PHYSICAL REVIEW B

VOLUME 46, NUMBER 14

1 OCTOBER 1992-11
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The circular optical dichroism recently observed in a number of high-temperature superconductors
has been commonly interpreted in terms of violation of both time-reversal invariance and space-
inversion symmetry (the magnetoelectric effect). It is shown, however, that in view of numerous experi-
mental observations of various piezoelectric or ferroelectric phenomena in these superconductors, the
effect could be naturally interpreted in terms of a linear space dispersion of the dielectric tensor of a dis-
sipative medium that lacks a center of inversion. Both bulk and surface contributions to the effect are

discussed.

I. INTRODUCTION

The recent interest in investigating the possible oc-
currence of circular optical dichroism in certain high-
temperature superconductors! was initiated by a remark
made by Wen and Zee,? namely, that the magnetoelectric
effect,’ which would be, thermodynamically speaking, a
consequence of broken time-reversal and space-inversion
symmetries, could be inherent to models of the so-called
“anyon” superconductivity.*

Among high-T, superconductors circular dichroism
was first observed in YBa,Cu;0, compound.! A compa-
rable and even bigger effect was also reported for the cu-
bic compound Ba,_,Rb,BiO, in the normal state.! The
CD rotation angle arises slightly above 200 K and has a
pronounced onset and temperature dependence. In addi-
tion to this, a large amount of literature®~° reports on the
observation of various piezoelectric, pyroelectric, or
ferroelectric-related phenomena in both films and single
crystals of YBa,Cu;O0; and La,CuO, compounds. In
spite of the numerous precautions taken in the experi-
ments, it is still unclear to what extent in each experi-
ment, the role played by the sample surfaces is important.
These experiments, if taken altogether, seem to indicate
that as the temperature is decreased from room tempera-
ture most superconducting perovskites undergo a transi-
tion to a phase lacking a center of inversion. For exam-
ple, in the case of Ba,_,Rb, BiO; compound a transition
to the new “phase,” as the CD experiments seem to im-
ply,' would have an onset temperature of ~200 K. If
this point of view is accepted, the magnetoelectric effect
(and consequently the circular dichroism) could then be
understood as being of a kinetic origin, as explained
below.

It was emphasized in Refs. 10 and 11 that for the mag-
netoelectric effect to exist in thermodynamical equilibri-
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um (i.e., with both time-reversal and parity symmetries
broken), the magnetic cell is to coincide with the crystal-
line one. This restriction is not necessary if the
phenomenon has a kinetic origin, i.e., if dissipation sub-
stitutes for the breaking of time-reversal symmetry in the
system. An example of magnetoelectric effect in conduc-
tors having helical magnetic structure has been con-
sidered by one of the authors.!? Another realization of
kinetic magnetoelectric effect has been considered in Ref.
13 in the case of a conductor possessing mirror isomer
symmetry. These authors used a model put forward by
Belinicher and Sturman'# in which a conductor lacking a
center of inversion is simulated by an ordered arrange-
ment of impurities whose scattering potential is asym-
metric. Coming back to the problem of circular di-
chroism in the high-temperature superconductors, as it is
posed in the abstract, we shall see below that after a
minor reformulation it is possible to accommodate the re-
sults of Ref. 13 and 14 to our needs.

A few words are needed to establish a correspondence
between the above properties (the hypothetical noncen-
trosymmetric phase) in the new superconductors in the
normal state and the model of Refs. 13 and 14. The actu-
al source of resistivity (p~T) in the new materials is still
a controversial issue. One can only guess that, since
1/7~T, this is somehow due to some sort of quasielastic
scattering and can be considered by the same methods as
for the impurity scattering. In addition to that, layered
cuprates (La,CuO, or YBa,Cu;0,_; have defects of
structural type, especially near the sample surface. For
Ba,_,Rb,BiO; substitutional defects are inherent in the
range of x ~0.4. A trivial comment of a rather general
character is that, rigorously speaking, there are no
reasons for a local defect to possess the local symmetry of
the host lattice. The overall symmetry of the crystal con-
taining substitutional impurities (say for example in
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Ba,;_,Rb, BiO;) can remain cubic, since averaging means
not only spdce homogeneity but also averaging over all
configurations of defect shapes allowed by cubic lattice
symmetry. If a structural transition takes place in the
lattice, it, correspondingly, produces a preferential orien-
tation of the scattering centers. At higher defect concen-
trations, defect ordering is possible.

Most experiments in which attempts were made to ob-
serve the aforementioned properties, usually use various
pulse techniques or high-frequency illumination. In the
remaining part of the paper, we consider much lower fre-
quencies. We shall first study the magnetoelectric effect
and, hence, the CD in the normal skin regime (0 <<1/7)
in which case the bulk properties would be measured. In
addition, we shall also consider the regime of anomalous
skin effect where both bulk and surface sources of dissi-
pation are present on equal footing. In the so-called far-
infrared regime, the only source of dissipation is scatter-
ing on the surface roughness. The paper is organized as
follows. In Sec. II, we discuss the kinetic magnetoelectric
effect as well as the photogalvanic effect, while in Sec. III
we calculate the circular optical dichroism rotation angle
in three different cases: a first case where the effect has a
bulk origin, a second case that corresponds to the anoma-
lous skin effect regime, and finally a third case that corre-
sponds to the infrared regime and where the surface
roughness is assumed to play a dominant role in the
scattering process. In Sec. IV, we draw our conclusions.

II. KINETIC MAGNETOELECTRIC EFFECT
AND PHOTOGALVANIC EFFECT

The magnetoelectric effect, known already for years,”
is that an electric field E induces a macroscopic magnetic
moment M when the above-mentioned symmetries are
broken:

M,=a;E; . (1)

In general a is a second-rank tensor. In the cubic sym-
metry case, a reduces to a pseudoscalar.

In the case of conducting materials, the applied electric
field induces currents and any experimental observation
of relation (1) requires an AC regime. The macroscopic
electrodynamic equations describing the medium are?

vxE=—19B .=, @)
c Ot
vxB=192 ¢p=g. 2)
¢ Ot

In writing down the general form of the dielectric con-
stant, we take into account the linear space dispersion
only. This translates in Fourier space into a linear k
dependence, namely

G,J(a),k)=€§jm(a))+l‘}/,jlk, N (3)

where o is the frequency of the applied electric field. Let
us now briefly generalize the symmetry relations obeyed
by €;; in transparent media to the case where dissipation
is present. The first relation

€;(—o,—k)=¢€jj(w,k) (4)

ij
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follows from the definition D =¢E, in which the dielectric
tensor establishes a linear relation between the two real
(in space) fields, D and E. The second relation

€;(0,k)=€;(0, —k) (5)

i
is a consequence of Omnsager’s symmetry principle for
generalized kinetic coefficients. In the absence of dissipa-
tion, y,;; would be real.’ Instead of Eq. (3), we rewrite
€;;(®,k) in the following more standard form:

€ (w,k)zfij(w)—%oiﬂk, (6)

ij
and investigate the symmetry of o,;(w) as it would stem
from Eqgs. (4) and (5). In Eq. (6), €;;(®) includes the usual
wave-vector-independent contribution to the conductivi-
ty. The real part of y,; is omitted, since it is irrelevant to
the following considerations. Combining Egs. (4) and (5)
one arrives at

O'ij[((U):U?j[(_CL)), Uijl(w):—ailj(w) .
In the limit ®— 0, it follows from the above relations that
o =X Xig= " Xji - )
(It is appropriate to remember here that a nonzero third-
rank tensor can only exist for media without a center of
symmetry). Introducing the unit vector n=k/|k|, it is

straightforward to express the asymmetric tensor
— (47 /w)o ;yn; k| in terms of the axial vector g,

41 4
— ——ik;x;;=——rilkle; n; .
@ IXI]] © Umgml 1
We can write

gxx=Xyzx’ gxy—__Xyzy’ gyx = Xzxx etc .

In the case of the cubic symmetry, g,,; reduces to a pseu-
doscalar g,,, =d83,,;. Using Eqgs. (1) and (2') we obtain

M=aE . (1"

With all this in mind, we can, after minor
modifications, utilize the results of Ref. 13. It is shown
there that the major contribution to the current that
would result in Eq. (1’), is due to the central cross sec-
tion of the diagram shown in Fig. 1. The explicit form of
the coefficient in Eq. (1) in the case, for instance, of cubic
symmetry is

1 e?

= . 1)? .

a 2 #e (pel)(Tn;
d0,d0,.dO,.

P P P A AT An
X ITP'(p XD )W o, WopWep Worp

mpg )2

(8)

B B-E

FIG. 1. Diagram giving leading contribution to the
coefficient a. The hatched bars are the scattering amplitudes.
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where W is the amplitude for the electron to scatter
from the state characterized by p to the one character-
ized by p’, and 7 is the scattering relaxation time given by

1__ mMpp 2
PP

—=n,
T T

The symmetry of the scattering potential can be seen
through the behavior of, say, W, under the symmetry
operations of the cubic group (remember that the symme-
try transformations are applied simultaneously to p and
p’ vector directions on the Fermi surface). Let i be the
specific representation for the order parameter in the
phase of lower symmetry. Since the ordering of the im-
purities is induced by a lowering of the cubic symmetry,
one can write in a general way

Wy =Wy + Wiy . ©)

d0,d0,.dO0,.

3f (47)°

mpg

(pFI)2 ™,

1
122ﬁ

XIm{| W PWin Wiy — | Wi,

_IW

Written in this way, it is clear that the expression be-
tween curly brackets cancels the antisymmetry character
of p+(p’' XPp").

Quite generally, one can expand both Wi, and W‘
the complete set of some basis functions:

=3 YR(piK(pHAaf, 11
K,n

Wiy= 3 [$Lp0rp)—¢L(pWrp)]B/m. (1)

n,i=lem

The upper index enumerates the specific representations
of the cubic group, while n takes into account the fact
that for the point group the complete basis set includes
an infinite number of eigenfunctions transforming in ac-
cordance with each of the ten representations of O,. In
Eq. (11’) the summation over / and m is restricted by the
only condition that the antisymmetrized product [v*,™]
is to transform according to the chosen representatio. i
of the order parameter (one of these is to be odd and the
other one even with respect to inversion). In such a form,
Egs. (11) and (11’) contain both the symmetric and asym-
metric parts of Wp,."*

In the case of the orthorhombic group D,, (relevant to
YBa,Cu;0, compound) the coefficient @ is a tensor whose
components are given by

1
aii_zejlmo—jlm ’

. (12)
+ =L
Qi T Qpyy €1y €ppj = c €T iyl -

2 i 2
DWW W P
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In this equation Wp, is the invariant (symmetric) part,
while W‘, transforms in the same way as the order pa-
rameter under rotations and is asymmetric
(Wpy#Wpy). Having in mind the numerous experi-
mental observations of various piezoelectric and/or fer-
roelectric phenomena in the high-temperature supercon-
ductors, which is a signature of the absence of a center of
inversion, we take W ., to be odd under space inversion.

PP
Therefore, we can write the following relations

=—Ws

L J— s
pr' WP —p—pP

W =—Wy,=—W_,_ . 9"

Because P-(p' XP'’) is a pseudoscalar, the nonvanishing
contribution to a [using Egs. (9")], is found to be

~ (Alxpu)l

PPWE Wi, .+|W", PWst Wi,
— Wi PWiga Wiy} . (10)

Expressions (11) and (11’) are still valid with the
modification appropriate to the eight representations of
D,,. We note that Egs. (12) are of a general character
and can be used to find the finite components of the ten-
sor a for any symmetry group. In the case of the group
D,,, we rewrite Egs. (11) and (11’) in the following form

Wie= 3 (405 (p ) (p) + ¢ K (p )yl (p")] 4
K,n

(13)
W= 3 [0 o) — 9@ (p 1 (1B ,

n,i=Ilem

(13"

where the superscripts u and g mean, respectively,
ungerade (odd) and gerade (even) with respect to space in-
version. The diagonal component (for simplicity) of the
tensor a takes the form

2
mpg | 2
(a) — 1 2 £ .
272 ﬁc(Pp )* |7n; 3lIm
x 3 > A9mn,K;), (14)

nni=1,...,4, K, i=1,...,7

where (a) stands for the representation of the order pa-
rameter, and a typical A is given by
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(@) — g K1* K K3 n K Ksx KoK, d0,d0,.d0, . ., .,
AP=4,""B, 7B, "B, [ e )3 L 5-(p'XP")
wk,, , Ky K WKy Ke (o)
X (2P ) D W (D)=t (B (P)]
+2 cyclic permutations of p,p’,p"'} . (15)
r
In this last equation, we have taken for simplicity all N=—i€,Bun - (20)
(8) — PN CILREN
¢(u) K, identity. Choosing l’b ~Px ¥ ‘p"’ » and Therefore, we can write
¥ ~7P, in the case of the D,, group, we obtain s
d0,do,, dO o n=384rt T @
A~ [ P53 XD (16) fic mo

To conclude this discussion, it is worth mentioning
that, while the diagram shown in Fig. 1 gives the main
contribution to Eq. (1'), it is proportional to the third
power of the order parameter responsible for the viola-
tion of space inversion in a new phase.

Before proceeding further, we note that in systems
lacking a center of symmetry, an important feature is the
so-called photogalvanic effect, i.e., the appearance of a
direct current when the sample is uniformly illuminated
with light

Jjil@)=By,()EE¥ . a7

The diagram that provides a finite contribution to the
photogalvanic current is shown in Fig. 2. The evaluation
of this diagram gives

2
3272 h2c2 mpg
By =i~ — o ﬁc (ppl)—— |mT -
d0,d0_dO,.
)4 )4 D A ArAN
X ITPFP‘PA W oo W Wprp W

(18)

Because j; () is real, the tensor B;, (o) satisfies B;, =B
The photogalvanic current can then be rewritten as

jil@)=By,EE; +iBi(EXE®), ,

where f33, is symmetric with respect to the exchange of
the indices / and n. We have

fln ::%(Biln +Bin1 )
B:'zlsz_ielmnﬁimn ’

for cubic crystals, B =
relation

(19)

18;;, which leads to the following

ol
¥

m

€

FIG. 2. Diagram giving leading contribution to the photogal-
vanic coefficient 7.

The existence of the photogalvanic effect for elliptically
polarized light in materials lacking a center of inversion
and in the presence of dissipation provides another means
to check the results on optical dichroism obtained in cer-
tain high-temperature superconductors.

III. OPTICAL DICHROISM ROTATION ANGLE

A. Bulk contribution

We move on now to evaluate explicitly the optical di-
chroism rotation angle. We consider first the case where
the optical dichroism is a bulk effect. Using Eq. (2) and
the fact that B=H+4maE for cubic materials we obtain
easily the following equation:

VX(VXE)=io T oE+io T aVXE , 22)
c

where o is the usual conductivity. Writing the incoming
wave as E,,=E;(X+a¥y) and the reflected wave as
E,,=E,(X+p,¥), a right circularly polarized incoming
light would correspond to a = —i and a left one to a =I.
We find that the surface impedance is given by

Z= (1—1)2”“’
C

[1+ta\/7rco/2a} (23)
and that
poza+%(1——i)[—Za\/mo/2a+(1—a2)202 ]a. (24)

We define the circular dichroism rotation angle between
right (4) and left (—) circularly polarized lights by

_l1=ipd P+11—ipg P—l1+ipg P=[1+ipg I°

> l1—ipg [P+ 1—ipy |2
(25)
In the limit 7o << o (normal skin regime) we find
@
Dop~da? | (26)
cp=4a o
For w~1 cm™ !, o '~50 uQcm, we obtain

®cp=~14X 1073 rad. We note that this result is tempera-
ture dependent, since a is temperature dependent. If we
assume that 1 /7~ T, we easily find that &~ 1/T.
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B. Anomalous-skin-effect regime

In the case of the anomalous-skin-effect dissipations via
impurity or surface roughness scattering are of equal im-
portance. Therefore, we cannot split the two contribu-
tions. However, since the relations between w, 1/7 and &
are not always known, it is sensible to get an estimate for
the effect. For simplicity, we consider specular reflection.
The equations that we need to solve read

dzEx (0] dE 47 d x
—idra——t=—i—wJ +2 8(z),
P i4ma - — i 2 oJ, 2z | (z)
X (27)
d’E, dE 4 E
Y tidral —E=—i""ol,+ 2| 8z),
P idma s i o2 oJ,+2 2z o (z)

where we have chosen the surface of the sample to be the
plane z=0. Using the solution of this set of equations,
we obtain for the quantity p, the following value:

2
p0=a+(1+a)(1+ix/§)%zga , (28)

where we have made use of the fact that Z 2a<<1. Here
Z,=Z_e'™?/2 and Z, is the surface impedance in the
absence of magnetoelectric effect given by'®

1/3

2 2
Vimeld |- )<, 29)

8
Zw=—
9 oc

where / =vr is the mean free path and v is the Fermi ve-
locity. The rotation angle is

2
(DCDZ _—‘Zoa . (30)
T

We point out that this result is temperature dependent,
since a is temperature dependent. If we assume that
1/7~T, we easily find that ®cp~1/T2.

C. Infrared regime

We turn now our attention to the case of diffusive
boundary conditions and consider the case where
®w>>1/7 and v/w<<8 (the so-called infrared regime)
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where 8 is the penetration depth. We assume the rough-
ness of the surface to be the source of scattering of the
carriers. The current density is given by

J(w,z)=—2el’:%3ff [ advs,, (31)

where f, is the deviation of the carrier distribution func-
tion from the Fermi function f,. f; is a solution to the
Boltzmann equation. We impose the following general-
ized boundary condition

fPw,v,,v,,2=0)

x,Yy>
dQ,
T

-5

where the superscripts 1 and 2 refer, respectively, to be-
fore and after the scattering of the carrier with the
boundary of the sample. W(¥,¥,) is the probability of
scattering of the carrier on the surface. As in the case of
the kinetic magnetoelectric effect, we assume that W is
the sum of two parts: a first one, W*, symmetric, and a
second part, W', odd with respect to reflections with
respect to the plane defined by the projection of the vec-
tor ¥, on the plane boundary and the z axis. This latter
property can be expressed using the azimuthal angles ¢
and ¢, of the cylindrical coordinates as the following

W@,90)f 1P (0or, 00y, —00;2=0) ,  (32)

Wip—do)=—Wipy—¢) .

For convenience, we are using cylindrical symmetry. In
the case of a point group, the reduction in symmetry is
that only a single mirror plane perpendicular to the sur-
face is left over. The symmetric part W* leads to the usu-
al contribution of the diffuse scattering by the surface to
the current.!® In order to estimate the optical dichroism
rotation angle we assume the following form for W'

Wi(9,9)= sin(¢—do)n; , (33)

where n; is the fraction of surface defects causing the
asymmetric scattering. We obtain the following equa-
tions for the components of the electric field

d;fzx =iy flwds ‘%_—s% ]fowdzlEx(zl)e Ha/olz=zyls ,
dzEy . w 1 _ w 1 ——5r —ilw/v)z 1 G4
— =1‘yf1 ds—S;V1—1/s2e ’W"’“f1 dtT\/1~—l/t2f0 dz,E, (z,)e v
!
where where
Y:Le_z A 2’”2‘0 2
e o] =2 [e] e ] < -

After some calculations we find that the components of
the electric field at the surface z=0 are related by

-3
E,(0)=--n,£E,(0) (35)

in the infrared regime. In the previous expression w, is
the plasma frequency. Finally we find that the optical di-
chroism rotation angle is given by
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3/4
=2

Pcp 128 37)

n;
T

£
2

We remark that this result is temperature independent.
Using v /¢ ~ 1073 and m ~ 3m, (these choices are suitable
for most high-temperature superconductors) we obtain
®p=0.16n; /0'3/? rad where o is expressed in units of

cm™ L.

IV. CONCLUSION

In conclusion, we have presented in this paper an ex-
planation for the optical circular dichroism observed in
certain high-temperature superconductors in the normal
state. We have shown that for materials lacking a center
of inversion as a result of a phase transition (or
bulk/surface defects ordering), and in which dissipation
plays an important role in phenomena related with
reflection or absorbtion of light, the existence of a kinetic
magnetoelectric effect provides a natural origin for the
occurrence of optical dichroism. We have found a
universal relationship between the kinetic magnetoelec-
tric effect (and therefore the circular dichroism rotation
angle) and the photogalvanic effect. The simultaneous
observation of both optical dichroism and photogalvanic
effect will give an important hint concerning the lack of a
center of inversion in the materials where the effects are
observed either in the bulk or at the surface. It does not,
however, give information about the source of this
space-inversion symmetry violation.

We also find the optical dichroism rotation angle in
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both the bulk effect and the anomalous skin effect re-
gimes to be temperature dependent though with a
different temperature dependence in each case. In the in-
frared regime, we find the rotation angle to be tempera-
ture independent. This latter behavior is very close to the
experimental results in the normal state.!

The conflicting data reported for samples of
YBa,Cu;0,, i.e., the observation or nonobservation of
optical dichroism, could be resolved in the following way.
It has been shown experimentally that the resistivity of
untwinned samples of YBa,Cu;0; is anisotropic'’ in the
basal plane. This anisotropy leads to depolarization of
reflected light. In some samples, this depolarization
could be as big as the optical dichroism rotation angle,
and henceforth making the measurement of this latter
rather difficult. A second possible explanation to the
discrepancy could, of course, be sample dependence of
the different experimental results. Finally, one of the
motivations behind this work was to show that optical di-
chroism observed in some high-temperature supercon-
ductors can be naturally explained in terms of “conven-
tional” physics without invoking “exotic” physics such as
the existence of “anyonic” state of matter.
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