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Kondo effect in gapless superconductors
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We present a self-consistent theory of Kondo impurities in gapless unconventional superconductors
valid in the Fermi-liquid regime T Tz. The impurity degrees of freedom are treated using the large-N
slave-boson technique, leading to tractable equations describing the interplay between the Kondo effect
and superconductivity. We show that for a single impurity in a superconductor with density of states
N(tv} —ItvI', there exists a critical coupling J, below which the Kondo effect does not occur. However,
for r ~ 1 or N=2 any finite concentration of impurities drives J,~O. The theory provides microscopic
support for phenomenological models of resonant impurity scattering in heavy-fermion systems.

The problem of a magnetic impurity in a superconduc-
tor has a long history, beginning with the work of Ander-
son' and Abrikosov and Gor'kov, who pointed out that
the time-reversal breaking nature of the perturbation
would lead to pair breaking and T, suppression. It is well
known that if the exchange interaction between impurity
spin and conduction electrons is sufficiently strong, the
Kondo effect will both modify the effective interaction in
the Cooper channel and shield the impurity local mo-
ment. Theories describing the effect of Kondo impurities
on superconductivity ' have been attempted by many au-
thors, generally utilizing methods specialized to the
"high temperature, " Tz &( T,o or "Fermi liquid, "
Tz)) T,o, regimes, where T,o is the superconducting
transition temperature in the absence of impurities and

T~ is the Kondo temperature. In general, these theories
neglect the self-consistent effect of superconductivity on
impurity electron properties (see, however, Ref. 5). The
lack of a complete theory describing the crossover
reflects the absence of a theory correctly describing the
dynamics of a Kondo impurity in a normal metal at all
temperatures. Jarrell has circumvented this difficulty by
using Monte Carlo methods to treat the impurity degrees
of freedom in a calculation of T, suppression, but this
method does not appear well suited to calculate proper-
ties below the transition temperature.

The Kondo effect is accompanied by the formation of a
narrow many-body resonance of width Tz near the Fermi
level in the impurity spectral density Af (co). It is reason-

able to expect that the opening of a gap 6 in the
conduction-electron density of states leads through hy-

bridization processes to a similar gap in Af(co), which

destroys the Kondo effect if sufficiently large. Recently,
Withoff and Fradkin (WF) pointed out that the two
problems of impurity spins coupled to baths of conduc-
tion electrons with (a) constant density of states and (b)

with a fully developed gap represent two extreme
members of a family of problems given by specifying a
generalized conduction-electron density of states
N(to)=CIcoI", IcoI &D, and 0&r & 0O. Making use of
renormalization-group arguments as well as explicit cal-
culations for the large-degeneracy SU(N) Kondo

(Coqblin-Schrieffer) model, they showed, for r & 0, the ex-
istence of a critical coupling J, below which impurities
are decoupled from the conduction band and no Kondo
effect occurs. As potential physical examples of this
phenomenon they suggested unconventional supercon-
ducting states with line and point zeroes in the
momentum-dependent gap function, corresponding to
densities of states N(co) varying as co and co, respectively.
Such states are possibly realized in the heavy-fermion su-
perconductors UPt3, Uae», URuzSi2, and CeCu2Si&.

In the context of heavy-fermion superconductivity,
theories of impurity scattering in such states have been
given by Ueda and Rice for the case of weak potential
scattering, and by Hirschfeld, Vollhardt, and Wolfle, '

and Schmitt-Rink, Miyake, and Varma" for strong
scattering. Moment formation was not considered in
these theories, but pair breaking still occurs because of
the vanishing of the anomalous one-electron impurity-
averaged self-energy. The strength of the scattering was
crudely parametrized in the latter works by a phase shift

50 for s-wave potential scattering of electrons at the Fer-
mi surface. One of the principal results of these treat-
ments was that in the resonant scattering limit, 5o~n/2, .
corresponding to the single-impurity spin- —, Kondo
effect„' a "bound-state" resonance was found to form in
the superconducting density of states, N(to), leading to
gapless effects in thermodynamic properties. These are
the analogs of the bound states found in discussions of
Kondo effects in s-wave superconductors. ' '

There are several questions left open in the work of
WF (Ref. 7) and in Refs. 9—11 that we hope to address
here. First, what signatures of the transitions from the
Kondo (J & J, ) to "local moment" (J & J, ) regime are to
be expected in superconducting properties? To what ex-
tent do physical aspects of real superconductors modify
the WF predictions; in particular, what are the effects of
finite spin degeneracy X and a density of states varying
on a scale 6((D? And finally, to what extent can the
phenomenological theories of Refs. 9—11 be justified by
microscopic analysis?

To analyze the problem we start from the SU(N)
Coqblin-Schrieffer Hamiltonian, '
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with m = 1, . . . ,N. The conduction- and impurity-
electron operators are denoted by c and f, respectively.
We have added the last term, a simple BCS-like pairing
of electrons on opposite sides of the Fermi sphere. The
f-site occupancy constraint n~=g f f =1 enforces
the correct commutation relations for the impurity spin
operators. We now generalize the procedure of Read and
Newns' to include superconducting correlations in the
functional integral representation of (1). The saddle-
point approximation to this theory is equivalent in the
N~ ~ limit to a mean-field theory of (1) with mean-field
amplitude cr=(J/N)gk (c f ) and Lagrange multi-

plier e& implementing the average constraint. It leads to
the two equations

—= —Im de co —,'Tr 70+73 Gf N+i0+, 2

and

—=Im f dco f(a))—,'TrI(ro+r3)G (k, a)+iO+)

XGI(co+i0+)],

(3)

where 6 denotes the conduction electron Green's func-
tion in the pure superconductor and GI is the full impuri-

ty Green's function, given by

G/ (co)=c01p e/73 XI(co)

Both are matrices in particle-hole space spanned by the
Pauli matrices r;, and X~(co)=e gk G(k, co) is the impur-

ity self-energy. In the normal state b, -O Eqs. (2) and (3)
were solved by Read and Newns, ' leading to a Lorentzi-
an impurity spectral density centered at e&, of width

I =mNoo . This solution assumed a constant
conduction-electron density of states N(co) =No= 1/2D,
~co~ &D, giving rise to a characteristic energy scale

Tz=V I +eI=D exp( —1/NOJ) .

In the superconducting state, we must solve the full
saddle-point equations (2) and (3) together with Dyson's
equations for GI and G as well as the gap equation

h(k)= f den f(co) g Vkk Tr—,'I(r, i')G(k', co)]—. (4)
k'

We focus first on the case of a single impurity, analo-
gous to the case discussed by WF, except that the gap
maximum in momentum space ho and the conduction-
electron bandwidth D are here treated more generally as
independent energy scales. We also consider the case of
small N, despite the fact that Eqs. (2) and (3) are strictly
valid only in the large-X limit. Here we adopt the point
of view that, since the saddle point for X =2 is known to
reproduce the correct ana1ytic low-temperature normal-
state behavior' of the f resonance, including its position
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FIG. 1. Critical coupling J, /D for one impurity vs the ampli-
tude of the scaled order parameter Ap/D.

at @I=0, the N =2 theory will provide a good starting

point for a description of the Tz &)T regime. For the su-

perconducting order parameter we take for simplicity
model p-wave states with lines ["polar", h(k) =b,ok, ] and

points of nodes ["axial", h(k) =b 0(k„+ik )] on the Fer-
mi surface, with densities of states varying at low energies
co &&ko as co and m, respectively. The critical couphng

J, in this case is now defined to be that J for which

o =@I=0 is the only solution of Eqs. (2) and (3), with

G(k, co) replaced by G (k, co). We note that to show that
0. and e& always scale to zero together at the transition
for N ( 00 requires a careful analysis of impurity bound
states in A~(co), which occur in the gap and outside the
band edges. It follows from this analysis and from Eq. (3)
that J, is independent of N. For the (unphysical) case
AO=D we recover the WF r = 1 result, J, /D = 1, for the
polar state, while for the axial state we find J, /D = 1.44.
This differs slightly from the WF r =2 result

J, /D = 1.33, as the axial density of states deviates from

pure ~ behavior at larger energies. In the physical limit
b,o«D, we obtain J, =2D/ln(2D/b, o) for axial, polar,
and isotropic s-wave states. In Fig. 1 we plot J, vs 50/D
for all three states. It is worth noting that for typical
narrow bandwidths in strongly correlated metals and su-

perconducting transition temperatures of a few degrees,
J, is of the order of magnitude of experimentally deduced
exchange constants in rare-earth-actinide systems. This
leads to the possibility that the transition might be ob-
served in heavy-fermion superconductors. Since for
Tz )T,o, ho~0 the system is always in the Kondo re-

gime, decreasing temperature may drive the system
through the transition.

We have also investigated the existence of bound states
in the gap analogous to those discussed in an earlier
work' on s-wave superconductors in the low-
temperature regime. The T matrix for conduction-
electron scattering is siinply T(co)=cr GI(co); thus the
position co& of the bound states in the p-wave case is
found by solving
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For TK »ho, ~co~ ~
~ho and the bound states disappear

into the gap edge, except for the case N =2, where ef =0
and the bound state always sits at the center of the gap.
In the opposite limit, Tz « ho, all bound states approach
the center of the gap. In the s-wave case, the results for
all N are qualitatively similar to the N & 2 p-wave case, in
agreement with the result of Ref. 14 for T,o& Tz. For
T,o/Tx~ oo the high-temperature theory' predicts that
the bound states approach the gap edge. It is interesting
to note that the fixed position of the N =2, p-wave bound
state at the center of the gap agrees with the results of
phenomenological approach, ' '" and will obtain more
generally whenever the off-diagonal part of the impurity
self-energy Xf vanishes for symmetry reasons (as in odd-

parity states).
To study the case of finite impurity concentrations, we

calculate self-consistent Green's functions averaged over
impurity positions in the usual way, leading to
Gf (co) =ct) ro 'Ef 73 and 6 '(co } coro ekr3 ~(k)r'I
where

co=co+I (co/[b (k) —co j'i )»

and

co=co+aI co/( —co +of) .

density of states at the Fermi level N (0) is finite. Since in
the polar state any finite impurity concentration n may be
shown to lead self-consistently to N(0) &0, as also found
in Refs. 9—11, the transition discussed by WF does not
take place. This may easily be seen by solving the equa-
tions for ro and co at co=0, with Imago(0) &0. A closer
analysis shows that J,=0 for all superconducting states
with density of states N(co)- ~co~" for co&&6,o, r & 1. In
the axial state ( r =2 ), and indeed for any state with
1&r & ~, the cases N=2 and N)2 are qualitatively
different. If N & 2, a critical concentration is required to
create a gapless state N(0)&0, and thus drive J,~O.
However, when the bound state is located exactly at the
Fermi surface (N=2, ef =0},we find again a finite densi-

ty of states N (0} for any finite concentration. These re-
sults are also in accord with earlier studies, ' '" where the
phenomenological phase shift 5o is crudely given here by
cot Ef /I .

Finally, we discuss the suppression of the critical tem-
perature T, with impurity concentration n. This is calcu-
lated in the usual way by solving the gap equation (4) at
T, together with Eqs. (2) and (3) for the normal state.
The results are presented in Fig. 3 for both p-wave states
considered. For Tz & T,o, we obtain reentrant behavior
in T, (n ) similar to that found by earlier theories of s-
wave superconductors. However, we note that the
large-N mean-field-theory approach applied here cannot
be expected to describe the temperature-dependent polar-

Here a =nT, ON/2n, and n =n/T, ONO is the scaled im-

purity concentration. In general, Gf
' and 6 ' will also

contain additional off-diagonal renormalizations, which
vanish in the p-wave case considered here. We have ob-
tained self-consistent numerical solutions to the coupled
system of Eqs. (2)—(4) together with Dyson's equations
for the averaged propagators, which we now use to calcu-
late the critical exchange coupling, as well as various
thermodynamic properties of the superconducting state.

For n )0, the bound states in the gap discussed above
acquire a finite width and should be observable as reso-
nances in the conduction-electron density of states close
to the bound-state positions co+ determined by Eq. (5). In
Fig. 2 we show the N =2 density of states for axial and
polar states. The sharpness of the bound states is seen to
increase with T,o/Tir . We note that although the
scattering phase shift in the present theory,
5(co)= —arg(Gf ')"(co+iO+), is strongly energy depen-
dent, in the limit T,o Tz the resulting density of states
is quite similar to the phenomenological theories of Refs.
10 and 11, assuming 5(0)=m/2. In the insets of Figs. 2
we have plotted for comparison the f spectral densities in
both cases; we see that removing conduction-electron
states from the vicinity of the Fermi level has the effect of
narrowing Af(co), or effectively decreasing the Kondo
temperature.

An interesting consequence of the self-consistent treat-
ment of impurity scattering is that the conclusions of WF
regarding the existence of a critical exchange coupling J,
based on a single-impurity analysis are modified. It is
clear from physical considerations or from Eqs. (2) and
(3}that the Kondo effect occurs for all J & 0 whenever the
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FIG. 2. Density of states for conduction electrons, (a) axial,
(b) polar state for N=2 and T~/T, 0=0.3 (solid line), 1 (dashed

line), and 20 (dash-dotted line). The inset shows the impurity
spectrum for Tz/T, 0=20 in both (a) and (b). The scaled impur-

ity concentration was chosen to be n =0.2.
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FIG. 3. Suppression of the critical temperature as a function
of impurity concentration for different values of T&/T, o and
N=2. The lines represent T&/T, 0=0. 1 (dash-dotted line), 1

(dashed line), and 100 (full line). Concentration is scaled to the
critical concentration at T=O. The inset presents the slope of
T, suppression at T,o, for N=2, for both the p-wave (full line)
and the s-wave (broken line) states.

ization of the Kondo singlet and the crossover to local
moment behavior. We therefore do not obtain the
Abrikosov-Gor'kov result for Tz && T,o, and the
Tx /T p

=0. 1 curve shown in Fig. 3 may be taken serious-
ly only for T, /T, 0&0.1. In the opposite limit T~ &&T,o
the form of the T, suppression is identical to that found
by Abrikosov and Gor'kov with renormalized energy-
independent pair-breaking parameter nN I /(2m TE );
this result must obtain simply because the theory in this
limit describes pair-breaking by resonant potential
scatterers in the p-wave superconducting state, as dis-

cussed in Refs. 10 and 11. In the inset of Fig. 3, we show
the normalized slope T,'(n =0)/T, p for both s- and p-
wave cases. We note that the much larger T, depression
in the Fermi-liquid regime for the p-wave states is again
due to an absence of an "Anderson theorem"' for p-wave

super conductors.

Our results suggest that the transition discussed by WF
might be observable in ordinary superconductors doped
with Kondo impurities with spin degeneracy N & 2, e.g.,
Ce. For N =2 we have shown that effective Kondo tem-
perature in the superconducting state is reduced but nev-
er vanishes. Nevertheless, in relatively clean systems de-
viations in thermodynamic properties per impurity from
those of the pure superconductor may be qualitatively
similar to what one might expect from a WF-type
analysis if the effective Tz is driven to zero. The theory
presented here provides an easily tractable framework to
calculate such properties, as well as transport coefficients,
in the superconducting state. Furthermore, it improves
upon phenomenological theories' '" by including a Kon-
do impurity description of the energy dependence of
scattering phase shifts. We will present the results of a
detailed numerical evaluation of thermodynamic proper-
ties of doped s- and p-wave superconducting states in a
later work.

Heavy-fermion superconductors, which are thought to
have unconventional order parameters, are dense lattices
of Kondo ions rather than weakly interacting supercon-
ductors with dilute magnetic impurities as discussed here.
It has been nevertheless suggested' that nonmagnetic im-
purities may be treated as scattering centers with the
phase shift close to the unitarity limit relative to the host
lattice. Our results may therefore be relevant to these
systems. On the other hand, it is clear that normal-state
coherence effects require a more sophisticated treatment
of the problem of a defect in a Kondo lattice. A final
justification of the applicability of the theory presented
here to dense heavy-fermion systems requires microscop-
ic studies of the lattice problem.
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