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We construct the enveloping fundamental spin model of the t-J Hamiltonian using the quantum-
inverse-scattering method (QISM), and present all three possible algebraic Bethe Ansatze. Two of the
solutions have been previously obtained in the framework of the coordinate-space Bethe Ansatz by Suth-
erland and by Schlottmann and Lai, whereas the third solution is new. The formulation of the model in
terms of the QISM enables us to derive explicit expressions for higher conservation laws.

I. INTRODUCTION ing expression:

Sj =Cj 1Cj

~j Cj —1Cj1 s (1.2)

SJ=—,'(n. , n, )—
form an su(2) algebra and they commute with the Hamil-
tonian that we consider below. (We shall always give lo-
cal expressions 8, for symmetry generators, implying
that the global ones are obtained as 8= g~ t81. ). The
Hamiltonian on a lattice of L sites is given by the follow-

Strongly correlated electronic systems are currently in-
tensely studied in relation with high-T, superconductivi-
ty. Recently there has been a renewed interest in the
one-dimensional t-J model as an integrable low-
dimensional version of a strongly correlated electronic
system. The t-J model was proposed by Zhang and
Rice. ' Anderson claimed that two-dimensional systems
may share features of one-dimensional systems, which
could imply a certain relevance of some results obtained
for the one-dimensional t-J model to high-T, supercon-
ductivity.

The model describes electrons on a one-dimensional
lattice with a Hamiltonian that includes nearest-neighbor
hopping (t) and nearest-neighbor spin exchange and
charge interactions (J). The Hilbert space of the model is
constrained to exclude double occupancy of any single
site, which corresponds to an infinite on-site repulsion.

Electrons on a lattice are described by operators c
j =1, . . . , L, cr =+1, where L is the total number of lat-
tice sites. These are canonical Fermi operators with an-
ticommutation relations given by Ic;,c,I =5;l5
The state l0 & (the Fock vacuum) satisfies c, Io& =0. Due
to the constraint excluding double occupancy, there are
three possible electronic states at a given lattice site i:

lo&, ll&, =c,.', lo&, lg&, =c,', 10&.

By n; =c; c; we denote the number operator for elec-
trons with spin o on site i and we write n,. =n;, +n;
The spin operators S =QJ~ &SI, S =Q~~=,SJ,
Sz yL Sz

L
H= t g —g c (1 n —

)cI+& (1—n~+, )

j=1 0=+1

+cl+& (1 nj+,— )c (1 n)—
L

+J g [S'S'+)+—,'(S S +1+SS +) ) 4'n—jnj+)] .
j=1

(1.3)

The projectors (1 n—) in the kinetic-energy terms en-
sure that H acts within the constrained Hilbert space, i.e.,
does not create states with double occupancy. An
equivalent expression for H is

L
H= g —tP g (c~I c +, +H c )P. .

+J(SJ SJ~,——,'n n +, ) ', (1.4)

where P is the projector on the subspace of nondoubly
occupied states. It was shown in Ref. 3 that the model
described by (1.3) is integrable and can be solved by coor-
dinate space Bethe Ansatz. In addition, it is possible to
map it onto the integrable quantum lattice gas of Lai and
Sutherland. ' The thermodynamics of the model were
treated in Refs. 3 and 6 and the ground-state properties
and excitation spectrum were investigated in Refs. 7-9.

As the number operator for electrons
+tnl commutes with H, we can add a

term 2k L to the Hamilto—nian without changing the set
of eigenvectors. Physically this just amounts to a shift of
the chemical potential. For the special value J=2t =2,
the shifted Hamiltonian now exhibits a number of in-
teresting properties. (The case —J=2t can be obtained
from J =2t via the transformation c,.—+( —1)jcl,
ct~( —1)jct.)1

First, it is supersymmetric, i.e., it commutes with all
nine generators of the superalgebra u(1 l2). ' Second, it
can be written as a graded permutation operator: '
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L

H,„,„=8+28' I—.= —y II)&+'
j=1

L
~HJJ+

SOS'j=l
(1.5)

II +'lo
&, x lo&„,= lo&, x lo&,„,

II) )+'lo&)xi~&j+, =l~&jxlo&, +, , (1.6)

The operator II ' + ' permutes the three possible
configurations (1.1) between the sites j and j+1, picking
up a minus sign if both of the permuted configurations
are fermionic, i.e.,

II. SUPERSYMMETRY OF THE t-J MODEI.

For J =2t, the t Jm-odel exhibits a (global ) u( 1 l2) in-
variance on the constrained Hilbert space. In the litera-
ture this symmetry algebra has frequently been denoted
by spl(2, 1). The relation between spl(2, 1}and su(1l2)
[neglecting the trivial u(1} factor for the time being] is as
follows.

The algebra su( 1 l2) is a real form of the complex Lie
superalgebra sl (1,2; I(:), whereas spl (2, 1) is an equivalent
notation for sl(1,2;C). For our purposes it is more con-
venient to work with a real base field, so that we will
work in a representation of u( 1 l2). The generators of the
u(1 l2) algebra are given by' (we write 0 =Q,O) )

II) )+'lr&jxlcr&, , = —
lcr&, xl &, „o,r=l, l . ili —

~

L
[Hk, k+1 Hk —1, k

)
k=1

(1.7}

where H ' +' is the density of the Hamiltonian defined
in (1.5). Section V is devoted to the derivation of explicit
formulas for higher conservation laws.

It is clear that this form of interaction conserves the indi-
vidual numbers N

~
and N

~
of electrons with spin up and

spin down, and due to the constraint of no double occu-
pancy the number Nk of empty sites (or "holes" ) is also
conserved.

The outline of the paper is as follows: In Sec. II, we
give a discussion of the supersymmetry of the model and
express the Hamiltonian (1.5) in a way most suitable for
the analysis of Sec. V. In Sec. III, we perform a detailed
construction of the algebraic Bethe Ansatz of the model.
We derive three different forms for the Bethe Ansatz
equations (BAE) and the eigenvalues of the transfer ma-
trix. Two of these solutions have previously been ob-
tained by various authors, ' whereas our third solu-
tion, presented in Sec. IV, is new. Our expression for the
BAE seems to be particularly simple and we hope that it
will be useful in clarifying the physical features of the
model. The direct physical consequences of our solution
(like the structure of the ground states and classification
of excitations and correlations) are currently under inves-
tigation" and will be presented in a future publication.
The graded quantum-inverse-scattering method (QISM),
discussed in Sec. III, enables us to obtain expressions for
(an infinite number of) higher conservation laws at the
quantum level. These conserved charges are of interest
because physical interactions, although of short range,
are not generally well approximated by interactions in-
volving only nearest neighbors. The charges under con-
sideration involve interactions of longer range (next-
nearest neighbors, next-next-nearest, etc.) and can be
added to the Hamiltonian without spoiling the integrabil-
ity of the model. Thus, it is possible to construct inte-
grable models with longer-range interactions by using
higher conservation laws. ' The first nontrivial higher in-
tegral of motion is, for example, given by the expression

Jj 2 Sj cj ]cj

Jj 3=S'= —,'(n, n, —),
J 4=Q, =(1 n, )c—, ,

J),——Q, , =(1—n, , )c. . . (2.1)

j6 Qj, —1 ( j 1} j, —1

J 7=Q), =(1 n), )c)—
J =T =1——'n

J~s J & J

J 9=I =1.
J

The operators S, S, S', Q„Q1, Q 1, Q" 1, and T gen-
erate the su( 1 l2) subalgebra of u( 1 l2).

In the fundamental representation there exists an in-
variant, nondegenerate bilinear form K p on u(ll2),
which is given as the supertrace over two generators'

K p=(K P) '=str(J~Q) p) (2.2)

I. Jk, a Jk,pI ' Jk, a k, p ( 1 ) Jk,p k, a

=f p'Jk, , (2.3)

where e are the Grassmann parities of the generators
J„(i.e., @=1 for the fermionic generators J4 J7
and e=o for the rest).

The Hamiltonian of the t-J model on the constrained
Hilbert space can now be expressed in terms of the densi-
ties Jk~ as

and which is explicitly computed in Appendix A. Note
that the nondegeneracy of K & is a feature of the funda-
mental representation and does not generally hold for
other representations because u(ll2) is not semisimple.
For later use we define the structure constants of u(1 l2)
as
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H&U&y= g H&&&y+
= gK J&P&+& p

j=1 j=1
L L

g Q, ,.Q, +&,.+QJ'+i,.QJ,. —& 2—~f ~;+i ~j'~, +i ~j~j+) +2TjT, +i I—,~, +i

(2.4)

K & given in Appendix A. In this form the global u(1~2)
invariance of the Hamiltonian is easily confirmed

A B A 0
M — ~ D, e

0 B
Oy E C 0 1 (3.1)

[H,J ]=0, a= 1, . . . , 9 . (2.5)
The supertrace is defined as

The "manifestly super symmetric" expression for the
Hamiltonian (2.4) in terms of the Killing form will enable
us to express the higher conservation laws we derive in
Sec. IV, in a u(1 ~2) invariant way.

III. GRADED
QUANTUM-INVERSE-SCATTERING METHOD

In this section we construct the enveloping spin model
of the Hamiltonian of the one-dimensional supersym-
metric t-J model, using the quantum-inverse-scattering
method. Due to the fact that we are dealing with a su-
persymmetric theory, it is necessary to modify the JISM
along the lines discussed in (Refs. 10 and 15). Below we
give a summary of the "graded" version of the QISM.
We start with an R matrix, obeying a graded Yang-
Baxter equation, and construct from it a "fundamental"
spin model (i.e., the L operator is constructed directly
from the R matrix). We then show that the trace identi-
ties of the corresponding transfer matrix give rise to the
Hamiltonian of the t-J model. Finally, we construct a set
of simultaneous eigenstates of the transfer matrix and the
Hamiltonian, using a nested algebraic Bethe Ansatz
(NABA). ' ' ' (For a general introduction to the alge-
braic Bethe Ansatz, we refer to Refs. 16—18.) Due to the
grading there exist three choices for the R matrix, all of
them describing the same physical system, but leading to
different (yet equivalent as shown in Appendix C) forms
of the NABA. Two of these possibilities of performing a
Bethe Ansatz analysis are equivalent to the coordinate
space Bethe Ansatz solutions of Lai and Sutherland. We
reproduce their respective periodic boundary conditions
and expressions for energy eigenvalues of the Hamiltoni-
an.

A. Yang-Baxter equation

Consider the graded linear space V™n) V V",
where m and n denote the dimensions of the "even" ( V )
and "odd" ( V") parts, and e denotes the direct sum. Let
[e„.. . , e +„] be a basis of V' +"', such that
[e„.. . , e ] is a basis of V and [e +„.. . , e +„] is
a basis of V". The Grassmann parities of the basis
vectors are given by e&

= - . . =e =0 and
e +&= . . =e +„=1. Linear operators on V' "' can
be represented in block form [M E End( V' ~"')]:

str(M) =tr( 3 )
—tr(D), (3.2)

E' Eb

=(e,e„)v, wb( —1) ' (3.3)

Compared to the "ordinary" tensor product, the addi-
E'„Eb

tional factor ( —1) ' occurs, which originates in pass-
ing v, past eb. The action of the right linear operator
F@Gon the vector v(3) win V' ")(3) V' "' is given by

(FG)(vgw)=F(u)gG(w) . (3.4)

Therefore, its matrix elements are of the form

(FeG)"=F G ( —1) ' ' (3.5)

The identity operator in V' "'(3) V' "' is given by
'fbiI, b =5, & 5, b and the matrix II that permutes the in-

dividual linear spaces in the tensor product space, is of
the form

11(up w ) =(w v ),
Eb Eb

(3.6)

The physical relevance of the above construction is as fol-
lows: If we consider a lattice gas of m species of bosons
and n species of fermions, then V' "' denotes the space
of configurations at every site of the lattice. For the ex-
ample of the t-J model we have m =1, n =2, and the
three allowed configurations are given by (1.1). The ten-
sor product space V" ' V" ' describes two neighboring
sites and, owing to the fermionic nature of some of the
configurations, the tensor product has to carry a grading.
II permutes configurations on neighboring sites, and we
pick up a minus sign if we permute two fermions.

A matrix R (A, } (depending on a spectral parameter A, )

is said to fulfill a graded Yang-Baxter equation if the fol-
lowing identity on V™~lV~~I~) V™~~holds:

[IR (A, —p}][R(A,}I][IR (p}]
= [R (p }I ][IR (A, )][R (A, —p)I) . (3.7)

where the traces on the rhs are the usual operator traces
in V and V". We now define the graded tensor product
space V' "' V' "' in terms of its basis vectors
[e,eb(a, b =1, . . . , m+n] as follows:

u w =(e,u, )(ebwb)
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In components this identity reads

=R(p), ', 'R (A, ),'q'R(A, —p)q'q' . (3.8)

R (A, ) =b (A, )I+a(A, )11,

a(A. )=, b(A. ) =
A, +1 A, +1

fulfills Eq. (3.8).

(3.9)

Note that, despite the fact that the tensor product in (3.7)
carries a grading, there are no extra signs in (3.8) com-
pared to the nongraded case. It is easily checked that the
R matrix

B. Construction of the transfer matrix

By multiplying (3.8) by III', 'II, ', ' from the left, one
1 1 3 3

can derive the equation

'c ('c +~b b 6 (Ef+6 )

R(A, —p), ', '[IIR(A)]&', '[IIR(p)],' '( —1) ' ' ' =[IIR(p)]I','[IIR(A)],' 'R(A, —p), '&'( —1) ' ' ' . (3.10)

In matrix notation (3.10) reads

R „(~—p) {[II„R„(~)]g[1123Rz,(p, ) l]

= {[II)3R&3(p)] [1123R23(A)]]R&2(A,
—p) . (3.11)

where the indices 1,2,3 indicate in which of the spaces
V' ~"' in the tensor product space V' "'(3}V' ~"'(3}V'

the matrices act nontrivially. The tensor product in
(3.11) is between spaces 1 and 2. We now call the third
space "quantum space" and the first two spaces "matrix
spaces. " The physical interpretation of the quantum
space is as the Hilbert space over a single site of a one-
dimensional lattice. We now consider the situation where
intertwining relations of the type (3.11) hold for all sites

of a lattice of length L. The quantum space index "3"
now gets replaced by an index labeling the number of the
site. We define the L operator (on site n} as a linear
operator on &„Ig V' I"„'„(where % = V' ~"' is the Hil-
bert space over the nth site, and V' „"„„is a matrix space):

L„(A,)'p= II"rR (A, )'p= [b(A, )II+ a(A, )I ];p . (3.12}

L„ is a quantum operator valued (m+n)X(m+n) ma-
trix, with quantum operators acting nontrivially in the
nth quantum space (of the direct product Hilbert space
over the complete lattice ~ Pf ). The Greek indices
are the "quantum indices" and the Roman indices are the
"matrix indices. " Equation (3.11) for the nth quantum
space can now be rewritten as the operator equation

(6' +fb ) e (e +t., )

R(A p) L (A) L (p)r p ( 1) L (p) r L (A)r p ( 1) R(A p)~ (3.13)

In matrix notation (3.13) takes the form

R (A, —p)[L„(A,)L„(p)]=[L„(p)L„(A, )]R (A, —p) . (3.14)

Here the graded tensor product is between the two matrix spaces and R only acts in the matrix spaces. The intertwin-
ing relation (3.14) enables us to construct an integrable spin model as follows.

We first define the monodromy matrix TL (I, ) as the matrix product over the L operators on all sites of the lattice, i.e.,

TI (A, ) =Li(A, )LL,(A, ) L, (A, ),

{[TL(A)]' ]~ . . . ~ =LL(A) p Li, (A), p' L)(A)~'p( —1)
PI. .

PL

(3.15)

TL (A, ) is a quantum operator valued (rn +n) X(m +n)
matrix that acts nontrivially in the graded tensor product
of all quantum spaces of the lattice and by construction
fulfills the same intertwining relation as the L operators
(as can be proven by induction over the length of the lat-
tice):

R (A, —p)[TL (A, } TL (p)]

=[TL(p, ) TL (A, )]R (A, —p) . (3.16)

The transfer matrix ~(A, ) of the integrable spin model is

now given as the matrix supertrace of the monodromy
matrix

m+n
r(A, )=str[TL(A)]= g ( —1) '[Ti(A)]" .

a =1
(3.17)

As a consequence of (3.16), transfer matrices with
different spectral parameters commute. This condition
implies that the transfer matrix is the generating func-
tional of the Hamiltonian and of an infinite number of
"higher" conservation laws of the model.
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C. Trace identities

. 8 ln[r(A, )] (11k k+) 1)(2)
A, =o k=(

. (3.18}

The proof of this identity can be carried out in the same
way as for the ungraded case, the main difference being
the grading of the tensor product of the quantum spaces
[see (3.15)]. By shifting the energy eigenvalues by a con-
stant, we obtain the expression (1.5} for the Hamiltonian
of the t-J model

H = —i.
(}1n[r( A, )]

susy ~~ (2)
—L=H —L

A, =o
(3.19)

if we choose our underlying graded vector space to have
signature (1,2) i.e., to have a basis with two fermionic and
one bosonic state. This shows that the transfer matrix
constructed from the L operator (3.12) and R matrix (3.9}
is indeed the correct transfer matrix for the one-
dimensional supersymmetric t-J model. Higher conserva-
tion laws are obtained as the coeScients of the power

Taking logarithmic derivatives of the transfer matrix at
a special value of the spectral parameter, one can gen-
erate higher conservation laws. ' For our specific case at
hand, i.e., the R matrix (3.9), the corresponding Hamil-
tonian is obtained by taking the first logarithmic deriva-
tive at zero spectral parameter

series
oo gk

ln[w(A, )[r(0)] '] = g i H(), +)) .
k=1

There exists, however, a simpler method for the construc-
tion of higher integrals of motion than taking logarithmic
derivatives, which we will discuss in Sec. V.

(3.20)

This choice of grading implies that R ()M )
=b (p )I +a ()L(, )II is given by the following expression

D. Algebraic Bethe Ansatz with a bosonic background
(FFBgrading) Lai solution

Due to the constraint of no double occupancy, there
are three diferent configurations per site for the t-J mod-
el. Thus, the Hilbert space at the kth site of the lattice is
isomorphic to C and is spanned by the three vectors
e( =(1 0 0), ez =(0 1 0), and e3 =(0 0 1) . In this sec-
tion we consider a grading such that e, and e2 are fer-
mionic (representing spin-down and spin-up electrons, re-
spectively) and e3 is bosonic (empty site). In terms of the
Grassmann parities this means that 6'] =E'p=1 and @3=0.
We pick the reference state in the kth quantum space
~0&„and the vacuum ~0& of the complete lattice of L
sites to be purely bosonic, i.e.,

0
fo&„= o, io&=e„',io&„. (3.21)

1

' b(A, )
—a(A, )

0
0
0
0
0
0
0
0

0
b(A, )

0
—a(A, )

0
0
0
0
0

0
0

b(A, )

0
0

a(A, )

0
0

0
—a(A, )

0
b(A, )

0
0
0
0
0

0
0
0
0

b(A, ) —a(A, )

0
0
0
0

0
0
0
0
0

b(A, )

0
a(A, )

0

0
0

a(A, )

0
0
0

b(A, )

0
0

0
0
0
0
0

a(A, )

0
b(A, )

0

0
'

0
0
0
0
0
0
0
1

b (A, )e„'

b(A, )e

a (A, )+b (A, )e„

L„(A,)=

The L operator is defined by (3.12}and is of the form

a (A, ) —b(A, )e„" —b(A, )e„'
—b(g)e a(g) —b(g)e

b (g)e' b (g)e

(3.22)

(3.23)

where e„' are quantum operators in the nth quantum
space with matrix representation (e„' ) &=5, fib&. The
monodromy matrix (3.15) is a quantum operator valued
3 X3 matrix, which we represent as

The transfer matrix is then given as

r(p)=str[TL(p)]= —A»(p) —A2z(p)+D(p) . (3.25)

The action of Lk(A. ) on the reference state on the kth site
1s

A „(A,) A, 2(A, ) B,(A, )

A ~, (A, } A~2(A, } B2(A, )

C) (A, ) C2(A, ) D (A, )

a(A) 0 0'
Lk(A, }~0&k= 0 a(A, } 0 ~0&k .

b (A, )ek b (A, )e

(3.26)
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Using (3.15) and (3.26), we determine the action of the
monodromy matrix on the reference state to be

[a(A)] 0 0
T (A. )IO&= 0 [a(A, )] 0 IO& .

C, (A, ) C2(A, ) 1

(3.27)

I~, , . . . , X„IF&

=c. (x, )c. (x, ) c. (x„)IO&F " ', (3.28)

We will now construct a set of eigenstates of the transfer
matrix using the technique of the NABA. Inspection of
(3.27) reveals that C, (A. ) and C2(A, ) are creation operators
(of odd Grassmann parity) with respect to our choice of
reference state. This observation leads us to the follow-
ing Ansatz for the eigenstates of r(p):

r (P A, )pb
&,b(p)C, (k) =( —1) ' ' C (A. ) A,d(p)a(p —

A, )

+ Cb(p, ) A„(k),
a(p —

A, )

D (p)c, (&)= C, (A, )D(p}
1

a(A, —p

C, (p)D(A, ),
a(A, —p, )

(3.29)

bla2
C, (A, &)ca (A2) —r(A| —A2)b a'Cb (A2)cb (A|),

where

(P }cd b (P }fiab~cd a (P )~ad~bc

=b(p)I'd +a (p)[II"']'d . (3.30)

Here [H' '];d= —5,d5b, is the 4X4 permutation matrix
corresponding to the grading e, =e2 = 1. r (p ) can be seen
to fulfill a (graded) Yang-Baxter equation on its own

~n '''ai
where the indices a. run over the values 1,2, and F "

is a function of the spectral parameters A. . The action of
the transfer matrix on states of the form (3.28) is deter-
mined by (3.27) and the intertwining relations (3.16). The
components of the intertwining relations (3.16) needed
for the construction of the NABA are

=r(p), ', ' r(A), 'b' .r(Ap)d', b—', (3.31)

and can be identified with the R matrix of a fundamental
spin model describing two species of fermions. Using
(3.29) we find that the diagonal elements of the monodro-
my matrix act on the states (3.28) as follows:

D(p)lk„. . . , X„IF&
= g &

Ik„. . . , X„IF&+ g (A„),'
. . . ,"C„(p)g C (A )IO&F "

jWk

n n

[& (p}+&22(p}]l~,. . . , ~. IF&= [a(p}] g & g cb(ki)lo& '"(p)." ,"F'".. .
a p A.l ) (

n b b+ y (A„).'. . .."c, (p) gc, (x, )IO&F'"

jWk

where
bi bnr"'(p), '

. . . ," =str[T„"'(p)]

=str[L„"'(p—
A,„)L„"',(p —

A,„,) . L 2"(p —&2)L I"(p —&i )],

(3.32)

(3.33)

and

Lk"(A, ) =b(A, }II"I+a (A. )I'"
=11""(X)

a (A. }—b (A, )e„" b(A, )ek'—
b(A)e„' —a (A, ).—b(A. )ek

(3.34)

(p)IX„. . . , k„ IF &
= (p, [A, ],F)IA, X„IF& (3 35)

[—(Ak), ',"+(Ak), ', ,"]F " '=0 . (3.36)

leads to the requirements that I' ought to be an eigenvec-
tor of the "nested" transfer matrix ~"'(p), and that the
"unwanted terms" cancel, i.e.,

L"' and r(p} can be interpreted as the L operator and R
matrix of a fundamental spin model [r fulfills the Yang-
Baxter equation (3.31)] describing two species of fer-
mions. Hence, T„'"(p) and r'"(p) are the monodromy
matrix and transfer matrix of the corresponding inhomo-
geneous model. Inspection of (3.32) and (3.33) together
with (3.25} shows that the eigenvalue condition

The relative sign in (3.36) is due to the supertrace in
(3.25) and (3.35). The quantities Ak and Ak are comput-
ed in Appendix A. Using their explicit expressions in
(3.36), we obtain the following conditions on the spectral
parameters A, and coefficients I', which are necessary for
(3.35) to hold:
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a (~k ~l } b„.b~ (1) b~ b„a„a&
[a(&k)] g F " '=~"'(A,k). '. . . ,"F " ', k =1, . . . , n .(,a(A( —Ak)

leak

(3.37)

This completes the first step of the NABA. In the next
step we will now solve the nesting. The condition that F
ought to be an eigenvector of r("((M) requires the diago-
nalization of r("((M), which can be carried out by a
second, "nested" Bethe Ansatz. From (3.31) and (3.34),
the following intertwining relation is easily derived:

(3.41)
0

~0&(1)— ~0&(1)—N
n ~0&(1)

k

The action of the nested monodromy matrix T„")((M) on
the reference state ~0&") is determined by (3.34) and we
find

r(A, —y, )[T("(k)gT„")(((b)]

If we write

=[T„"'(((b) T„"'(A,)]r(A, —p) . (3.38)

n

A"'(p, )~0&"'= ga(„—Aj)~0&'",
j=1

n

D'"((M}~0&"'= / [a((M —
A, ) —b((M —

A, )]~0&"'
j=l

(3.42)

A (1)(p) g() )(~)
T(1)( )n P C() )(p) D(()(p)

~(1)(p) A ())(p) D(l)(p)

then (3.38) and (3.30) imply that

1 C(1)(g)D(1)(p)
a(p —

A, }

u') C (1)(p )D (1)(g )
a(A, —((b)

A (()(p)C(1)(g)— C(1)(g)A () )(p)
1

a(A, —p}

+ c' "((M }A ' "(A,),a ((M
—

A, )

c())(g)c(1)(p)—c(1)(p)c())(g)

D("(j )C("(X)=

As the reference states, for the nesting we pick

(3.39)

(3.40)

a ((b Aj (1)

,.'; a(A,, —
((b)

We now make the following Ansatz for the eigenstates of
&() )(+)

=C"'(Z(,")C")(X")) C("(Z'„")~0& (3 43)
1

Q ~ ~ ~ Q
These states can be related to the coeScients F " ' in
the following way. The state ~A, (,", . . . , A,(„"

& "lives" on a
lattice of n sites and is thus an element of a direct prod-
uct over n Hilbert spaces. In components it reads
~A,()" A,(„"&, . . . , , which can be directly identified

1 n

with F
The action of r")(p) on the states (3.43) can be evalu-

ated with the help of the intertwiners (3.40):

nl
D(1)( )~g()) g(1)&

1 j=1

n&

A"'(((b)~A, ',", . . . , A,"'&= g
1 j=1

a (p, —A,() 1

~g()) g(l)&+ g A(1)C(l)( ) g C(1)(g(1)~0&(1)
a(jb ~' ) (=1 ( ( j ) k=1 j=l

jAk

1 n 1 1(„—x )~z(" z")&+ y A'„"c"'(„)g c"'(x(."~0&"'
j P) (=1 k=1 j—

1

jAk

(3.44)

(3.45)

From (3.44) and (3.45) one can read off the eigenvalues of ~' "(Ib):
n

1 1 n

1 a(p —
A, (, ") . , a(&j —((b); 1 a(A, ';"—((b) 1=)

(3.46)

[a(kk)] = g a(Ak —A(, "), k =1, . . . , n . (3.47)

The unwanted terms Az" and A'k" are computed in
Appendix A and their cancellation [which ensures that

Inserting this expression for the special value p=A, k
into (3.37), we obtain the first of Bethe equations

nl

p = 1, . . . , n, . (3.48)

the states (3.43} are eigenstates of the transfer matrix
r"'(p)] leads to the following set of Bethe equations for
the nesting:

a (A.'"—
A,"')

ga(A, ,
—

A,'")=g
jap
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Due to our choice of grading, n and n, can be identified
as the total number of electrons and the number of spin-
down electrons, respectively, i.e., n =X, =X&+X& and
n, =X&. If we define shifted spectral parameters accord-
ing to A,k=kk+i/2, we obtain the Bethe equations in
their "generic" form:

Esusy

Xe

+ 1/4

= —2 g cos(k )+2N, L—,
j=l

(3.51)

Xk+i /2

k=rr-
j=1 ~k

—XI"—i/2
k =1, . . . ,iV,—X'"+i/2 '

J
(3.49)

l/2 A, k Ik p J p

k =] Ak 1 +1/2 j=] ' k +E
J&P

p=1, . . . )N) .

The eigenvalues of the transfer matrix (3.35) are given by

where we have reparametrized X =
—,'cot(k, /2). The

periodic boundary conditions (3.49) and the energy (3.51)
are in perfect agreement with the expressions derived by
Lai and by Schlottmann.

E. Algebraic Bethe Ansatz with a fermionic background I
(BFFgrading) Sutherland solution

v(p, I A,, I,F)= [a (p, )) g v'"(p)
, a(p, —A,, )

N

+n
, a(A, —p)

X N

v' "(p)=-
( —

A, '")
t a (AJ

—p)

l 1 e

+g „, ga(p —
A,, )

i=& a(~I p) j=i

(3.50)

Using the trace identities (3.19), it is possible to obtain
the energy eigenvalues from the eigen values of the
transfer matrix and we find

0
lo&„= o, lo&=e'„=, lo&„.

1

(3.52)

This choice of grading implies that 8 is of the form

In this section we consider a grading such that ez and

e3 are fermionic (representing spin-down and spin-up
electrons, respectively) and e& is bosonic (empty site). In
terms of the Grassmann parities this means that

63 1 and e, =0. We pick the reference state in the
kth quantum space lo&1, and the vacuum lo& of the com-
plete lattice of L sites to be fermionic with all spins up,
j..e.,

1

0
0
0

R(A)= 0
0
0
0
0

0
b(A, )

0
a(A, )

0
0
0
0
0

0
0

b(A, )

0
0
0

(ah, )

0
0

0
a(A, )

0
b(A, )

0
0

0
0

0
0
0
0

b(A, )
—a(k)
0
0
0
0

0
0
0
0
0

b(A, )

0
—a(A, )

0

0
0

a(X)
0

0
b ( I, )

0
0

0
0
0
0
0

—a(A, )

0
b(A, )

0

0
0
0
0
0
0
0
0

b(A, )
—a(A, )

(3.53)

The L operator is
T

a (A)+b(A)e„" , b(A, )e, „'
L„(A,) = b (A, )e„' a(A, ) —b(A, )e„

b(g)e„—b(g)e

b (A, )e„'
—b(A, )e„

a (A, ) —b(A, )e„

(3.54)

The action of Lk(A, ) on the reference state on site k is

a(A) 0 0
L„(A)lo&„= 0 a(A) 0 lo&„.

b (A, )ek —b(A, )ek a (A) b(A.),—
(3.55)

We partition the monodromy matrix as before in (3.24), which implies that the transfer matrix is now given by
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r(p)= A»(JM) —A22(jtt) —D(p) .

0 0

[a(A)) 0

C2(iL) [a ()(,) —b()(, )]
T, (x)lo) =

Ci(A, )

The action of the monodromy matrix on the reference state follows from (3.55};

[a (A, )]
0

(3.56)

(3.57)

and inspection of (3.57) reveals that C, (A, ) and Cz()I, ) are creation operators of odd and even Grasssmann parity, respec-

tively. We make the following Ansatz for the eigenstates of r(p, }:

, ~.IF&=c. (z, )c. (x, ) c. (z„}lo)F'" (3.58)

The intertwining relations are found to be

c c +c +c r(p

+(—1) ' ' C( )A (A, ),
( ~) i P ac

D(p)c, (&)= C,(&)D(p)+ C, (p)D(&),
a p —

A, a (A, —p)
(3.59}

a&b&
C, (ki)c,~(kz}—rFB(kz —ki },

~
b~cb~(kz}cs~(ki },

where

"(P' }cd b (I )Icd +a (P )( ~BF )cd

rFB(p);d =b (P, )I;d +a (p)(IIFB );d,
(3.60)

and IIBF and IIFB are the permutation matrices for the gradings e, =o, ez=1 and e, = 1, ez=o, respectively. Using

(3.59) we find that the diagonal elements of the monodromy matrix act on the states (3.58) as follows:
'L

D(p)IA„. . . , A„IF)= g ~
Ix„.. . , x„IF)+g (A„),' . . .,"c (p) gc„j(k )lo)F'"

ia p AJ a p
jAk

(3.61)
n n

[A (JM)
—A (p)]l~, . . . , ~.IF&=[ (y, )] g „gC,(~ )Io& "'(p).

,
'. . .."F'"

where

n

+ g (A„).' . . .."c, (p, ) g c, (x, ) Io &F'"
k=1 j=1

jPk

(3.62)

r"'(p), ' . . . ,"=(—1) 'L„"'(p—
A, „)b", 'L„"',(p —

)L,„,)i," '," ' . .L'i" (p —)(,, )b', (
—1)

(3.63)

Here all indices c; and c are summed over. The expression for r"'(p, ) is significantly diff'erent from the one in the FBB
case treated in Sec. III D, but r"'(p) can nonetheless be interpreted as the transfer matrix of an inhomogeneous spin
model on a lattice of n sites. Our reference state lo) is now of fermionic nature and we have to define a graded tensor
product rejecting this fact:

(3.64)

Effectively the graded tensor product switches even and odd Grassmann parities, i.e., e, ~e, +1. In terms of this ten-
sor product, the transfer matrix ~"'(p) given by (3.63) can be obtained as
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r' "(p), '
. . . ," =str[T„"'(p)]=str[L„'"(p—

A,„)g L("
) (p —A,„()g g L(("(p—g, )],

a (A, )+b()(,)e„"
Lk"(A) =b (A, )II~F+a (A)I("=

b Ze„"
b (A, )ef,

'

a (A, ) —b(A, )ek

(3.65}

[(A )
I n (A )

l n]F n l 0 (3.66)

In the second line of (3.65} we have explicitly written the
tensor product 8 between the quantum spaces over the
sites of the inhomogeneous model (the L operators are, of
course, again multiplied as matrices}. As before, F "

must be an eigenvector of r"'(p) if ~A, ( An ))F ) is to be
an eigenstate of r(p) The. unwanted terms can be com-
puted in a similar way to the ones described for the FFJ3
grading in Appendix B. The condition of the cancella-
tion of the unwanted terms,

l
lj (3.72}

+i/2
X) i /2—

N~+Nt g g +l N
1 m

m=1
m&1

~l A'm l j=

X —X("—l /2I j
K, —X,("+i/2 '

we obtain Sutherland's form of the periodic boundary
conditions [for an odd number of lattice sites
Sutherland's equation (62a} should be corrected by a fac-
tor of —1]:

leads to the conditions

F " '=[a( —
A, )] [r"'(A, )F] " N~+Nt

I =1, . . . , X~+Ng,
(3.73)

k =1, . . . , n . (3.67)

To solve the nesting we first have to note that, because of
our change of tensor product, the L operators L ' "(A.) are
not intertwined by the R matrix r(p) defined in (3.60),
but by the R matrix

The eigenvalues of the transfer matrix are

NA +N

v(p, {A,, I,F)= [a (p}] ff v'"(p)

&(p);d =b(p)5, b5,d

+a(p)&,d&b, ( —1) '

The intertwining relation

(3.68)

NI, +N,
1 a(p)

a(p —
A, ) a( —p)

L

(3.74)

&(&—p) T„'"(A,)S'T„'"(p)= T„"'(p)ST„"'(&)&(&—p)

(3.69}

h

v( l )(p )
—g a(p —k, )

together with the choice of vacuum,

0
i0)(() i0)(() gn i0)(l)

k 1
(3.70)

This results in energy eigenvalues

N&+)()«(p ) )

a(A)-p)

can be analyzed along the same lines as for the nesting in
Sec. III D. It can be shown that they represent a model
of the permutation type with BF grading (describing one
species of bosons and one species of fermions). The re-
sulting Bethe equations are

a(A, —A()
[ ( —A. , )] = / / (A, ,

—A.,'"),
m=1 ) m j=l
m&l

N~+N,
=L —2(Nh+X&) —2 g cos(k ),

j=1

where we have reparametrized X,. =—,'tan(kj /2).

(3.75)

1= g a(A. .—A, 'k"), k =1, . . . , n( .
j=1

1=1, . . . , n

(3.71)

The choice of grading implies that n and n, are the num-

ber of holes plus the number of spins down and the num-

ber of holes, respectively. If we shift the spectral parame-
ters according to

IV. A SOLUTION OF THE t-JMODEL (EBFGRADING)

The third and last possibility of choosing the grading is

E1 63 1, e~ =0, with e, representing spin down and e 3

spin up. This case can be analyzed in precisely the same

way as the BFF case so that we simply give the final re-
sults for the Bethe equations and eigenvalues of the
transfer matrix. The BAE are
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We again shift the spectral parameters

(4.1)

X, +i /2 I,'."—X, —i/2J

X,(
—i/2 1 =i A,

'"—X(+il2

N~+Nl

1=1, . . . , N~+Ng,

(4.3)

l

2
(4.2)

to obtain the final expression for the set of periodic
boundary conditions for the t-J model:

The equivalence of the BAE (4.3) to the BAE (3.73) is

demonstrated in Appendix C. The eigenvalues of the
transfer matrix are

N~+Ni

v(p, , [A, ],F)= [a (p)]~ g v")((M}—
a()M —

A, }

N) NI, +Ni

, a(x,'"—
(M}

L

(4.4)

The energy eigenvalues can be obtained from (4.4} in the
usual way by taking logarithmic derivatives

N~ +Ni

@susy =L X (4.5)
(XJ) +1/4

I

sions.
The integrals of motion can now be successively ob-

tained by commutation with the boost operator

H(k+, ) =i[B,H(„)]

The string solutions of the BAE (4.3) are of a very partic-
ular structure: n spectral parameters X„, (j= 1 n)
combine with n —1 spectral, parameters
(k =1 n —1) of the nesting into one. complex string
solution:

where

l [8&H(k) ]

~ +~n, n+1
susy

(5.2)

(5 3)

l=A, + (n+1 ——2j) j=1 nJ n 2

A,(„",k=A, „+ (n —2k)—, k =1 n —1 .2

s

(4.6)

In this section we derive explicit expressions for the
conservation laws H(3) and H(&) (which involve interac-
tions between three and four neighboring sites, respec-
tively), using a generalization of Tetel'man's method
to the supersymmetric case.

Let us define the "boost" operator

~ ~~n, n+1
(2) (5.1)

where H["z)
+' is the density of the Hamiltonian given by

the right-hand side of (3.18}. This operator obviously
violates periodicity on the finite chain, but one can use it
nonetheless in commutators which "differentiate" the
linear n dependence and yield formally periodic expres-

Note that, due to the symmetry of the Hamiltonian under
the interchange of spin up and spin down, there are only
three different NABA solutions, as the other three solu-
tions can be obtained via the substitution N

&
~N &.

U. HIGHER CONSERUATION LAWS

This can be seen as follows.
If we introduce the matrix

R(k, )=IIR (A)=b(A, )II+a(A, )I,
we can rewrite the intertwining relation (3.14) as

R (A, —)((,}[L„(A,)L„()M) ]

(5.4)

=[I(8)L„()M)][L„(A,}I]R(A, —p) . (5.5)

Here the L operators are multiplied as quantum opera-
tors on both sides of (5.5). If we interchange the roles of
matrix and quantum spaces in (5.5), we obtain the "90'
rotated" intertwining relation

R„„+,(A, —p}[L„)(A,)L„+) i(p)]

=[I L +l, i(P)][L,i(")I +i]R, +1(~ P)

(5.6)

where the index "1"indicates the matrix space (which is
the same for both L's, they are now multiplied as ma-
trices) and n and n+1 label the quantum spaces. The
tensor product is now between the quantum spaces and

R„„+,is a quantum operator acting in both quantum
spaces. From now on we will drop the matrix space in-
dex on the L operators. In components (5.6) reads

e (e +e& ) b b ~ [~+~
R„„+,(A. P}'y'L„(A,)„'i)'L„—+,(P) '@~'( —1) ' ' ' =L„(P+) ' 'L„()(,) 'r'( —1) ' ' ' R„„+,()(,—)M}y'p' . (5 7)
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Now we note that {5.4) implies that

[()(+i}R„„+(()()]=I"'"+',a

nn+, 1

n, n+1
(5.8)

Multiplying (5.7) by A. —p+i, differentiating with respect
to A, , setting A, =p, and finally acting on both sides of the

equation with (II"'"+')&' '( —1) ' ' ' ' from the

right, we find

[II""+', L„,(p) (3)L„(p)]

L L
H = ~ HJ +'= —ylV'J+'

susy ~ susyj=l j=l

L

K J g +) pj=l
(5.13)

Expanding both sides of (5.12) in powers of p, we obtain
(5.2}. We will now use (5.2) to obtain explicit expressions
for higher conservation laws. According to (2.4) we can
write the t JH-amiltonian in terms of u(1~2) generators as

iL„+,{—p)L„(p)+iL„+)(p, )(3L„(p) . (5.9) H(3) can be obtained by commutation with the boost
operator 8:

[H("2) +',L„+)(p)SLn(p)]
=i [L„+,(p, )L„(y, ) L„+,(p—, )L„(p, )] . (5.10)

Using (5.9) it is easy to show that (up to the usual "prob-
lems" with periodicity}

The tensor product is once again between quantum space
and the overdot denotes differentiation with respect to p.
From (3.18) it now follows that

H„,=i [B,H„, ]

=i [B,H,„,„]
L

[Hk+l, k+2 Hk, k+1]
k=1

[B,r(p) j = —ir(p, )

and thus

{B,ln[r(p, )[r(0)] '] )

i l—n[r(p)[r(0)] 'j —H(2) .

(5.11)

(5.12)

L
K"fj3„Jk l, a k, e k+—l, s

k=1
(5.14)

Using the expressions of the u(1~2) generators (2.1) and
the form of K ~=(K jj)

' given in Appendix A, it is pos-
sible to rewrite H(3) in terms of fermionic creation and
annihilation operators:

L

H(3) =l g 2Sj )SjS—j+1 2Sjt (SjS—j+1+Sj (Qj. )Qj+1 )+Sj 1Qj, )Qj. +1 1j=l

2SJ )SjS—j+1+(1—
n& 1 ) )Q& )Qj+1 1+(1 n& 1 ) )Q&

—
)Q&+) 1

Qj —1, 1 jtQj +1,—1 Qj —1, 1( j,—1)Qj +1, 1 Qj —l, lQj, l{ j +1,1} Qj —1, 1Qj, —1 j +1

Qj 1, —lSj Qj +1, 1 —Qj —1, —1{1 nj, l }Qj +1,—1

+Qj 1 (Qj 1(1 nj+1 —))+Qj 1 (Qj )Sj+)—H. c. (5.15)

The u(1~2) generators Qj and Qj are given by (2.1).
The next highest conservation law can be computed
along similar lines and we find

H(4) =i [B,H(3) ]

L= —2 g K" K ~K" fjj f"„
k=1

pk —l, k+1 gk —l, krak, k+ leak
—l, k (5.17)

Inspection of (5.13) reveals the expressibility of the last
two terms in (5.16}in terms of u(1~2) generators Jk, but
the physical nature of the interactions is less obvious in
the resulting expression. The results for H(3) and H[4]
given in (5.14) and (5.16) generalize trivially to the case of
a lattice gas with a u(m

~
n) symmetry.

XJk —1,a k, e k + l, cgJk +2, v

L L
Pk —1 k+1 2 y 11k k+1

k=1 k=1
(5.16)

where P '"+' is a graded permutation operator be-
tween the sites k —1 and k + 1 with definition
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APPENDIX A: THE FUNDAMENTAL REPRESENTATION OF u(1l2)

In this appendix we write down the fundamental matrix representation of u(1~2} and use it to compute the inverse

Killing form K ~. We consider the fundamental matrix representation on site k, where we have chosen the fermionic
states to be (1 0 0) (spin-down electrons) and (0 1 0) (spin-up electrons), and the bosonic state to be (0 0 1) (empty
site). The generators are given by

Jk, 1
—Sk — 1

0

0 0
0 0
0 0

0
Jk 2 Sk — 0

0

1 0 0 0

0 0, Jk 3=Sk= 0 —,
' 0

0 0 0 0 0

0 0 0 0

J„4=gi, &= 0 0 0, Jk 5=gk, = 0
0 1 0 0

0 0 0 0 0
0 1, Jk6=gk )= 0 0 0
0 0 1 0 0

(A1)

0 0 1

Jk, 7 gk, —1

0 0 0

0 0 1 0 0

Jk, 8 ~k 0
g

0 ~ Jk,9 Ik

0 0 1 0 0 1

The generators Jk „.. . , Jk s are seen to be supertraceless, i.e., str(J}=J33 J$2 —J» =0. The grading of the algebra is

described in terms of Grassmann parities e, which are given by

1=62,=63 68 E9 0

E'4 =E'5 =6'6 =67 = 1

K &
= (K ~) ' is now given by the following expression

(A2)

0 —1 0 0 0 0 0 0 0
—1 0 0 0 0 0 0 0 0
0 0 —-' 0 0 0 00 0

0
0
0
0
0

0 0

K &=str(J J&)= 0
0

0 0 1 0 0 0 0
0 —1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 —1 0 0 0
0 0 0 0 0-,' 0

0 0 0 0 0 0 —1

(A3)

APPENDIX B: COMPUTATION OF THE "UNWANTED TERMS" FOR THE FFB GRADING

In this section we compute the so-called "unwanted terms" in the expressions (3.32), (3.33), (3.44), and (3.45}. The
' unwanted terms" are characterized by containing a creation operator C with a spectral parameter (SP) p in place of a
creation operator with SP A, k (or A. 'k" for the nesting). The condition of cancellation of these unwanted terms leads to
the Bethe equations. In order to obtain the expression for Ak, we first move the creation operator with SP A, k to the
first place in (3.28), using (3.29),

n k —1 n . bpc. (x, )=c, (x„}g c, (), ) g c. (x, ) s(x„).'. . ..',
i=1 i =1 j=k+1

(B1)

To get an unwanted term, we now have to use the second term in (3.29) to move D past Cb (A,k ), and then always use
k

the first term in (3.29) to move D (which now carriers SP A,k ) to the very right, until it hits the vacuum, on which it acts
according to (3.27}. This way we obtain
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(A F) 1 n —S(g )
1 kF n k+1 k 1

k al . ak

b(A, k
—P)

a(Ak —P), , a(A, ,
—Ak)

iWk

(B2)

The computation of Ak is more complicated. We first derive an expression for the contribution of A»(p), which we

denote by Ak, . Proceedings along the same lines as in the computation of Ak, we find

b b ~ ' ~ ' b(S —4}
(A F) ' "=S(i( )

' "F" ' 5k, 1 k al ak ( g } bk 1

n

II g g
r(~k ~1}b „«(~k ~2)b d, r(~k ~k —I }b„d„i=i

iXk

Xr(kk kk+1)b k+d lk r (kk kk ~2)bk+2dk
' ' ' r(kk kn )b d

X [a (Ak )] 5d 1(—1)" (B3)

5„stems from the action of A, d (A,k ) (which is what we get after moving A past all the C's) on the vacuum. We
1

also had to include a 5b, due to the fact that, in (3.33), we denoted by bk the index of C with SP p [this means that, on

the lhs of (B3) bk is really equal to 1, too]. The contribution of A22(p, } differs only in factors 5b 25d 2 instead of

&Ad &, so that the result for Ak =Ak +Ak z is found to be

b (iu —i(,k )
(AkF) ' "=S(A, )

' "F"
k al ak

n

[ (A,„)] (I,„—A, , ) ', '
(A,„—A, )

' '
(A,„—A, , )

" ' " '
(
—1)"

a Ak A, ;
iAk

X r (~k ~k+ 1 )b„d„(~k ~k+2)b„d„(~k ~ }b„d„ (B4)

This expression can (and must be) simplified by carrying out the contractions over the summation indices c„.. . , ck.
Noting that

(B5)

we are able to perform all c; summations with the result

k —1

S(A,„),' . . . ,"r(A,„—A, , ) ', ' r(A,„—)1,„,) „"
' " ' = g 5, „5 „i=1

Now we transform the remaining r matrices into L operators, using the identity

r(A, )' =[r(A, )II"']' ( —1) ' '= —[r(A, )II"']' = —L'"(A, )'

The second equality holds because E'&=6'p=1. Thus, we obtain our final form for the unwanted terms due to

A, 1(P,)+ A22(ilk):

F) 1 n
b (P, —A, k )

a (ilk
—A, k }, , a(A, k

—A., }
[a(i(,k)] F"

iWk

k k —1 1( 1)k+1L(1)(g g )
k n —2

n k n bnan

n —l(~k ~n —l}b a k+1(~k ~k+1}b/, +la/, +1
()) d„2d„3 (]) dkaA (B8)

We now insert (B8) and (B2) into the condition (3.36) for the cancellation of the unwanted terms and multiply the result-

ing equation by the inverse of S(A,k ), '. . . ,", which satisfies
1 k

k

[S '()1,„)]b'. . . b" S (Ak ),'. . . ,I = g 5,
i=1

and which is computed via (B5). After some trivial rearrangements we arrive at
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(2 (Ak —
A, , )

[ (g )]
L—p n k+lpk pl

, a(}(,, —Ak)
iPk

n (~k ~n }b n k+1(~k ~k+1)bk+ 0k+1

&(}( g )pk k —l . . . (g }( )
2 1 F n k k —1 1( 1)k+1

Pk —1 k —1 P1 k

ik —1(~k ~k —1 }pk lbk Lk —2(~k ~k —2}pk bk
L 1 (~k ~1)plbl

~ ~ ~ n ~

[ (1)(g )F] n k+lpk pl

This implies (3.37).
The unwanted terms (3.4.4) for the nesting can be computed along similar lines and we easily find that

b(P — 'k" } "'
1

„, gu(~(„"—X, ),
a(P, —Ak ) &=1 a(Ai —

Ak ) (=1
jAk

b(A'k" P) "' —
1

" u(~'k" —~l)

a(A, '„"—)u) =, a(A, '"—}(,,'"),=, (2(A,, —A, '„")
jAk

The cancellation of the unwanted terms for the nesting implies (3.48).

(B9)

(B10}

APPENDIX C: EQUIVALENCE OF THE BAE

In this appendix we establish the equivalence of our set of BAE (4.3}with the set obtained by Sutherland (3.73). We
use a method developed by Bares et al. in Ref. [25] (see Appendix C of their paper) to show the equivalence of the solu-
tions of Sutherland and Lai (see also Ref. 26}.

We start by expressing the second set of our BAE,

X(+i/2 l A,'"—X i /2—
X, —i/2, =, X,("—11+i/2

'

(Cl)Nk+Nl g(1)

,=, X(„"—Xi+i/2
'

g

w —
A, +—=0.

2

as a polynomial equation of degree Nz +N~.
NI, +N) NI, +Nl

p(w)= g w —
X, ——

j=l j=1
(C2)

Among the roots w, j=1 N„+N& of (C2), we consider N& roots W„. . . , WN, which we identify with

The Nk other roots of (C2) we denote by w'. Using the residue theorem we can derive the following
equality:

N
wj +l /2—i ln

X —w i/2—
1 j

I A, I
—z+i /2

c dz( —i)ln ln[p (z)],
j=1 27Tl X —z i l2—I

(C3)

where C. is a small contour around w . The branch cut of the logarithm extends from z„=A,I+i/2 to zp All i/2. By
deforming the contours on the rhs of (C3), we arrive at the following equality:

At WJ + i/2 p(z„)y —sin —i ln
w- —i/2 p(zp }I

N„

i ln-
j=l

N~+N,
p(z„)=— g (X, —X +i),

m=1
(C5)

where the last term on the rhs comes from integration around the branch cut. The form of the polynomial p now im-
plies that
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N~ +N,

p(z )= g (Xt —X —i) .
m=1

Inserting (C5) into (C4) and exponentiating the result, we obtain the identity

w - +i /2 =rr
)=) A( W- l/2

A, ( Wk l/2 " ~ k( k +l
W( +l/2 m=) k(

mWI

(C6)

Now we use (C6) in the first set of the BAE in (Cl) with the result

Xt+i/2

Xt i /2—

& A,
—km+i ~ A(

—wk —i/2=n '
. rr'~=i A, t A, ~ 1 k=i)(, t Wt, +t/2

m@1

(C7)

This is precisely the first set of the BAE in the Sutherland form (3.73), if we make the identification tok =1k". The
second set of the BAE (3.73) is also fulfilled by the spectral parameters X k(" because they are roots of the equivalent po-
lynomial equation (C2) (this is because the BAE of the nesting for the Sutherland solution and our solution are identi-

cal). Thus, we have established the equivalence of the BAE (4.3) and (3.73).
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