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The temperature dependence of the electron-spin-resonance linewidth, hH(T), has been measured in
multilayered Cu089Mno ll/Cu as a function of spin-glass layer thickness 8'sG with 1 nm ~ Wsz 500
nm. We find that the critical behavior, as characterized by the divergence strength C and exponent ~
changes systematically with WsG. A function parametrized in terms of the ratio of the freezing tempera-
ture in a sample with spin-glass layer thickness Wsz to that of the bulk, Tf( WsG )/Tf( 00 ), describes all
data with Ws& 7 nm. Samples with WsG ~3 nm do not obey this form and are better described by a
two-dimensional form that diverges as T '. A universal function describing a crossover from three-
dimensional to two-dimensional behavior as the layer thickness changes is suggested. Once the depen-
dence of the critical part of AH(T) on Tf( Ws~) is known, finite-size and droplet relationships can be
used to infer the dependence on Ws&. The possibility that this crossover is due to increasing anisotropy
as WsG, is decreased is briefly discussed.

Interpretation of electron-spin-resonance (ESR) inves-
tigations of bulk spin glasses above Tf (Refs. 1 —5) has
been challenging. This is due in part to the nature of
ESR measurements, which are made at high (GHz) fre-
quencies and large (1—6 kG) magnetic fields, and in part
to the very complicated behavior of spin glasses in the
temperature range where they cannot be considered sim-
ple, noninteracting paramagnets, but are not yet frozen
into a macroscopic spin-glass phase.

Static ' and frequency dependent ' susceptibility mea-
surements of multilayered spin glasses have shown that
the freezing temperature Tf(&so) decreases with de-
creasing spin-glass layer thickness, 8'sG. The reduced
freezing temperature, given by

e=
I. Tf ( ao )

—Tf ( Wso ) j /Tf ( oo ),
measures this depression relative to the bulk freezing
temperature, Tf(ao). Standard finite-size scaling theory
predicts that e is proportional to 8'zz . Multilayers
with 8's~ )20 nm confirm these predictions, with
v=1.0+0. 1 (for Cuo 89MnQ ii/Cu) and T&( &so) extrapo-
lating to zero at 8'sz =3 nm. Finite-size scaling fails for
samples with 8's& (20 nm and these data are indicative
of crossover behavior from three to two dimensions, as
shown within a droplet model. ' ' Experimental mea-
surements show that Tf(8'sG) remains finite at even a
single monolayer thickness. '

The ESR linewidth, AH(T), in bulk samples has been
shown' to decrease linearly with decreasing tempera-

ture for T»Tf. As Tf is approached, the linewidth
diverges as a power law in reduced temperature,
t=(T Tf)/Tf. By m—easuring bH(T) as a function of
8'sz, we hope to determine if the finite size and dimen-
sionality e8'ects that have been well documented in mea-
surements of Tf( Wso) are evident in the ESR linewidth
and to use the results of this study to better understand
the interpretation (and thus the utility) of this technique
as applied to spin glasses.

Fabrication and characterization techniques have been
previously reported and only details particular to this
experiment are included here. UHV dc sputtering is used
to interlayer Cuo s9Mno» of layer thickness &so (1
nm a@so ~ 500 nm) with 30-nin buffer layers of Cu. The
Cu interlayers prevent magnetic interactions between
spin-glass layers. Films are mounted on flattened quartz
rods for measurement in a Varian 4500 spectrometer at 9
GHz. To avoid Dysonian line shapes, ' the total sample
thickness is limited to 500—700 nm, which is approxi-
mately —,

' of the skin depth. Tf(W'sG) was determined
from SQUID susceptibility measurements at 100 G with
a measuring time of about 300 sec per point.

First derivative line shapes are collected by computer
as the temperature is lowered from 300 K to near
Tf( 8'sG ) and are fit to a sum of real and imaginary parts
of the susceptibility. ' The ratio of real to imaginary part
is held constant for all temperatures and layer
thicknesses. Residual impurities from the substrate give
rise to a background, which is accounted for in the fitting
procedure.
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FIG. 1. The ESR linewidth as a function of temperature,
hH(T), for WsG=500 nm (squares) and 3 nrn (circles). The
freezing temperatures are indicated by dashed lines.

At high temperatures, hH(T) approaches a straight line
characterized by the residual width A and the thermal
broadening coeScient 8. As T nears Tf, the linear be-
havior combines with a power law divergence in the re-
duced temperature t having divergence strength C and
exponent a.

Figure 1 shows b,H ( T) for samples with Wso =500 nm
(squares) and 3 nm (circles). Freezing temperatures are
indicated by dashed lines. hH ( T) can be fit to Eq. (1) for
all samples studied (1 nm~ Wso +500 nm) with the
minimum linewidth approximately constant for all layer
thicknesses; however, the position of the minimum
linewidth changes from 2.4TI( Wso) in the thick samples
to 6.5Tf( Wso) in the 1-nm sample. The parameters ob-
tained by fitting these data to Eq. (1) are summarized in
Table I. The error in ~ is +0.1 for all samples. The re-
duced temperature t is calculated using the value of
Tf ( Wso ) obtained from susceptibility measurements.

TABLE I. Parameters obtained by fitting
dH(T)=A+BT+Ct ", with t=[T—Tf($VsG)]/Tf(Wso).
Values shown in parentheses for sc are from fits to the corre-
sponding Tf =0 form.

8'sg T) (P sG)
{nm) {K)

A

(G) (GrK.)
C

(G)
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Previous studies of Cu-Mn/Cu multilayers ' have
demonstrated that samples with WsG ~5 nm are more
appropriately described by two-dimensional (2D) expres-
sions. For the ESR linewidth, the 2D expression is ob-
tained by replacing t in Eq. (1) with T and renormalizing
the divergence strength. Fitting to this form does not ap-
preciably change A and 8. The renormalized divergence
strength is not directly comparable with C and is not
shown. The values of ~ obtained from fitting to this form
are shown in parentheses in Table I. Parameters for both
forms were obtained by fixing ~, letting the other three
parameters vary, and repeating the process. The best fit
is determined by minimizing y .

All parameters show systematic trends as a function of
layer thickness. The behavior of the residual linewidth
implies a change in the Curie constant with WsG. The
increase in 8 with decreasing WsG indicates an opening
of the ESR bottleneck' via the introduction of additional
relaxation paths as a result of either the multilayered
structure or the finite thickness of the samples. These
phenomena will be addressed in a future publication, and
we will instead focus on the critical behavior described by
hH ( T)'"=b,H ( T) A BT. ——Both the divergence
strength C and the exponent ~ increase with decreasing
layer thickness. tt has a value of 1.5 in the bulk [in agree-
ment with that found in bulk AgMn (Ref. 1) and a
theoretical prediction' ] and increases to a value of
2.5+0.1 in the thinner samples (with Tf =0}.

The form of the dependence of the freezing tempera-
ture on Wso has been shown ' to vary in different re-
gimes. To avoid this complication, we have parametrized
the data in terms of Tf(Wso)/Tf(~ )=1—e. [Once this
is done, the dependence of b,H(T, s) on layer thickness
can then be inferred from finite-size and droplet relation-
ships in the appropriate regimes. ] Figure 2 shows the
divergence strength C( Tf ( Wso ) ) as a function of
log, o[Tf(Wso)/Tf(ae)]. For samples with Wso 7 nm,
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FIG. 2. The logarithm of the divergence strength C( Tf ) of a
sample with freezing temperature Tf as a function of
log, o( I —e), with e= Tf ( 8'sG ) /T&( 00 ). The solid line
represents C(Tf ) =C( Tf( ao ) )(1—e) ' [Eq. (2)] with
a =2.4+0. 1.
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FIG. 3. The exponent ~ as a function of
1 —e=Tf($$Q)/Tf(~). The solid boxes shown for 8'sG=3
and 1 nm are those obtained from fitting with Tf =0. (See Table
I.) Open boxes are values from fits to finite Tf. The solid line
represents Eq. (3a) (jr=1.5+be) with b=1.8520. 15 and the
dashed line represents Eq. (3b) (~= 1.5+b' e') with
b' = 1.05+0.04 and c =0.54+0.05.

the divergence strength follows the power law given by
Eq. (2):

Tf(Wso }
C(Tf( so))=C(Tf( ~ ))

Tf(oo)

—a

(2)

where C(Tf( oo )) is the value of the divergence strength
in the bulk and the exponent a has the value 2.4%0.1.

Figure 3 shows the exponent ~ as a function of
Tf(Wso)/Tf(oo), with the Tf =0 values shown for the
two thinnest samples. %e can write ~ as the sum of the
bulk value, a(Tf( oo )), plus an additional part which de-
scribes the dependence on Tf. For samples with 8'sG 7
nm, the exponent x obeys a straight line:

K( Tf ( Wso ) )=K( Tf ( oo }}+b 1— Tf(Wso)
Tf( oo )

a(Tf(Wso))=ir(Tf(~))+b' 1—

=fr(TI( oo ))+b'E'

Tf(Wso)
Tf(~)

(3b)

with b'=1.0 +5. 040and c =0.54+0.05. Equation (3b) is
shown as a dashed line in Fig. 3. This modification, along
with Eq. (2), results in a universal expression for
AH(T, e) that describes a crossover from 3D to 2D be-
havior as Tf(Wso) decreases. Note that the values of
Tf ( Wso } used in fitting hH ( T, E) are obtained at 100 G

(3a)

where a(Tf( oo ))=1.5 and b =1.85+0. 15; however, this
predicts a value of ~=3.3 for Tf =0. One possible
modification to Eq. (3a), which results in a more ap-
propriate 2D limit is

and a measuring time of 300 sec, while the ESR measure-
ments are over much shorter time scales and larger mag-
netic fields. Cumulative field and frequency effects on
Tf(Wso) might be more significant in thinner samples
and clarification of how ~ behaves as Tf ~0 may require
consideration of these effects.

We are not aware of any measurements or theoretical
predictions for a 2D value of x in metallic spin glasses.
Our measured value of ~=2.5 agrees with the general ob-
servation of K~2 found for two-dimensional antiferro-
magnetic Mn-Br and Mn-Cl salts' fit using the measured
Neel temperature. bH(T) has been measured on thin
ferromagnetic films, ' but analysis of data above T, has
not been published. A percolation theory developed to
explain the ESR behavior of Rb2Mn Mg& F4, a dilute
two-dimensional antiferromagnet, predicted that AH(T)
would diverge as T, but the observed divergence was
weaker.

A divergent ESR linewidth is seen in spin glasses, two-
dimensional antiferromagnets, linear chain antiferromag-
nets, ' and in anisotropic three-dimensional ferromag-
nets and antiferromagnets. ' The only instances in
which the ESR linewidth does not diverge are in cubic
antiferromagnets such as RbMnF3 and KMnF3, where
AH(T) instead narrows near the Neel temperature. '
Theoretical calculations of the ESR linewidth in antifer-
romagnets have emphasized the necessity of anisotropy in

obtaining a divergence.
The anisotropy responsible for the diverging ESR

linewidth in spin glasses was originally thought to be di-

polar; however, Mozurkewich et al. ' identified the
Dzyaloshinskii-Moriya (DM) anisotropy as the dominant
mechanism in Sb-doped Ag-Mn by showing that ~ in-
creases with increasing anisotropy. (Note that Sb doping
also decreases the freezing temperature. ) The similarity
between the increase in ~ with increasing anisotropy and
decreasing 8'sz raises the equation of how anisotropy is
affected by reducing W'sz. If these changes are coupled,
our measurements indicate that the anisotropy increases
with decreasing Wsz, whether this is due to an enhance-
ment of the DM anisotropy or a change in the character
of the exchange interaction is unknown. A number of ex-
perimental and theoretical ' studies have investi-
gated the importance of anisotropy to spin glass ordering
in the bulk. Additional investigation of the relationship
between 8'sz and anisotropy is required to answer this
question.

Further understanding and interpretation of the ESR
linewidth divergence by comparison to other spin-glass
measurements is hampered by the inability to relate ex-
ponents obtained from ESR measurements to other mea-
sured and theoretically calculated values. Wu,
Mozurkewich, and Orbach cite two calculations relating
a. to vz: ir=zv and ir=zv —2P. These formulas predict
values of zv from 1.5 to 2.5 for the bulk, in agreement
with those found by field and frequency scaling of
bH(T}. Measurements of zv by susceptibility experi-
ments in metallic and other spin glasses, ' as well as
theoretical calculations ' consistently find values of zv
in the range of 6—10. Attempts to identify the value of ~
in the nominally 2D case with other (2D) exponents is
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similarly unsatisfying. The questions of why divergences
are seen in one-dimensional magnets —which theoretical-
ly should not support long-range order —and why
b,H ( T) departs from power-law behavior at relatively
high (t =0.6) reduced temperatures also remain
unanswered.

In summary, we have reported the first measurements
of the ESR linewidth as a function of temperature in mul-
tilayered Cuos9Mno ii/Cu spin glasses with spin-glass
layer thicknesses from 1 to 500 nm. Although all sam-
ples follow the same qualitative form, systematic changes
in the parameters describing the linewidth are seen. A
single function in terms of e=[Tf(~) Tf(Wso)]l
Tf ( ~ ) describes the linewidth for all samples with

~sG —7 nm. Samples with Wso —3 nm are more ap
propriately fit with a two-dimensional form that diverges
as T . These two regimes describe a crossover from
three-dimensional to two-dimensional behavior, and one

form for this crossover has been suggested. Similarity be-
tween the behavior of ~ with increasing anisotropy and
decreasing 8'sG raises the possibility that decreasing
8'so increases the anisotropy. Further understanding of
the ESR linewidth requires better knowledge of the mag-
netic field and frequency effects on Tf(8'so), reconcilia-
tion of critical exponents with those from other types of
experiments, theoretical calculation of ~ in two dimen-
sions and the clarification of the role of anisotropy.
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