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Thickness dependence of flux-line-lattice melting in high-T, superconducting films
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Civale et al. have recently measured the irreversibility line of YBa2Cu307 „(YBCO)films in the mag-
netic field-temperature plane, B;„(T),as a function of film thickness. We are able to reproduce the ob-
served shift of B;„(T) to lower temperatures as the film thickness is reduced within a model of Aux-line-

lattice melting without pinning. While pinning must be important, this suggests B;„(T) is at least partly
0

an intrinsic property. The onset of the shift of B;„(T)begins for films thinner than 1000—1500 A in
0

YBCO. The present model predicts that the onset will begin for films thinner than 100—150 A in

Bi2Sr2CaCu&08.

I. INTRODUCTION

Flux lines in the high-T, superconductors (HTSC's)
show an intriguing transition' from reversible to ir-
reversible behavior below T, . The line B;«(T) in the
magnetic field (B}and temperature (g plane below which
the magnetic properties become irreversible lies slightly
below B,z(T) in YBazCu307 „(YBCO),' ' but very
significantly below B,2( T) in BizSrzCaCu20s (BSCCO). '

The reversible behavior above B;„(T) is generally associ-
ated with free motion of the magnetic-flux lines. ' Below
B;„(T}the flux lines (FL's) are pinned by defects, either
in a glassy or in a flux-line-lattice (FLL) structure. There
are many models of the transition: thermally activated
depinning' " of the FL's, a glass-to-liquid transition, '

giant flux creep, ' ' transition from an entangled to a
disentangled FL state through flux cutting, ' ' and FLL
melting. "' ' Pinning clearly plays an important role, '

and there may not be a clear distinction between the
models. However, some experimental results suggest
that the irreversibility line is measurably independent of
the density of defects from sample to sample, ' so that the
transition has some character intrinsic to the material in-
dependent of pinning sites.

Recent measurements of B;„(T)in YBCO by Civale,
Worthington, and Gupta ' show an interesting depen-
dence of B;„(T) on the thickness of the sample. For sam-

ples 1000 A and thicker, B;„(T)takes the bulk value. As
the thickness is reduced below 1000 A, B;„(T)moves to
lower temperatures. This can be explained within the
above models involving pinning. FL's are very effectively
pinned by line-planar defects. As the length of the line
and/or plane is reduced with reduced thickness, the
strength of pinning is reduced and B;„(T) moves to lower
temperature. In the vortex glass model, ' there is a cross-
over from three- to two-dimensional behavior as film
thickness decreases, which moves B; (T) to lower tem-
perature. However, it is diScult to make these models
quantitative.

The purpose of the present paper is to test whether the
observed ' reduction of B;„(T) with film thickness can be
reproduced within the FLL "melting" picture without
pinning. We determine the magnetic field Bt( T) at which

the FLL becomes mechanically unstable. We identify the
instability with "melting" and with B;„(T). We find that
the onset of the reduction in B;„(T) begins for films of
thickness 1000-1500 A, in agreement with experiment.
The magnitude of the shift to lower T of B;„(T)as thick-
ness is reduced below 1000 A is also quantitatively repro-
duced. The actual value of B;„(T)depends sensitively on
B,2( T) in the model, and B,z( T) is not accurately known.

The FLL melting or instability model predicts that the
onset of reduction in B;„(T)will begin only in much
thinner films in BSCCO, for films of thickness 100-150A
or less. This is a very specific and quantitative prediction
which can be tested to verify or refute the model. If the
reduction in B;„(T)is controlled predoininantly by pin-
ning, the onset thickness dependence would probably be
similar in YBCO and BSCCO. The FLL instability is
determined here using the self-consistent phonon (SCP)
theory of FL lattice dynamics. At a critical tempera-
ture, some phonon frequencies in the FLL vanish and the
lattice is unstable. We assume nearly straight FL's and
map' the FLL onto a monolayer of Bose particles having
mass M~=(iil/kT)Z, and interacting via the potential
Vti =(R/kT) V. Here Zi is the anisotropic stretching con-
stant' of a FL, V is the pair interaction between the
FL's, T is the temperature of the FLL, and k is
Boltzmann's constant. For infinite sample thickness (L)
(infinite FLL length), the monolayer of bosons is at zero
tetnperature (T+=0). The Bose monolayer temperature
is related to sample thickness by Ttt =(A/k )L '. As L is
reduced, the Bose model temperature Tz increases and
the FLL becomes less stable. Thus B;„(T) moves to
lower real T as L is reduced.

The FLL potential and SCP theory is introduced in
Sec. II. The boson analogy and thickness dependence
are discussed in Sec. III. The results are presented in Sec.
IV.

II. SELF-CONSISTENT PHONON MODEL

We consider a triangular Abrikosov lattice of N nearly
straight flux lines in a HTSC with an applied field B
parallel to the c axis. As usual, each line has a quantum
of flux Po and the FLL constant is ao=(2$o/&3B)'
Assuming nearly straight, parallel flux lines, the interac-
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tion potential between the lines can be found from
London's field equations and is given by

Z = g f2)r, (z) . f2)r)v(z)e
1

~=p &'-

V(r)= 4o

27Th, pp
[Ko(r /1, ') —Ko(r /g') ], in which the FLL free energy is

2

where

A, (T)
[1 BI—B,i( T)]') (8)

My
Mz

The potential (1), Zi, and the lattice positions of the
FL's is all we need to implement the SCP theory, which
has been discussed recently for the FLL. Here we use
the self-consistent harmonic (SCH) approximation. In
the SCH theory, the frequencies of the phonons along a
branch A, are given by

1
2

coque
=—ge (qA, )ep(qA, )g'(1 —e ')4 p(ij ),

~] aP j
(4)

where the 4 &'s are the force constants. If we average
those force constants over a Gaussian vibrational distri-
bution of the FL's described by u=u; —uJ, we get

1

z
— &n[(2n. ) A ]

)( fd —uA u/2
a V(r;)
BQ BQp

The width of the distribution is given by

(5)

[2[1—BIB,i(T)]] '

A, (T)=k,/(1 t ), a—nd B,2(T)=B,z(1 t). H—ere )(, is the
penetration depth, g the usual Ginsburg-Landau coher-
ence length, and t =T/T, is the reduced temperature.
The anisotropy is reflected in the elastic energy per unit
length, c&, of a FL that is modified by the effective mass
ratio

The integration is along the length L of the FL's (along z)
and r, (z) is the FL position in the x,y plane at height z.
The first term in (8) is the energy associated with stretch-
ing the FL's. The partition function for Xbosons of mass

Mz interacting via potential V~ confined to the x,y plane
in the path-integral representation is given by (7) with
F/kT replaced by

S 1 13~ 1—=—f dr —Ms+
p 2,. d~

=L, (10)

where L is the thickness of the HTSC sample. The tem-
perature dependence enters the two-dimensional boson
model via the usual Bose thermal factor n (co) and can be
taken into account here by changing (6) to

Acoqz
A p(Ts ) =A (Tp=s0)c tho (11)

For the FLL this term becomes

Clearly, the two partition functions are the same if
Mp =(A'IkT)e„Vp =(A'IkT) V, and L =Ph=filkT&,
where Tz is the temperature of the bosons. Thus we may
incorporate the thickness dependence of the FLL dynam-
ics by varying the boson model temperature T~ via the
relation

A p(ij )= g (1 e"—)e~(qi, )ep(qA) . (6)
kT iq R, 1

XE) qg Nqz A p(L)=A p(L =~)coth QpqgL

2
(12)

The iteration of those equations is done until a stationary
value is reached for the phonon frequencies. If some fre-
quencies go to zero, the FLL is not stable and is con-
sidered as melted.

III. BOSON ANALOGY
AND THICKNESS DEPENDENCE

The SCP study of FLL dynamics described before did
not take into account the effect of the thickness of the
sample. It was assumed that this thickness was infinite.
The role of the thickness can be readily seen via the two-
diinensional (2D) boson analogy' to the FLL. The parti-
tion function of the FLL is'

When the FLL temperature T is increased, the boson
mass M~=fic, /kT and potential V~=%V/kT are re-

duced. Eventually, the weakened potential can no longer
confine the light bosons and the FLL becomes unstable.
When L is reduced, the temperature T~ of the bosons is

increased. When kT& -—A'co &, we expect thermal vibra-

tion to be important (onset of thickness dependence) and,
as T~ is increased, the FLL to be less stable for a given 8
and T.

IV. RESULTS

The FLL model described in Secs. II and III depends
on the parameters T„v=l,lg, M, /M„, and the upper
critical field B,2(0). To characterize YBCO we have
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chosen T, =87.2 K, ~=50, M, /M„=25, and

B,z(0)=44 T. The resulting instability lines of the FLL
in the B and T plane for YBCO are shown in the upper
half of Fig. 1. The FLL is stable to the left of the lines.
Clearly, the stability line moves to lower temperatures as
the thickness of the YBCO sample is reduced. In the
lower half of Fig. 1, we have reproduced the B;„(T)ob-

served by Civale et al.
From Fig. 1 we see that the model FLL becomes unsta-

ble at significantly lower temperatures (smaller t) than the
observed irreversibility line. The model instability line is
very sensitive to B,z(0}. In Fig. 2 we compare the insta-
bility lines for B,z(0) =44 and 100 T. Clearly, the insta-
bility line moves to higher temperatures when B,2(0} is
increased. At a given t, the field at which the FLL be-
comes unstable scales nearly linearly with B,2(0) [i.e., de-
pends largely on b =B/B,z(0)]. Since B,2(0) is not
known, B,z(0) might be adjusted to fit the observed insta-
bility line to B;„(T). We have not attempted to do this
since pinning must play a significant role which is not in-
cluded here. Also, the present interaction V(r) in (1),
which we have used throughout, is not applicable to films
at low B (B & 0.5 T},as discussed below.
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FIG. 2. Dependence of FLL melting line in YBCO on B,2(0);
lines for B,2(0)=44 and 100 T are shown.

In the upper half of Fig. 3, we show the instability tem-
perature at B =7 T, TI(7T},divided by T, as a function
of sample thickness in YBCO using B,2(0}=44T. Both
the thickness (L =1000 A) at which TI(7T)/T, begins to
depend on thickness (onset thickness) and the relative
drop in TI(7T)/T, with thickness agree well with the ob-
served values shown in the bottom half of Fig. 3. This
agreement suggests that irreversibility is at least in part
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FIG. 1. FLL melting lines in YBCO for different thicknesses
(upper half) compared with the irreversibility lines B;„(T) in
YBCO observed by Civale et al. (Ref. 21) for different
thicknesses (lower half). The FLL is stable at low B and low
T/T, . Model parameters used are T, =87.2 K, ~=50,
Mz /Mzy 25 and Bcp(0) W T
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an intrinsic property of the flux lines in the grains of the
material and is not entirely dependent on pinning in the
samples studied. We obtained a similar reduction in
Tl(7T)/T, with decreased L in YBCO using B,z(0) = 100
T. In Fig. 3 the thickness dependence is displayed in a
way which is less dependent on the unknown parameter
8,~(0).

The FLL model may also be applied to BSCCO for
which reasonable parameters are ' ' T, =87 K, K=95,
and M, /M„„=3600. We again use B,z(0)=44 T. The
chief difference between BSCCO and YBCO is the
effective mass which leads to a smaller 'E„a lighter boson
mass Mz, and significantly larger phonon frequencies

aqua
in (4). With larger coqz in (12), the thickness L must be
smaller for the coth(co zL/2) to differ from unity. This
means the onset thickness will be much smaller in
BSCCO than in YBCO. In Fig. 4 we show the thickness
dependence of the instability in BSCCO. The thickness
dependence begins at L =100—200 A ', a factor of 10
smaller than in YBCO.

The thickness dependence is also less at higher B. If
intrinsic FLL melting plays a role in the thickness depen-
dence, then a very different onset thickness is predicted in
BSCCO.

As noted, we have represented the interaction energy
per unit length of two flux lines separated a distance r by
V ( r ) in (1). This is the interaction per unit length be-
tween FL's in a bulk sample ignoring effects of the sur-
face on the interaction. We argue that V(r) continues to
represent the interaction well in thin films at large B
(B )0.5 T in YBCO) where the separation between FL's
(ao) is much less than the penetration length k (A, ))ao).
At B =7 T, X =10ao in YBCO. In this case, within r & A, ,
some several thousand neighbor shells in the FLL, the in-
teraction is the same in the bulk and in a film indepen-
dent of the film thickness. The instability in the self-
consistent phonon approximation depends on the interac-
tion at short range. Thus the V(r) in (1) represents the
FL interaction quite well in films for the purposes of dy-
namics. As discussed by Pearl, Fetter and Hohen-

berg, Fetter, and Fisher, surface effects are impor-
tant if A, is short, or when A, is long and B is small, so that
ap »k.

The total interaction between two FL's separated a dis-
tance r in a film of thickness L =d using the bulk interac-
tion (1}is

u (r) = V(r)d =
2

dK
2&poA,

r
0 0=U dE (13)

where we have dropped the cutoff term Ko(r/g) and tak-
en k'=A, . Within the film the magnetic field due to a FL
penetrates a distance A, into the superconducting region
around the FL. The magnetic field may be said to be
"screened out" within a length A, . For a film the magnet-
ic field also escapes through the surface and is "un-
screened" in free space. If two FL's interact via both the
screened and unscreened fields, the interaction in a film

will be different from that in the bulk. However, if A, is
long and the separation between the FL's (ao) is short,
then the screened and unscreened interactions will differ
little. We show this is the case at large B in the high-T,
materials.

Using the asymptotic limits of Ko, Ko(x) =ln(2/x) —y
for small x and Ko(x) =(m/2x)' e " for large x (pp. 375
and 378, Ref. 31), we have, from (13),

v (r) =uod [in(k/r)+1n2 —y], r A. ,

1/2
OTAL.

v (r) =vod e, r»A, .
2r

(14)

Pearl and Fetter and Hohenberg have calculated the
interaction between FL's in a film. The film character is
introduced by solving the Ginzburg-Landau equations as-
suming the supercurrents J, are confined to a sheet of
zero thickness, J, =5(z)J, (r). They find a total interac-
tion for a film of thickness L =d of

Thickness

2
0o r r

uF(r) = Ho ——Yo
2poA A A

(15)

infinity

zoo A
----- ioo A

5oA

where A=2K, ' /d is an effective penetration length. For
d =1000 A and A, =3000 A, clearly A=6K,o. In (15},Ho
is the Struve function (p. 496, Ref. 31) and Yo a Bessel
function (p. 360, Ref. 31). The limits of these functions
are

0
0 0.2 0.4 0.6 0.8 1.0

i = T/Tc

FIG. 4. FLL melting lines in BSCCO for different
thicknesses. The onset of thickness dependence is at 100—150
A.

uF(r) =vod [in(A, /r )+ln(2A, /d )
—y], r Sk,

(16)

uF(r) = 4o r)&k .
'7' p r

These limits and the comparison with the bulk result (14)

Ho(x) —Yo(x) =(2/m. )[x —lnx +y)],
for small x, and Ho(x}—Yo(x)=(2/~x) for large x, so
that
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are discussed by Pearl, Fetter and Hohenberg, and
Fisher.

Comparing (14) and (16), we see that the interactions
are the same for r ~ A, independent of the thickness —at
least the derivatives which determine the dynamics. The
leading correction to Ko(x) at small x is x /4, so that the
r SA, limit in (16) represents V(r) quite well out to
r-A, /2-Sao for the B fields of interest here. Thus the
bulk interaction can be used for films except at very long
range. Clearly, the long-range interaction is significantly
different and Coulomb like in the film. We expect (16) to
apply within a distance A. of the surface in a bulk materi-
al, which is comparable to d here.

The instability in the SCP theory used here depends
sensitively on the short-range interaction and little on the
long-range part. We showed this in an earlier paper by
changing the short-range part and noting the sensitivity
of the instability temperature TI to this change.
Specifically, the TI is quite different in the SCH and har-
monic approximations. This results from the difference
in the "averaged" and "nonaveraged" force constants.
This difference is significant for the first few shells only,
where (u ) is comparable to r, the separation between
the FL's. Thus, while there is some error, we believe (1)
represents the important features of the interaction well
at large B.

As discussed by Huse, the difference between (14) and
(16) will become important at very low fields, for which

ao ~ A, . In YBCO, ao -—A, at B=0.05 T. The present ap-
proximation should therefore be valid for B ~0.5 T. It
would be interesting to investigate the FLL dynamics at

low B, where surface effects are important and the in-

teraction is Coulomb like. For example, the SCP theory
has been used to evaluate the stability of the electron
(Wigner) crystal. The SCP theory predicts that the
three-dimensional Wigner crystal becomes unstable at
r, =180, where the Lindemann ratio is y =0.26. Simula-

tions by Ceperley and Alder find that the Wigner solid
melts at r, =160, where y=0.26. Some modification of
(16) at long range will be needed, either taking account of
the finite film thickness or something to simulate a back-
ground of uniform charge to "neutralize" the material.

V. SUMMARY

We have evaluated the mechanical stability of the
flux-line-lattice assuming nearly straight flux lines and
self-consistent harmonic dynamics. Both these assump-
tions will tend to overestimate the stability of the FLL.
The stability also depends on the film thickness, a smaller
thickness meaning a higher effective temperature in the
corresponding boson model. In YBCO the thickness
dependence of the stability line agrees well with that of
the irreversibility line as seen from Fig. 3. In Fig. 3 the
onset of thickness dependence begins for films of 1000 A.
The mechanical stability model predicts an onset of
thickness dependence of 100-150 A in BSCCO. A mea-
surement of the thickness dependence of B;„(T) in
BSCCO would serve as a test of the importance of intrin-
sic FLL melting in the transition from reversible to ir-
reversible behavior.
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