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Localized magnetism in a superlattice
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We study a magnetic superlattice in which one of the inner atomic layers has been modified. We use

the Ising model in the mean-field approximation. We find that if the modified exchange constant Jo is

greater than that in the bulk, localized magnetism occurs, with the magnetization decaying in both
directions for the infinite superlattice. The transition temperatures for finite and infinite systems are cal-

culated for both uniform and alternating superlattices.

I. INTRODUCTION M, =tanh[p(zo J;;M, +zJ;;+,M;+ &+zJ;, ; ~M; ~+ h )],
Over the years, the magnetic properties of solids and

artificially fabricated superlattices have been widely stud-
ied. The effects of a surface on the magnetic behavior
have also been investigated by assuming one or more lay-
ers of surface atoms with exchange constants (interac-
tions) difFerent from those in the bulk. ' It was found
that if the surface exchange constants are above some
critical values, the surface will order at a temperature
T, & To (Curie temperature for the bulk); and in the re-

gion Tp & T & T„we have surface magnetic structure,
with the magnetization decaying exponentially into the
bulk with a characteristic length. This surface rnagne-
tisrn has been confirmed by recent experimental re-
sults. ' ' In the earlier theoretical works, the semi-
infinite limit is chosen, but some recent works have also
considered uniform and alternating finite superlattices.

The theoretical interests are undoubtedly stimulated by
recent advances in epitaxial-growth techniques, where it
is nowadays possible to grow magnetic films of controll-
able thickness, or even magnetic monolayers atop non-

magnetic substrates. '

In the present paper, we study a magnetic superlattice
in which one of the inner atomic layers has a different ex-
change constant Jp. For simplicity, we assume the
modified layer to be exactly in the center of the superlat-
tice. We will show that as long as Jp is larger than that
in the bulk, localized phase transition can occur at a tem-

perature T, ) To, and the magnetization decays in both
directions with a characteristic length. We will use the
Ising model in the mean-field approximation, and study
the uniform and alternating superlattices for both the
finite and infinite cases. Many of the results will be ex-

pressed in terms of determinants introduced in Refs. 7
and 9.

II. UNIFORM SUPERLATTICE
WITH ONE MODIFIED INNER LAYER

where the matrix A has elements

A~„= [kit T —z&J~ ~ ]5~ „—zJ~ „[5~+,„+5~„+,] .

(3)

Let us consider the uniform model of Fig. 1(a). Here
J;;=J;;=Jz fori =1,2, . . . , n and Joo=Jo. The in-

terlayer exchange is assumed to have the same value J.
Let us use the dimensionless quantities t =kttT/(zJ),

j =zoJ /(zJ), a= A, B or 0, x =t —j, and introduce
the variables m;=M;+M, , i )0, and mp=2Mp foi
reason of symmetry.

Then Eqs. (2) and (3) can be written as

8m=0,
where the (n + 1 }X (n + 1 } matrix B is
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where zo, z are the numbers of nearest neighbors in the
plane and between the planes, respectively, and J &

is the
exchange constant between plane a and P.

Near the transition temperature, the order parameters
M; are small, and in the absence of an external field h,
Eq. (1) reduces to

AM=0,

We consider a lattice of localized spins with spin equal
to one-half. The interaction is of the nearest-neighbor
ferromagnetic Ising type, and the exchange constant is

plane dependent. In the mean-field approximation, the
mean value I,- of the spin variable at each plane is deter-
mined by '

ht le ir ill 1/t

(a) (b)

FIG. 1. (a) Uniform superlattice with one modified layer. (b)

Alternating superlattice with one modified layer.
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T

xo/2 —1 0 0
—1 xA —1 0

0

—1 x —1A

0 —1 xA
(4)

0

xA —1 0
—1 x —1A

A (n + I)x(n + I j

The transition temperature is given by

detB =(xo/2)S„—S„ I =0,
where the determinant

(5)

( T)=det

xA —1 0 0
—1 xA —1 0

0 —1 xA —1

0 0 —1 xA

0

xA —1 0
—1 x —1A

0 —1 x
mXm

has been evaluated as

with

(T)=sinh[(m +1)P]/sinhP, (6a) 8-

cosh/=x„/2 for x„~2 . (6b)

For xz (2, P becomes ie and the hyperbolic functions
become trigonometric functions of 8.

For a finite value of n, Eq. (5) with (6) can be solved nu-
merically for the transition temperature.

In the limit n —+ 00,

mi+1 i+1 =y~ I,
m,

where y satisfies 5-

1.5

1.0

1
xA —y'+ —=0 .

y
(7)

Using Eqs. (5}and (7) we have the analytical results

t =j„+[4+(jo—j„)]'
0.5

and
3

y= —,'[x„—(x„—4}'~2], A, = —lny . (S)
jo

FIG. 2. Dependence of t on jo for a, n=1; b, n=2; c, n=4;
and d, n = ao for the uniform superlattice. The dependence of A,

on jo for n =a is shown in curve e.

Equation (S) shows that as long as jo )jz, t )jr +2=to,
the bulk Curie temperature; and the magnetization de-
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cays with the characteristic length A,

In Fig. 2 we have plotted the Curie temperatures t ob-
tained from Eq. (5) as a function of jo. We have chosen

jA =4, and shown the results for n = 1, 2, and 4, as well
as n = ao. We have also plotted A, vs jp for the n = ao

case. Note that in this case, for jp &j„,all the layers or-
der at tp except for the modified one. However, as
jp) j„,t & tp and localization of magnetization occurs.

IH. ALTERNATING SUPERLATTICE
W'ITH ONE MODIFIED INNER LAYER

We next consider the alternating model, Fig. 1(b).
JB J2 —],2 —] J—(2 —]),—(2 —])=JA for i =1,2, . . . , n, and Jp p

=Jp. Jm m+] is again J.
With use of the variables m,. and mo as before, Eq. (2)

becomes

xo/2 —l 0 0
—1 xA —1 0

0

0

—1 x —1B

0 —1 xA

xB —1 0
—1 x A

0 —1 x
(2n +1)X(2n + ] )

where we are using the sarae dimensionless quantities.
The transition temperature is given by

detF = (x0 /2)Sz„—C z„&=0,

by expanding about the first row.
The two determinants 2)2 and C2 „defined as

xA —1 0 0
—1 xB —1 0

0 —1 x„—1

0 0 —1 xB

xB —1 0
—1 x —1A

0 —1 xB 2m X2m

and

xB —1 0 0

C~,(T)=

0 —1 x —1B

0 0 —1 xA

xB —1 0
—1 x —1A

0 —1 xB (2m —])X(2m —])
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have been determined for a ~ 2, as

$2 = . [sinh[(m+1)iI)]+sinh(mp)],1

sinh

82,= . [cosh/+1]sinh(mg),2
X A Slllh

where

a=x„xs—2=2 cosh/ .

(1 la}

(1 lb)

(12)
4.5-

Again, the trigonometric functions are to be used for
a&2.

In the infinite limit n ~ 00,

3.0

m2'+1 +2'+2
m 2; 2)2i

mz;+i

mz;-i

4-

where the decay ratio y ~ 1 is given by

y —ay+1=0 .

By writing the ratio

(1+y),
2n

Eqs. (10) and (13) give

xgxp =2xs(x exp 2) .

(13}

(14)

(15)

3.5-

3 P

2.0

1.0

Equation (15) is a cubic equation in t, but it shows that
if j0 &jz, then t & t0=the alternating lattice bulk Curie
temperature, and

y =
—,
' [a—(a2 —4)'~2], A, = —lny . (16)

Equations (10) and (15) [together with Eqs. (11) and
(12)] can be solved numerically for t. For our numerical
works, we have chosen j„=2,js =1 tp =3~ 562.

In Fig. 3 we have plotted t vs j0, for n =1,2 corre-
sponding to five and nine layers, as well as the infinite
case. The decay constant A, is also shown. Again, for

FIG. 3. Dependence of t on jo for a, n=1; b, n=2; and c,
n = ~ for the alternating superlattice. The dependence of A, on

jo is shown in curve d.

j0 &jz, in the infinite case, all the layers order at t0 ex-

cept for the modified one. However, for j0&jg t &t0
and there is localization of magnetization about the
modified plane.
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