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Fano effect studied with use of the recursion method
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We treat the classical problem of a number of discrete states interacting with continua (Fano effect),

by means of the recursion method. We first map a continuum of states on an equivalent semi-infinite

linear chain; then we take advantage of the concepts and properties of the interaction and dipole carry-

ing states to calculate the absorption spectrum. Our approach leads to a significant simplification of cal-

culations without introducing approximations to the original problem. As an example, we consider the

case of discrete states interacting with a semielliptical band: we show that resonances, antiresonances,
and narrowing of levels, due to interference effects among interacting channels, can be handled in a very

compact and simple way.

I. INTRODUCTION

The interaction of one or more discrete levels with a
continuum of states is a long lasting problem in physics.
It was originally studied by Fano' in 1935, and later
reconsidered by the same author' within the Green's-
function formalism. The most peculiar feature of the
problem is the occurrence of anomalous line shapes in ab-
sorption experiments, known as Fano profiles. Examples
of Fano profiles are countless in atomic, molecular, and
solid-state physics. Perhaps one of the earliest and best
known examples is the autoionization of the ultraviolet
and core excitations in rare-gas atoms and later in rare-
gas solids; for rare-gas solids in particular, use of syn-
chrotron radiation has greatly contributed to further en-
rich the phenomenology. Also in molecules such profiles
have been observed in absorption or predissociation.
Among the numerous other problems which can be mim-
icked with discrete levels interfering with a continuum of
states, we can mention resonant impurity levels in crys-
tals, ' discrete excitonic states coupled with continuum
states belonging to other excitonic series, ' discrete pho-
non lines coupled to a phonon quasicontinuum, and hy-
bridization effects in the electronic structure of transition
metals and alloys. ' More recently, the possibility of
laser action, without population inversion, involving the
pumping of an autoionizing state has attracted consider-
able attention, " even if some previous study' anticipat-
ed these ideas; at this regard, quantum wells in appropri-
ate semiconductor heterostructures have been recently
proposed for experiments. '

From a theoretical point of view, the anomalous line
shapes arising from interference of discrete levels with a
continuum of states can be studied with different ap-
proaches, depending on how the continuum of states is

handled in the actual physical problem. A possible ap-
proach is discretization of the continuum of states by
embedding the system in a sufficiently large box,' discrete
and discretized states are then handled on the same
foot ' by means of appropriate numerical diagonaliza-
tion. The analytic approach, on the other side, treats the
continuum of states by means of the Green's-function
technique, along the lines laid down by Fano. ' The ad-
vantage of this line of approach, that focuses on analytic
aspects rather than on purely numerical ones, is to pro-
vide simple expressions for absorption line shapes in
simplified though significant situations. This is very use-
ful for an understanding of the key aspects of the prob-
lems and for guidelines before considering laborious nu-

merical approaches.
It is interesting to note that the essential difference be-

tween the Fano formulations' of 1935 and 1961 lies in the
adoption of Green s-function techniques available in the
interim. Since then, however, several powerful tech-
niques have appeared in the literature for efficient calcu-
lations of Green's functions. Among them, the iterative
procedure based on the renormalization method' ' and
the recursion method' are of particular value. The phys-
ical and technical aspects of the recursion method, ' as
well as its relationship with other iterative methods such
as the moment method, the memory function method,
and the renormalization approach are by now well estab-
lished. ' ' The purpose of this paper is a reformula-
tion of the Fano problem exploiting some powerful con-
cept and techniques of the recursion and renormalization
methods. We show that this task can indeed be achieved
through an appropriate implementation of ideas and pro-
cedures of these iterative approaches, leading to elegant
and easily interpretable results.

The general treatment of a number of discrete states in-
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teracting with a continuum is discussed in Sec. II. There
we use the recursion method in a quite unconventional
form, to transform a set of orthogonal states into a much
more manageable chain structure, the first state of each
chain being the "interaction carrying state. " In Sec. III
we study some interesting exemplifications; for simplicity
a model structure is taken for the continuum so we pro-
duce a number of simple formulas containing the relevant
physics of the multiple interferences between discrete
states and a continuum; the mechanism of the narrowing
of lines is also presented in a very transparent way. Sec-
tion IV contains the conclusions.

II. PROCESSING DISCRETE AND CONTINUUM
CHANNELS BY THE RECURSION METHOD

corresponding to the band continuum

~, = yE, I~, &&+, l. (2)

Vfe can choose any initial state,

N

Iup&= g c, le, &,
i=1

(3)

and transform the diagonal operator H, into a convenient
tridiagonal chain form. According to the standard recur-
sion scheme we apply the following procedure:

Ifp&= leap&,

A. Basic principles and technical aspects I+.+i & =(8, u. )lf.—&
—b. If. -& &,

(4)

In a number of electronic, excitonic, or vibrational
problems of solids, molecules, or atoms, the actual sta-
tionary states may be represented by a superposition of
states corresponding to discrete and continuous spectra.
The more general system under investigation can thus be
schematized as composed by one or more discrete levels

interacting with one or more continuum channels. In
this section we show how to handle this problems with an

appropriate implementation of the recursion method; in

essence the basic techniques here employed include the
use of the recursion method for tridiagonalization of the
continuum channels, and the concept and properties of
what we call the interaction carrying states. %e begin to
illustrate our procedure in the case of one discrete state
interacting with one continuum.

The Hamiltonian which describes a discrete state I@,&

of energy F., interacting with a large number X of
quasicontinuum states I4; & of energy E; can be written

as

b„'„=&F„+)I+.+i &,

1
I+.+i&If.+)&=

~n+1

~„+i=&f.+ilH, lf. +i &

on the new basis functions jlf„&}. In analogy to the
concepts of dipole carrying states, ' we here introduce
the "interaction carrying state" defined as

H, is tridiagonal on the orthonormal basis [ If„&},and

thus the original band is exactly mapped onto a linear
semi-infinite chain (N ~ ap ).

The arbitrariness in the choice of the seed state of Eq.
(3) can be conveniently exploited to simplify the expres-
sion of the interaction part of the Hamiltonian (1)

N

a, = g (v„le, &&a, l+v,*, lc, &&a, l) (s)

H=E, @,&(@,I+ g E;I@;&&@;I

+ y v„le, &&@;I+v;;ly;&(e,l

(where N is the number of states we use to represent the
continuum). Such an Hamiltonian is represented
schematically in Fig. 1(a). Our purpose is to study the
absorption line shape due to the dipole coupling of the
ground state I 4g &, of energy E, to the excited state

I4, & and to the continuum channel.
It is evident that the basic obstacle we encounter in

dealing with the Hamiltonian (1}is the large (or infinite)
number of degrees of freedom of the continuum. These
can be conveniently taken into account with a procedure
based on the recursion method which selects a seed state
and hierarchically orders all the other degrees of free-
dom. Although the general principles' ' of these
methods are known, much care and attention must be
paid to arrive at something useful.

Let us consider in fact the part of the Hamiltonian (1)

H=E, I&, &&&,I+( vlfp&&&, I+ v'I&, &&fpl)

+ g .If. &&f. l

n=0

+ & b. (If. &&f.I+If. &&f„ (7)

and the relative pictorial diagram is shown in Fig. 1(b).
To prove the tridiagonal form of Eq. (7}, we have to

show that

where Vis such that
Ifp & is normalized to one.

If we perform the recursion procedure starting from
the interaction carrying state (6}, the total Hamiltonian is
represented by a one-dimensional chain in which the first
state is just the discrete state itself, the second one is the
interaction carrying state, and the others are the states of
the hierarchy generated by Eqs. (4). That is, the Hamil-
tonian (1) in the new basis is written as
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(b]

E,
(1

ao

) b,
Ito)

'vV, -

I ~, )
I:

FIG. 1. Schematic representation of a system with a single discrete state !4,) interacting with a continuum of states !4;); the
edges of the continuum are W, and W2', !4g ) is the ground state of the system. In (b) the continuum is represented in the equivalent
hierarchical basis!f„)generated by the recursion method. The state! fo) is the "interaction carrying state, " i.e., the state through
which a11 the interactions between the discrete state and the continuum take place.

(f„IH la, & =0

for every n %0; this is easily seen if we consider that using
the Hamiltonian (1) we obtain

(f„IHIP', ) = g (f„l@;)(4;IHIP',) = y &f„le, &v,,

Because of the definition (6) for the interaction carrying
state, we have

&f„IHI@,&=& g &f„l@;&&&;Ifo&=0.

Finally, in the same way

(fo!HI~I~, ) = g (fo!4, ) V,,
i=1

N

We can choose a band shape with known continued
fraction coefficients in order to obtain simple formulas for
the self-energy and the Green's function. In the case of
semielliptic density of states, for instance, we have

D(E)= +W E for IE—
I

~ W .
2

The coefficients of the corresponding continued fraction
are constant and are given by

Wa„=O, b„=

and the Green's function on the initial state I fo ) is (we
use the complex notation for the energy z =E+ie)

G (z)= (z —i+W —z ),= 2
00

where the square root is defined with the cut of the com-
plex plane in ( —~,0) and the determination Vl = 1.

In the case of a rectangular density of states

and this completes the demonstration of expression (7).

B. Simplifications and generalizations

D (E)= for IE I

~ W
1

2W

we have instead

(10)

The elegant reduction of the Hamiltonian (1) into the
chain model (7) is quite general and manageable; it is well
suited both for simplifications or for generalizations de-
pending on the specific problems to be handled. Let us
consider, for instance, the situation in which the interac-
tion coefficients V„ in H are approximately energy in-
dependent in a given energy range (say, —W, W) and are
negligible outside it; let us denote by D (E) the density of
states of the continuum channel. In this case it is easily
seen that the coefficients a„and b„ in the Hamiltonian (7)
[obtained by the recursion procedure summarized in Eqs.
(4)] coincide with the continued fraction coefficients cor-
responding to the density of states D (E).

n 8'
&n=o bn=

4n +1
and correspondingly

1 z+W
Goo(z) = ln

2W z —W

where the logarithm is defined with the cut in ( —0O, O) of
the complex plane and with the determination ln 1=0.

Suppose now that the interaction coefficients V„- are
not constant throughout the channel, although we can
separate different regions of the energy spectrum in
which they are approximately constant. For each of
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E

Vti
Eb-

where T is essentially the dipole operator, and E and E,
are the eigenvalues of I@s ) and Iy;), respectively. The
absorption spectrum is proportional to

I(co ) = g & 4
I
T

I qr; ) & y; I
T I@ )5(E; E— f—ico) .

Similarly to what was done in Ref. 19, let us introduce
the dipole carrying state

(12)

Then the line shape I(co) takes the simple form

I(a))= y I &yIq; ) I' S(E; E —irtc0)—

FIG. 2. Schematic representation of a system with two
discrete states interacting with a continuum of states I4; ).

nr(A—co+Es ) = ——lim ImGrr(Aco+E +i@),1

0+

(13)

these regions we can choose the appropriate interaction
carrying state and apply the scheme outlined before. We
arrive thus to an equivalent multichain Hamiltonian con-
taining the original discrete state interacting with the first
states of a number of chains. It can also be observed that
smooth energy dependence of the interaction parameters
V„. can be taken into account, whenever necessary, with
expansion in Taylor series: each term of the series extends
correspondingly the range of the interaction to further
steps of the chain representation of the continuum.

If there are several discrete states interacting with a
continuum (see for instance Fig. 2) it is evident that our
procedure is straightforwardly generalizable. In fact we
can consider separately regions of continuum having
nearly constant interactions with all discrete states; the
equivalent Hamiltonian includes, besides discrete states,
an appropriate number of semi-infinite chains on which
the continuum has been mapped on. Finally, we can fur-
ther reduce all the semi-infinite chains with the renormal-
ization procedure and arrive to a problem with a number
of degrees of freedom equal to the number of discrete
states plus the number of interaction carrying states con
sidered. These considerations clearly show how fiexible is
the present procedure both in handling realistic problems
and in working out significant models.

C. Calculation of the absorption line shape

The usefulness of the chain transformation presented
in Sec. II A is further corroborated by the following sim-
ple procedure for the calculation of the absorption line
shape. Basically we do not have to diagonalize the Ham-
iltonian but simply to calculate appropriate Green's func-
tions.

Consider in fact the Hamiltonian (1) or the equivalent
Hamiltonian (7). The standard expression for the transi-
tion probability for unit time from the fundamental state

) to the states
I y, ), eigenstates of the Hamiltonian, is

given by the Fermi golden rule

where nr(hco+E ) is the density of states of the Hamil-
tonian projected on the dipole carrying state Iy ) .

In the case of one excited discrete state I4, ) interact-
ing with a continuum, when both the interactions V„and
the dipole moment matrix elements from the ground state
to the continuum states are constant, it is easy to see that
the dipole carrying state (12) is a linear combination of
the discrete and interaction carrying state

(14)

where T, and To are the dipole moment matrix elements
to the discrete excited state and to the interaction carry-
ing state.

In the general case of several discrete states interacting
with one or more continua, it is clear that processing
separate energy regions of each continuum where both
the matrix elements V„and the dipole operator matrix
elements are approximately constant, we recover the situ-
ation noted above in which the discrete states interact
with several chains only through their first states, with
the further advantage that only these states and the
discrete states are connected to the ground state by the
dipole operator. It is now possible to construct the dipole
carrying state as the linear combination of the discrete
states and the first states of the chains with coefficients
proportional to the respective dipole moments.

With the renormalization procedure we can then pro-
cess the (noninteracting) semi-infinite chains and reduce
ourself to a manageable problem with a relatively small
number of degrees of freedom; the needed Green's-
function matrix element Grr(E) is then obtained without
difficulty by direct inversion of an appropriate matrix of
relatively small rank.

III. ILLUSTRATIVE EXAMPLES

In this section we show the potentialities of our
method by considering a few exemphfications. We con-
sider here simple models for the density of states of the
continuum; this allows us to establish analytic solutions
and better emphasize relevant physical aspects.

We consider first the case of only one discrete state in-
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teracting with one continuum in a given range of energy,
as schematized in Fig. 1, with constant interaction matrix
elements and dipole matrix elements in the range
(
—W, W). The normalized dipole carrying state Iy ) is

(T, I&, )+T,Ifo))
I T, I'+

I To I'

=T, I+, &+T,If, &,

where we have indicated with T, and Tp the normalized
dipole moment matrix elements from the ground state to
the discrete state and to the interaction carrying state, re-
spectively.

With the renormalization procedure we can systemati-
cally eliminate all the states

If, ), Ifz ), . . . , I f„),. . . of
the semi-infinite chain provided the self-energy g(E) is

I

g(E)=
b2

E —a 1 E—a 2

The eff'ective Hamiltonian is now a 2X2 matrix (energy
dependent) in the space spanned by I 4, ) and

I fo ), and
to obtain the absorption spectrum we only have to calcu-
late its Green's function on the dipole carrying state

1

E H,~(E)—)
6 E =

The explicit expression of the absorption line shape is
thus (for IEI & W)

evaluated, for the state
Ifo ), in terms of the recurrence

parameters

$2

1
n (E)=——

X

I
TOI'(E E, )'+—( VT,*TO+ V'T, To )(E E, )+ I

—T, I'I VI'
Im (E).

Im g (E) + E —ao —Re g (E) (E E, )
—2—

I VI E —ao —Re g (E) (E E, }+
I

—VI

(15)

[For the sake of precision, the expression (15) of the den-
sity nr(E) holds inside the range ( —W, W); if

I VI is
greater than an energy of the order of 8', one or two
discrete states separate from the continuum. ]

For simplicity (and also to avoid spurious asymmetry
in the absorption due to the actual shape of the continu-
um relative to the energy E, ), we take a symmetric densi-
ty of states (sernielliptic), whose Green s function is given
by Eq. (9) and whose self-energy is

g (E)=— i +—W—E-E . 1

2 2

and choose the discrete state in the middle of the band
(i.e., E, =O). Moreover, the interaction V between the
discrete state and the continuum is chosen such that

I VI « W. Equation (15) assumes now the simpler form
(consider also that ao =0)

n E = I
TOI'E'+(VT, 'To+ V'T, TO )E+ IT, I'I VI'

1' E+6
(16)

where

(17)

We now consider the three illustrative cases shown in
Fig. 3, and for each of them we report the absorption
spectrum of Eq. (16), taking in any case V equal to one
tenth of the bandwidth.

In the case of Fig. 3(a} only the discrete state is dipole
connected to the fundamental state (i.e., T, =l, To=0);
and the presence of the continuum causes the broadening
of the absorption peak. In this case Eq. (16) becomes

n (E)= +W E-
E2+ Q2 ~+72

(18a)

with the typical form of a Lorentzian centered at E=0
and broadening value b, =2I VI /W [see Fig. 3(a)]. In this
case the discrete state autoionizes with the continuum
states lying at approximately the same energy.

In the case of Fig. 3(b) only the states of the continuum
are connected to the fundamental state (i.e., T, =0,
To =1), and Eq. (16) reduces to

Q2
n (E)= 1—E'+ a2

+W E—
m8'

(18b)

then the expression (16) for the absorption assumes the
form

We see in Fig. 3(b) that the presence of the discrete state
causes a hole of half-width b, (it is a level repulsion mech-
anism). In this case the absorption is proportional to the
perturbed density of states. We may interpret the results
of Fig. 3(b) as follows: the presence of the discrete state
I4, ) of energy E, gives rise to a perturbed density of
states depleted at E, .

If we consider the dipole matrix elements both to the
discrete state and the continuum, we can see interference
effects between the discrete state, which alone would give
rise to a resonance, and the hole induced in the continu-
um; this leads to the typical asymmetric line shape and
possibly to antiresonances. Following the literature on
the Fano effect, let us define
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FIG 3 Absorption line shape in the case of a discrete state interacting with a continuum described by a semielliptical density of
states in the energy interval ( —W, 8'). The interaction V equals one tenth of the band width. In (a) only the discrete state is dipole
allowed. In (b) only the interaction carrying state is dipole allowed. In (c) both the discrete and the interaction carrying states are di-
pole allowed, and the asymmetry parameter q is taken equal to 1.

n (E) I
T I2 IE+q I VI I' 2 ~gT2 Eg

X 0 E2+g2 ~2 (18c)

We can easily recognize the two previous cases (18a) and
(18b) as particular cases of (18c). When q is real (and pos-
itive) the line shape (18c) is shown in Fig. 3(c); due to the
fact that q is real, the absorption vanishes at E= —

q I Vl.
If, on the other hand, q is a pure imaginary number, the
interference term [due to the cross product in (18c)] is
zero: no antiresonance appears, and we have only the
sum of the two terms corresponding to the two transi-
tions.

The results of the example discussed so far have been
reported here to illustrate the convenience and simplicity
of our procedure. Essentially equivalent effects would be
obtained with rectangular density of states (10), whose
self-energy is easily deducible from Eq. (11).

As a further illustrative example of our procedure, we
consider the less studied although very interesting prob-
lem of the narrowing of the absorption spectrum arising
in the case of two degenerate (or nearly degenerate)
discrete states interacting with a continuum. Let us sup-
pose for simplicity that the interaction matrix elements
V&; and Vz; are constant in the range ( —W, W) and negli-

gible outside it; introducing the concept of the interaction
carrying state we arrive at the Hamiltonian indicated
schematically in Fig. 4. Treating the semi-infinite chain
with the renormalization procedure we obtain an
equivalent effective Hamiltonian in the space of the
discrete states I4, ), l@2) and the interaction carrying
state Ifo):

by b2

I+a)

FIG. 4. Model Hamiltonian of a system with two degenerate
states (E, =Ez) interacting with a continuum. The state I4, ) is
optically connected to the ground state.
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(19)
I

H.g(E)=E) I+i & & @)I+Ezl@z&& +zl+ g (Ejlfp & &f, l

+(v, lc, &&f, l+ v, If, ) &e, l)

+( Vzl@z&&fpl+ Vz If() &&+zl j,

where g(E) is the self-energy of the chain.
It is now simple to calculate the Green's function

G(E)=(E H—,z) ' in the space spanned by 4i), IC&z)

and
Ifp ); we find

1

D(E)

( E Ez—) E —g(E )
—

I Vz I

V) Vq

(E Ez) V—*,

V) V2

(E E, —) E—g(E) —
I V, I

(E E, )—Vz

(E Ez—) V,

(E E, —)Vz

(E E, )—(E Ez)—

(20)

where we have indicated

D(E)=(E E, j(E— Ez) E——g(E)
—(E —E, ) I v, I' —(E—E, ) I vi I'

In the general case of dipole-allowed transitions to the
states I@i),I@z),Ifp) with normalized matrix elements
T„T2,To, respectively, the dipole carrying state is

Ix& = Ti I+i &+ Tzl+z &+ T.lf. &

The Green's-function matrix element Grr(E) can be cal-

I

culated and from it the absorption line shape deduced;
Grr(E) contains the terms due to the transitions from the
ground state to the discrete states and to the continuum,
and those due to the interference between them.

To make even more transparent the analytic structure
of the various contributions, and the related physical
effects, consider the case in which the continuum is di-
pole forbidden, the two discrete states are degenerate
(E, =Ez ), and an appropriate combination of them (rela-
beled, say, I

4&, ) ) is dipole allowed as shown in Fig. 4.
The absorption line shape is determined by the imagi-

nary part of Gii(E), with

Gii(E) =
(E E) ) E ——g (E)

(E—E, )' E —y(E) —(E —E, )(IV, I'+IV, I')

By simple algebraic transformation, the above expression becomes

G„(E)= +
Iv I'+Iv I' E—E, Iv I'+Iv I' Iv ['+Iv, l' '

E—g (E)

(21)

and we recognize that the absorption spectrum is made
by a 5 function at E, superimposed to the spectrum that
would occur in the absence of the state

I 4z ), and an

effective interaction Q I V, +
I Vz I

between I4, ) and

It is of interest to comment on the arising of the line
narrowing in 5-like shape embodied in Eq. (21). The
qualitative mechanism for its appearance is as follows.
The effect of the discrete state I@z) on the continuum
density of states is the depletion indicated in Fig. 3(b): a
hole is carved in the density of states at the energy corre-
sponding to the discrete state. In our case a second
discrete state

I @,) dipole connected to the ground state
and degenerate with

I 4z ) exists. Thus the autoionization
of the discrete state I@,) is now, at least partially,
quenched and a 5-like contribution remains unmasked.
This argument is supported by the fact that if the two
discrete states are not degenerate, the 5-like contribution
converts into a sharp resonance and then into a standard
resonance when the difference E2 —E, increases.

%e can also understand the reasons of the intensities
a, =

I v, I'/(I v, I'+
I v, l') and Bz =

I v, l'/(I v, I'+
I v, l')

of the two components of the spectrum of Eq. (21). A
discrete state of energy E, interacts with states in the ap-
proximate interval Ei+b „with b, =2I Vi I

/W [Eq. (17)]
as we have seen in Fig. 3(a). At the same time the half-
width of the spectral hole due to the state I 4z ) is =Az,
with b,z=2IVzl /W; so if IV, I((IVzl we understand
why in the absorption line shape the 5-like contribution is
prevalent with respect to the broad part of the spectrum.
On the other hand, for

I V, I
&)

I Vzl the state I4, ) does
not feel the hole, and the spectrum is not influenced by
the presence of the state I@z).

Before concluding, it is of interest to remark on the
resemblance between our model and the interference nar-
rowing due to overlapping resonances in semiconductor
quantum-well structures proposed in a paper of Maschke,
Thomas, and Gobel; ' in their model' there are two in-
teracting continua and one of them is optically active in a
very small energy region and appropriately discretized.

IV. CONCLUSIONS

In this paper we have revisited the long-standing prob-
lem of the absorption line shape of discrete states in-
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teracting with one or more continua of states; the prob-
lem is handled with the iterative techniques based on the
recursion and the renormalization methods. Basically
the continuum of states is mapped rigorously into one or
more linear chains; the introduction of the concepts of
the interaction and dipole carrying states allows to devel-

op a formalism which is at the same time manageable and
elegant. We have examined several illustrative examples,
of absorption line shapes with significative occurrence of
resonances, antiresonances, and line narrowing. The flex-

ibility and generality of our formalism should be of value
in all the problems concerning configuration mixing of
electronic, excitonic, and vibrational spectra of solids.
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