co '- (5.6)

Here g3 =g3(R /g) ' . The scaling equation for g3 in
Ref. 5 is equivalent to the statement that g3 is invariant
under changes in g. By noting f(x, t)IO) =0 and using
standard methods for evaluating exponentials of boson
operators we find that (5.5) becomes

Equation (5.6} expresses o(co, T=O) in terms of two pa-
rameters: the exponent P which gives the decay of corre-
lation functions in the fixed-point Hamiltonian, and g3
which gives the strength of the leading irrelevant opera-
tor which contributes to [H,J]. Equation (5.6) is
equivalent to the result of Ref. 5 because the coupling
constant E* defined there is given by K*=2e ~. Refer-
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ence 5 employs a perturbative renormalization-group
treatment, valid for small initial g3 and e ~ near —,', of the

effect of HU, results for the crossover between the high-

frequency regime and the true low-frequency limit are
also given. The Luttinger liquid at half-filling is stable
against umklapp scattering if e ~& —,'. The contribution

of umklapp scattering to o (co) is more important than the
band curvature terms considered in Sec. III if e ~&1.
These results may be extended to higher (nth)-order com-
mensurability, where kF =~m /n. In this case the um-

klapp operator involves transferring 2n fermions; this
leads to a boson expression for 8U similar to (5.3) but
with 2e ~ replaced by —,'n e ~; the criterion for stability

becomes e ~& 2/n and the co exponent 2n e ~ —5; thus
the nth-order urnklapp scattering is less important than
the band curvature if n e ~ & 4. This criterion is satisfied
in the U &0 Hubbard model at all commensurations ex-

cept n =1. If e ~=2/n, then the umklapp operator is

marginal and logarithmic corrections appear; see Ref. 5

for details.
Because the umklapp operator does not conserve the

quantum number J or the momentum, the arguments of
Sec. IV imply that a state of finite current will decay"
(since the minimum of the free energy in the absence of
any constraints is a state of vanishing current). A
straightforward golden-rule estimate of the rate of transi-
tions from a state of one J to another yields, for an nth-
order commensurate density,

turn of the charge bosons is not conserved. Except at
commensurate fillings the charge current quantum num-
ber is conserved. In zero magnetic field at TWO the spin
current quantum number is not conserved. To order J
the spin and charge quantum numbers are not coupled.

From these considerations it is easy to see how the re-
sults of the previous sections can be adapted to the case
of fermions with spin. By following the arguments of
Sec. III we obtain an extra contribution to the current
operator J involving spin bosonic operators. These lead
to an extra contribution to [H,J] and so to extra absorp-
tion. Parametrizing the Luttinger-liquid interaction
among the spin bosons by the angle P we find that cr(co)
is given by Eq. (3.9) but with "sinh 2P" replaced by a
more complicated expression involving both P and P
and the ratio of the velocities of density and spin excita-
tions. This expression vanishes when P and P —+0. In
particular the frequency dependence is still co . The cr( T)
estimate of Sec. IV is not significantly changed. The
current quantum number J is still conserved so o(T) is
still infinite in the absence of umklapp scattering in the
charge sector. However, because of spin urnklapp
scattering (in zero applied field) the momentum in the bo-
sons is no longer conserved, so to obtain the long-time
limit of the current we should minimize the free energy of
Eq. (4.1) subject only to the constraint of finite J. Thus in
contrast to the simple case considered in Sec. IV the
current will decay, albeit to a finite value and not to zero.

l7( T) T (5.7) VII. CONCLUSION

This is the temperature dependence which would be
given by the memory function formalism, if n e ~ & 4, but
if n e ~&4 the memory function formalism would in-
correctly predict o. —T

VI. FERMIONS WITH SPIN

There are three cases. The simplest is the insulating
ground state. This occurs, e.g., for the repulsive U Hub-
bard model at half-filling. In this case the conductivity
vanishes. The next simplest is that a gap opens in the
spin sector but not the charge sector, as occurs, e.g. , for
the attractive Hubbard model. In this case the low-
energy physics are given by a spinless-fermion Luttinger
liquid and the results we have obtained in the previous
sections would apply. The third case is when neither the
spin nor the charge sector is gapped. This would corre-
spond, e.g. , to the repulsive U Hubbard model away from
half-filling and to the t-J model in regimes where phase
separation is absent. In this case the fixed-point Hamil-
tonian corresponds to two Luttinger liquids: one for spin
and one for charge. Further, in models with a spin rota-
tion invariance (such as the Hubbard model in zero mag-
netic field) the spin Luttinger liquid fixed point possesses
an irrelevant operator corresponding to second-order um-
klapp scattering, while in models without spin rotation
invariance (such as the Hubbard model in a magnetic
field) it does not. The bosonized Hamiltonian thus in-

volves separate bosonic fields and quantum numbers J for
spin and charge excitations. Band curvature leads to cu-
bic and quartic terms coupling spin bosonic excitations to
the charged ones. This coupling implies that the momen-

In conclusion, we comment briefly on some implica-
tions of our results. The one-dimensional calculation
provides a concrete illustration of the general principle
that in systems of interacting fermions on a lattice the
current operator is not identical to the momentum opera-
tor and does not commute with the Hamiltonian, so that
in general one expects the current operator to have non-
vanishing matrix elements connecting the ground state to
other low-lying states. Of course exceptions may arise, as
for example in the case of an s-wave superconductor. It
is not necessary to have umklapp scattering to have a
finite o(co) at low frequencies. Of course if umklapp
scattering is present it will contribute to o(co), but un-

less the urnklapp scattering is stronger than the critical
value obtained in Sec. VI it will not give rise to a smaller
power of co than calculated here.

Our results for cr(co=0, T) suggest that the commonly
used "memory function" approximation is dangerous. In
this approach one writes

1
o(co, T)-

ico+M(co, T)

and defines the memory function M(co, T) as co' times
the right-hand side of Eq. (2.6). Using this definition as
~~0 for TWO corresponds to making a selective resum-
mation of the (formally divergent) perturbation expansion
in V for o. . The manipulations leading to Eqs. (2.9) or
(3.9) may be performed at finite temperature, yielding
M(co =0, T ) —T . Thus the memory function method
would incorrectly predict that even for incommensurate
densities o.d,

—T '. ( In Ref. 1 the memory function was
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used and an exponentially divergent o(T) was found [as
was a gap in u(co)] because the band curvature terms
were neglected. Had they been correctly included a
correct power-law behavior for o(co) and an incorrect
power-law behavior for o(T) would have been found. )
Our results suggest that the diSculty is that the memory
function formalism does not respect the conservation of J
and of boson momentum which enforced the infinite dc
conductivity of the Luttinger liquid.

Our arguments may be extended to higher dimensions.
We have already mentioned that the perturbation theory
argument gives at stnall co o(co, T=O)-into (in 2D) and
o(co, T=O)const (in 3D). The perturbation theory argu-
ment will give the correct result whenever the ground
state is Fermi-liquid-like. As in one dimension, the dc
resistivity at finite temperature is different: a state of

finite current is a state of finite momentu~, which can
only decay via umklapp processes. In high dimensions
these are generally not activated, and will lead to a tem-
perature dependence determined by the band filling.
Within a weak-coupling model, one may argue ' "that
if the filling is such that 2kF is a reciprocal-lattice vector
then a two-particle excitation may lead to momentum de-
cay, so p- T; while if 2kF is less than a reciprocal-lattice
vector but 3kF is greater, then a three-particle excitation
is required and p- T, etc.
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