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Superfluid hydrodynamics for second sound, expanded to first order in Vp, and including second-

sound damping and finite-amplitude effects, are cast into a boundary-value-problem format, suitable for
calculating the resonant frequency in a second-sound cavity operating near the A, point. This model is

applied to the data of Marek, Lipa, and Philips, which showed deviations from a simpler model in the re-

gion close to the transition. We find that our model by itself cannot explain the deviations, but if a shift

in the estimated location of Tq is included, a significant improvement can be obtained. The critical ex-

ponent g, describing the divergence of p„was found to be (=0.6708+0.0004, in good agreement with

the renormalization-group prediction 0.672+0.002. The range for the reduced temperature parameter
was extended to c=2X10, substantially closer to the transition than in the previous analysis of this

data. The shift in Tz can be considered acceptable if the data very near Tq are reinterpreted. The effect
of the Vp, term is shown to be important for c & 10

I. INTRODUCTION

With the development of subnanokelvin thermometry, '

the measurement of thermodynamic properties near the A,

transition in He is now limited primarily by the depen-
dence of the transition temperature, T&, on hydrostatic
pressure. For sample sizes of a few mm, this limit is of
the order 10 on the reduced temperature scale
e —=

~
1 —T/T& ~. Further from the transition, the gravita-

tional effect is observable as a distortion of the data
which, in many cases, is small and easily calculable, but
for c below the limit, the effect rapidly dominates. With
smaller samples, finite-size effects soon become notice-
able. Recent measurements by Marek, Lipa, and Philips
(MLP) of the second-sound frequency in a cavity resona-
tor of 1.3-cm height have been made very close to T&,
with a significant amount of data in the region affected by
gravity. The MLP data, approaching T& to within 10
K, represent a stringent test of the renormalization-group
(RG) prediction for the critical exponent g, describing
the divergence of the superfluid density p, near T&.
However, MLP obtained reasonable agreement with their
model only over the limited range 3X10 '(a&10
Below e.-3X 10, the experimental results displayed de-
viations of several percent (see Fig. 1) from a time-of-
flight model describing the effect of gravity on second-
sound propagation near the transition. Since the results
of MLP represent one of the few cases where significant
departures from theory have been observed in the asymp-
totic region, it is important to explore the extent to which
various factors neglected in their analysis may be contrib-
uting. It is not clear whether the deviations below
c-3X10 are an artifact of the time-of-flight model, a
true departure from theory, or due to systematic errors in
the experiment.

In this paper we attempt to clarify the situation by de-
veloping a more refined treatment of the gravitational
effect and exploring the effects of damping and finite am-
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FIG. 1. Deviations of second-sound frequency from the
time-of-flight model of MLP.

plitude. We also investigate the effects of experimental
uncertainties in the location of T& by including in the
least-squares-fitting function, a parameter hT&, which
shifts the temperature scale of the raw data. Altogether,
five new effects are considered: the T& shift, finite ampli-
tudes, damping, boundary effects, and an expansion to
first order of Vp, in the differential equation describing
second sound. Most significant were the shift in T& and
the Vp, term in the differential equation. Our analysis of
the second-sound problem is developed from a
boundary-value perspective in which the second-sound
frequency arises out of the resonant solution to the
differential equation with matched boundary conditions.
The implicit pressure dependence of the standard
"gravity-free" model is incorporated through the varia-
tion of the local superfluid density with height. In con-
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trast, the time-of-flight model described by MLP allows
for the effect of gravity by summing the local second-
sound velocity over the height of the resonator. To first
order, the boundary-value approach and the time-of-
flight method are equivalent, with the exception of the
boundary effects neglected in the time-of-flight model.
Ho~ever, the boundary-value approach is more powerful
in that it can be extended to include higher-order effects,
i.e., our model treats the variation in the superfluid densi-
ty to second order by including a term proportional to
Vp, . A further benefit of the boundary-value approach is
that the wave-function solution gives complete informa-
tion on the temperature profile of the second sound in the
resonator, particularly the second-sound amplitude as a
function of the input driving power.

By use of the boundary-value model and including a
T„shift, we obtain the best-fit result (=0.6708+0.0004,
over the range 2X10 & c & 10 where the uncertainty
is estimated at one standard deviation. Our result agrees
well with the RG prediction (=0.672+0.002 and the
best previous result (=0.6716+0.0004, fit over the
range 2X10 &c.&10 . The best-fit result for the T&

shift is several times larger than the uncertainty quoted
by MLP. This can be understood only by re-examining
the criteria used in determining the location of the A,

point. Our model indicates that there is a much sharper
dropoff in the second-sound amplitude very near T& than
originally assumed. This would lead to a bias in T& of
about the right magnitude. Both the shift in T& and the
boundary model are required to obtain a good fit over the
entire data range. By only shifting Tz and neglecting the
effects in the boundary-value model, we are able to extend
the range of agreement by about a factor of 3 closer to Tz
(to e-10 ). With the boundary model alone and no Ti
shift, the deviations are slightly worse than the MLP
model. It now appears that the MLP result
(=0.6740+0.0005 over the range 10 (e(10 should
be discarded due to the limitations of the approach then
used.

In Sec. II, we set up a problem using the two-fluid
model in its ideal nondissipative form and discuss the nu-
merical techniques used to solve the differential equation.
Examples of the resonant wave function are displayed for
various cell temperatures. In Sec. III, we describe exten-
sions to the basic boundary-value problem in Sec. II to
include second-order effects, namely, second-sound
damping and finite amplitudes. An order-of-magnitude
estimate is made for the shift in resonant frequency due
to both damping and finite-amplitude effects. Section IV
contains the results and discussion of several least-
squares fits to the MLP data, applying different combina-
tions of the effects in the boundary-value model and the
Tz shift. An examination is made of various approxima-
tions used which may affect the accuracy of our mode1.
%'e briefly summarize and make suggestions for future
experiments in Sec. V.

II. BOUNDARY-VALUE PROBLEM
IN THE LOW-AMPLITUDE LIMIT

The derivation of the differential equation for second
sound from Khalatnikov's theory of two-fluid hydro-

p, = ke~(1 +aoe ), k =ko(1+k, e), (3)

where the critical exponents g and b are determined by
renormalization-group techniques or from fitting (along
with the coefficients ko, k„and ao), to experimental re-
sults. ' The specific heat just below T& is written as

C =(A'/a')e [1+D'c. )+B',
where a', A', D', and 8' are similarly determined. The
expansion of the total entropy in terms of the reduced
temperature near Tz is taken from Ref. 5. This entropy
expansion is obtained by integrating a specific-heat func-
tion slightly different from (4). This is adequate for the
work described here as the entropy asymptotically ap-
proaches a constant value at T& to order c.'

The effect of hydrostatic pressure on T& in the Earth' s

gravitational field (dTi Idz=1.273X10 K/cm) induces
a nonlinearity in the superfluid through the dependence
of the fiuid parameters [Eqs. (2)—(4)] on the reduced tem-

perature:

de/dz =(1 s)IT—& XdT&/dz .

For clarity we note that the reduced temperature varies

along the height of the cell while the absolute tempera-
ture is uniform throughout the cell. In the MLP resona-

tor, the reduced temperature increases by 7.6X10
from bottom to top. This has the implication that the
resonant frequency is derived from an average of the fluid

properties in the cell. For c &10, where this gravita-
tional effect becomes significant, we make use of the lo-

cally defined e(z) and from (2)—(4), the locally defined

second-sound velocity u „(z). This induces an implicit

nonlinearity in the differential equation (1) which in-

creases rapidly at small e. For the small sample height
used by MLP, we can safely neglect the pressure depen-
dence of the parameters in (3) and (4). All the values of e

quoted in this paper refer to the local value at the bottom
of the cell.

Near Tz, other more explicit nonlinear effects, which

were neglected in the derivation of (1), may also become
significant. These include terms involving powers of Vp„
finite-amplitude effects, and second-sound damping. By
including terms up to first order in Vp„ the differential

equation becomes

0 T, (z, t)/Bt =u „(z)[V T, (z, t)+Vp, (z)V T, (z, t)/p, ],

dynamics is straightforward. In the absence of dissipa-
tion the linearized equation, for small variations total in
the entropy S, is

a'S(z, t) /at '= u,', V'S(z, t),
where u» is the velocity of second sound:

u» =p TS /p„C

Here p„ is the normal fluid density and C is the specific
heat at constant pressure. Near T& the superfluid density
can be expressed in the form
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where T, is the amplitude of the second-sound wave.
The differential equation is now expressed in terms of
temperature rather than entropy. Converting to entropy
requires an additional term proportional to VC, which
arises from the derivative of the thermodynamic relation
dS=C dT/T. Far from Ti„, Vp, is negligible, and in
zero gravity Vp, =0 for all c. In either case the
differential equation (6) reduces to the linear form (1).

The temporal and spatial components in the dif-
ferential equation (6} can be separated for the case of a
harmonically driven second-sound resonator using

q = Re[ye'"'], (7)

Substituting (8) into (6) and eliminating e' ' gives

—t0 Ti(z)=utt(z)[V Ti(z)+Vp, (z)V'Tl(z)/p, ] . (9)

The solution to (9) requires the definition of boundary
conditions at both ends of the resonator. The boundary
conditions at a superfluid He/thermal diffusive wall inter-
face have been used to find the exact solution' to the
homogeneous (zero-gravity, no dissipation} problem [Eq.
(1)]. In the MLP experiment, only the heater end of the
resonator was a truly solid wall. Their detector consisted
of a powdered paramagnetic salt pill, developed by Chui
and Marek. " These authors show that, in the frequency
and temperature regime of MLP, second-sound couples
primarily through a thermal diffusive wave to the salt
pill. Thus, it appears reasonable to apply thermal
diffusive boundary conditions to both ends of the MLP
resonator, taking into account the different material pa-
rameters.

In order to introduce the many parameters involved,
we include a brief derivation from Ref. 10 of the match-
ing boundary equations for the ends of the second-sound
resonator, generalizing them for nonzero gravity. The re-
quired boundary conditions for He II at a solid wall are
given by London

where co is the driving frequency and y, complex, is the
power input per unit area. In the steady state this power
is transmitted through the fluid by a second-sound tem-
perature wave:

T, (z, t)= Re[T|(z)e' '] .

v„= Re[c.„(z)e'"'] (13)

and

T= Re[T(z)e' '] . (14)

Substituting (13) and (14) into (12) and simplifying yields

itvc „=—(p, Ip„)SVT . (15)

Eliminating v„ from (10) and (15) gives the boundary con-
dition in terms of VT:

( pS —Tp, litop„—a)VV'=y . (16)

With a constant amplitude power input, the boundary
equation (16) at the heater end of the cell becomes

( pS—Tp, licop„~)OV'—To go, (17)

where the subscript (0} indicates quantities to be evalu-
ated at z =0, the boundary between the heater and the
fluid. At the detector end of the cell, the power transmit-
ted through the boundary is the heat flux: y= —x'V'PL,
where ~' is the thermal conductivity in the wall and the
subscript L indicates quantities to be evaluated at z =L,
the interface between the fluid and the detector. Thus,
the boundary equation (16) at z =L becomes

( pS Tp, licop—„it)LVV'I—= a'VVz .—

Similarly (11)becomes

TL, = 'Tt +R z'V Tq

(18)

(19)

In a solid wall heat travels as a thermal diffusive wave
which is given by'

T Re[ g e
—z'(i —1)ls&icut]

b (20)

where V'b is the temperature at the boundary z'=0, and
the thermal penetration depth 5 is given by

5 =2@'/p'C'to, (21)

(22)

where p' and C' are properties of the wall material. For
convenience we scale z'=z —L so that

and

(pSv„vV TIT)i =qj /—T (10)
and

VV', L
= —'Tb(i —1)/5 . (23)

T= T' —Rq~, (11)
Substituting (22) and (23) into (18) and (19) yields

where p is the He II density, v„ is the velocity of the nor-
mal Quid, sc is the thermal conductivity of the normal
fiuid, T' is the temperature in the wall, and R is the Ka-
pitza boundary resistance.

The normal velocity v„ is related to VT through an
equation from two-fluid hydrodynamics:

and

aLV Tl =aTb(i 1)/5'

where we define

V'I = 'Tb [1 Ra'(i —1)/—5],

(24)

(25)

dv„ ldt = —(p, Ip„)SVT . (12) a=a, +ia2= —~+ipS Tp, /cop„. (26)

In the harmonically driven cell the small variations in ve-
locity and temperature are given by

Dividing (24}and (25) gives

aL V'TL /'TI = —2 'sI[ (51 +i)+2R s'] . (27)
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y, =Vy, ,

~'V i+ufi[VVz+(Vp, /p, )yz]=0,

y4=Vy

aPy3+ u f, [V'y4+(Vp, /p, )y4] =0 .

(28)

(29)

(30)

(31)

The shooting method is initialized by guessing the
second-sound amplitude at the bottom of the resonator
(z =0): yt(0) —=Re%', (0), y3(0) —= Im'T&(0). The gradient
of temperature at this interface, yz(0)—=ReV'T~(0) and
y4(0) =ImV'T&(0}, is calculated using the boundary con-
dition (17). Equations (28)—(31) are then integrated us-

ing, for example, the Runge-Kutta' method, giving
values for y, (z) (i = 1, . . . , 4) along the length of the cell.
The deviations of the values y;(L) from the boundary
equation (27) are used to obtain a better estimate of the
second-sound amplitude [y, (0),y3(0) ]. The Runge-
Kutta method is applied iteratively until the boundary
condition at z =L is matched to within a specified toler-
ance. The resonant frequency is found by maximizing the
result of the shooting method, ~T&(L)~ =y, (L) +y3(L)
as a function of frequency. By using an appropriate
choice of the frequency range, the maximization routine
can be used to determine the fundamental wave function
or any harmonic.

Figure 2 shows the fundamental wave function ob-
tained from maximizing the response at the detector end

0.0 0.2 0.6 0.8 1.0

FIG. 2. Temperature wave in second-sound resonator of
length L (= 1.3 cm) at the fundamental frequency, computed for
three different temperatures. The solid line corresponds to
c.=10, the long-dashed line to c,=10, and the medium-

dashed line to c.=10,a11 referred to the bottom of the cell.

The differential equation (9) along with the boundary
conditions (17} and (27) form the description of the
second-sound boundary-value problem for small ampli-
tudes with no damping. For a given driving frequency co,
the equations can be solved numerically using the "shoot-
ing method. "' The ordinary shooting method is easily
modified to handle complex quantities. First we decom-
pose the second-order differential equation into first-
order equations. By making the following substitutions
into (9), y, =Re['7, ], yz=Re[V'7&], y3=im[T, ], and
y4=1m[V7'&], we obtain four coupled first-order
differential equations:

of the MLP cell. Three curves are plotted for different
values of reduced temperature c at the bottom of the cell;
the effective temperature difference from the local T& in-
creases by 1.6 pK at the top. For c & 10,where gravi-
ty effects are small, the wave function is nearly symmetri-
cal as expected from the analytical solution of (1). As the
bottom of the cell approaches T&, the distortion of the
wave function reveals the inhomogeneity of the
superfluid. Only the real part of the wave function
[y, (z)] is plotted in Fig. 2; the imaginary part [y3(z)] is
negligible on this scale, indicating the wave function is
real on resonance.

III. HIGHER-ORDER EFFECTS

+D zVzBT, ( z, t) /Bt, (32)

where D2 is the second-sound damping coeScient.
Separating the temporal and spatial components as before
gives

—ar 'T, (z)=u f&(z)[V V, (z)+Vp, (z)V7, (z)/p, ]

coDzV T, (—z) . (33)

To estimate the effects of the damping term alone, we
set Vp, =0 and neglect gravity and finite-amplitude
effects. The traveling wave solution to the differential
equation is of the form TI =Toe'"' ' ', with complex
wave vector k=k, +iso Dz/2u», where k, is the wave
vector with no dissipation. This solution was also ob-
tained by Putterman' through direct substitution into
the hydrodynamic equations. It is interesting to see how
the dispersion relation (coo=k, u f, ) is modified by damp-
ing. Substituting the traveling wave solution into (33)
and simplifying gives

co =coo/[1 —(k,Dz/u„) ]

=coo[1+(k,Dz/u„) ] .

The deviation from the ideal case grows as T& is ap-
proached due to the divergence of both Dz and u &&'. At
c.=2X10, the closest temperature to T& at which D2
has been measured, ' we find Dz =SX 10 cm /sec and
0 gg

=79 cm/sec. With k, =2.4 cm ', corresponding to
the length of the MLP resonator, the fractional frequency
shift (k,Dz/u„) is 6X10 ' . A rough extrapolation of
the experimental results to c, = 10 gives D2 —6
X 10 cm /sec and u» -9 cm/sec, and a corresponding
fractional frequency shift of 3 X 10 . In a resonator, the
steady-state solution consists of two oppositely directed
traveling waves. Because the shift is so minute for a sin-
gle traveling wave, we expect the damping effect in the
resonator to be, at most, a very small perturbation to the

In this section we consider a number of ways that the
above treatment can be extended to give a more realistic
representation of experiment. First we consider the effect
of second-sound damping. The derivation of the damp-
ing term follows from Khalatnikov's superfluid hydro-
dynamic equations including dissipation:

8 T, (z, t)/dt =u„(z)[V T, (z, t)+V'p, (z)VT, (z, t)/p, ]
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undamped case, even when generalized to nonzero gravi-
ty. We anticipate that future experimental work will ap-
proach closer to T& where the damping may become
significant. For this reason as well as to verify that
damping is negligible in the MLP regime, we show how
(28)—(31)are modified to include damping:

y2=Vy

tv yi+uii[Vy, +(Vp, lp, )y, ] toD—,Vy4=0,

y4=Vy

'y3 +uII[ Vy4+ (Vp. Ip. }y4]+D2Vy2

(34}

(35)

(36}

where y=(d/dT)ln(uiiBs/Bt) is Khalatnikov's non-
linear coeScient. The subscripts 1 and 2 follow the no-
tation of Ref. 17. An upper bound on the frequency shift
due to finite-amplitude effects can be estimated from the
shift' in the second-sound velocity (u) in a traveling
wave of amplitude T, : u =u»p(1+) Ti), where u, io is
the velocity at zero amplitude. When the two oppositely
directed traveling waves in a resonator are summed, the
finite-amplitude shift tends to cancel, thus, 5fIf
=5u Iu»0 « y T, . From the results of a least-squares fit

to the MLP data discussed later, we obtain
T, =8.1X10 K at the low end of the fitted range, i.e.,
c.=2X10 . Using an effective y=1.4X10 averaged
over the length of the cell gives a frequency shift due to
finite-amplitude effects of 5fIf« 1.1%. For
c, ~ 2X10 we expect that the cancellation reduces the
shift to &0.2%, much smaller than the scatter in the
MLP data. However, it is possible that this effect may
slightly perturb the parameters derived from the data.

In cases where the second-order amplitude T2 is
significant, other second-order, or even third-order,
effects may also be important. Recently, Goldner,
Ahlers, and Mehrotra' (6AM) described an experimen-
tal method for extracting the superfluid fraction near Tz
from an analysis of highly nonlinear second-sound pulses
reflecting between a heater and bolometer. Although the
experimental temperature range examined by GAM
(2—25 mK} is further from Ti than the present work,
GAM anticipate that their method will be useful very
near T& where they expect nonlinear effects to be impor-
tant. For the work closer to T&, GAM point out that an
analysis of the self-interactions of the pulses upon
reflection as well as coupling to first sound may need to
be ~arried out. A thorough analysis would include Vp,

The numerical techniques for solving this set of equations
are the same as before with the solution reducing to the
nondamped case when D2 =0.

The second nonlinear effect we consider arises from the
finite amplitude of the second-sound wave. Putterman
and Garrett' derive a second-order equation, using the
first-order result Ti(z, t) obtained from (6) [or (32) if
dainping is to be included] as a driving term for a
second-order excitation Tz(z, t):

d T (z, t)IBt u„(z)B—T (z, t)Idz =y(z)B T, (z, t)Bt

(38)

terms in the differential equation and estimate the effects
of third-order terms, similar to our estimating second-
order effects in this work. GAM state that the pulse
method should be more efFective very near T& as it does
not depend on the linearity of second sound which breaks
down sum[ciently close to T&. However, our analysis in
the next section indicates that, in the MI.P experiment,
amplitude nonlinearities were essentially negligible to
c-10 . The ability to reduce the amplitude of the
sound to the linear region greatly simplifies the overall
analysis.

A more quantitative analysis of the finite-amplitude
effects in our model is obtained from the solution of (9)
and (38). The gravitational effects are incorporated into
the finite-amplitude problem by allowing y and u» in (38)
to vary with height. The calculation of the finite-
amplitude effects closely follows the numerical solution
described in the previous section. The differenti. al equa-
tion (38} is driven by the square of the first-order temper-
ature wave Ti(z, t). From the square of (8) we see that
the second-order amplitude T2(z, t) oscillates at frequen-
cy 2' in the steady state. Thus, the thermal difFusive
boundary conditions (20) and (21) must be modified for
penetration of a wave at frequency 2~. In contrast with
the first-order wave, thermal difFusive boundary condi-
tions apply at both ends of the resonator for the second-
order temperature wave. The driving power qo oscillat-
ing at frequency co does not couple directly to T2, which
oscillates at 2'.

Separation of the spatial and temporal variables in (38)
yields

4' 'T2(z)+uii(z)V 'Tz(z) =4co y(z)7i(z) . (39)

To be self-consistent, (39} and (9) are solved simultane-
ously. This is accomplished in the shooting method by
introducing four parameters y5 =Re[%'2], y6=Re[VV'2],
y7=Im[Tz], and ys=Im[V'Tz]. There are now eight
coupled first-order differential equations, (28)—(31), and
the following:

y6= Vy5

4' y~+ui, Vy6 —4coy(yi —y~)=0,

Vy7

4' y7+u»Vy8 —8coyy&y3 =0 .

(40)

(41)

(42)

(43)

IV. RESULTS AND DISCUSSION

The numerical determination of a resonant wave func-
tion represents a fitting function whose output is the reso-

The resonant frequency solution is obtained numerically
as before. A corresponding plot to Fig. 2 with finite-
amplitude effects included is beyond the scope of this
work as a third dimension for amplitude is required. For
small enough amplitudes this graph would reduce to Fig.
2.

In the next section we describe the results of fitting our
model to the MLP data, initially neglecting second-sound
damping and finite-amplitude effects. We then show the
significance of the additional nonlinear effects.
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nant frequency co, containing seven free parameters:
ko k

& ao, 5T&, 5/2a', and R. As the MLP data did not
lend itself to obtaining an accurate estimate of the param-
eters k, and ao, we used the previously published values
k, = —1.47 and ao=0. 32. We reduced the number of
free parameters further by noting that the results of the
fit were insensitive to the value of both 5/2~' and R.
Thus, we fixed these parameters at the estimated values
obtained from Ref. 19: 5/2a' =6.76 X 10 cm
K &Hz/W and r =0.5 cm K/W. Figure 3 shows the de-
viation of the MLP data from a least-squares fit to our
model (with Dz =0 and neglecting finite amplitudes), con-
taining the remaining free parameters: g, ko, and b T~.
The range of the fit extended from c.=10 down to
c.=2X10 . The lower limit was chosen as the point
where the amplitude T, (0) at the bottom of the cell was
2% of the distance to Tz of the local time-averaged cell
temperature T, i.e., T, ( 0) =0. 02X e( 0)T&. It should be
noted that this cutoff point is somewhat less than the
"gravity limit" e. =3.8 X 10, which marks the point at
which gravity effects become significant. In principle,
there is no reason why a smaller cutoff could not be used,
by many of the approximations in the present model will
soon break down, as discussed below.

The best-fit values for g and ko are given in Table I,
along with previous theoretical and experimental results.
Our result for g agrees with the Greywall-Ahlers (GA) re-
sult and the RG prediction to within one standard devia-
tion uncertainty. It is interesting to note that the associ-
ated value of a' obtained on the basis of scaling is
a'= —0.0124+0.002, close to the observed value over a
similar temperature range, and in reasonable agreement
with either of the RG predictions: n'= —0.0066 or—0.016. The uncertainty in ko partially reflects the un-
certainty in the length of the MLP resonator due to the
porous salt pill detector. The third parameter in our
model, 5T&, has a best-fit value of 1.486
X10 +0.344X10 K. We found that the introduc-
tion of this parameter was crucial in obtaining a good fit.
If MLP had included a shift in T& from the raw data, it is
possible their fit could have been extended to smaller c..
To test this hypothesis, we modified our model to closely
approximate the time-of-flight model: the term propor-
tional to Vp, in (9) was eliminated and the detector
boundary parameters were replaced by those of glass, a
more insulating boundary. The results shown in Fig. 4,
of a least-squares fit using this simplified model, improve
upon the MLP deviations to c.-10 . This indicates that
the Vp, term and the boundary effects included in our
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FIG. 3. Deviations of the second-sound frequency from a
least-squares fit to the model described in the text. The reduced
temperature of the raw data has been shifted by the value of the
fitted parameter AT&.

model are significant. Thus, the time-of-flight model is
probably not accurate below c.-10 . We have also in-
vestigated the effect of setting b, T& in our model to zero.
The results plotted in Fig. 5 show deviations slightly
larger than MPL using the time-of-flight model, see Ref.
6. It is thus obvious that the improved model alone can-
not explain the MLP results.

The satisfactory results of the fit to our model in Fig 3,
which neglects second-sound damping and finite ampli-
tudes, indicates that these effects are indeed small. To
confirm that second-sound damping is negligible in the
MLP experiment, we performed a least-squares fit with
nonzero D2 in (33), but neglecting finite amplitudes. The
existing experimental data' for the damping coefficient
only cover the range c)2 X 10,necessitating extrapola-
tion of the results to smaller c. The deviations in the
fitted parameters from the undamped case were less than
0.01%, much less than the estimated uncertainty in the
parameters. These results are in agreement with the dis-
cussions in Sec. III.

To confirm that finite-amplitude effects are negligible
over the range of our fit, we computed the resonant fre-
quency using our finite-amplitude model at the lower lim-
it c=2 X 10 . The deviation of the frequency from the
results of our best fit (Fig. 3) is less than 0.05% at the low
end of the reduced temperature range and decreased with
increasing c, . As this is much less than the scatter in the
MLP data, we expect no effect of finite amplitude on our

TABLE I. Summary of recent experimental and theoretical results for the scaling parameter g and

the amplitude ko along with the range of data examined.

Range of fit

RG
Present work
MLP
GA

0.672+0.002
0.6708+0.0004
0.6740+0.0005
0.6716+0.0004

2.502+0.007
Scaled to GA value

2.467'

2X10 &c &10
10 '&c. &10 '

2X10 &E, &10

'There is no uncertainty given for this value in Ref. 5.
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fitted parameters. We also found that the second-order
amplitude T2 is 3 orders of magnitude less than the first-
order amplitude T&, consistent with the approximation
T, «T, used in deriving the differential equation for Tz.

At first sight the magnitude of the shift in T& from the
MLP estimate is troubling, considering that the sensitivi-

ty of their thermometers was 2 orders of magnitude
higher. Furthermore, the value of the shift places two
data points above T&, although by less than the uncer-
tainty of the shift. However, it is possible to reinterpret
the MLP data used to estimate Tz in a way that agrees
with our estimate of Tz. The MLP estimate is based on
two different methods. The first method, observation of
an abrupt change in thermal conductivity of the cell as
the temperature is swept through T&, had an uncertainty
of about +10 K. The second method, a linear extrapo-
lation of the second-sound amplitude to zero as Tz is ap-
proached, had an uncertainty of +3X 10 K and is con-
sistent with the first method. Since the amplitude extra-
polation is the most important, it is worth considering in
detail what the temperature dependence of the amplitude

might be. Using the model described above, we have cal-
culated the amplitude of the second-sound wave as a
function of c. For constant driving power, the amplitude
is 1X10 K at e.=10,rising smoothly to 8. 1X10 K
at c.=2X10 . Extrapolating this trend closer to T&,
one finds that the positive temperature swing of the
second-sound wave will approach arbitrarily close to T&
for c.-10 . Beyond this point the amplitude should be
reduced due to second-sound damping and/or finite-
amplitude effects which convert energy from the funda-
mental frequency to generate higher harmonics. We be-
lieve this effect would lead to a sharp drop-off
in amplitude, yielding a much steeper slope than assumed
by MLP. Thus, the lowest-frequency MLP data could be
essentially at T& in agreement with our estimate.

It is instructive to review some of the approximations
in our model which may lead to systematic errors in the
fit. When the positive temperature swing of the second-

sound wave approaches T&, additional damping and/or
finite-amplitude effects will take energy out of the wave,
suppressing the amplitude. This manifestation of
second-sound damping and finite-amplitude effects is not
tenable with our model. Furthermore, to properly calcu-
late the wave function in this situation, even while
neglecting damping and finite amplitudes, would entail
the insertion of time dependence into u»(z} and Vp, (z},
e.g., u»(z, t)=u»[e(z, t)], where

e(z, t) = [T&(z)—T Re[7(z)e—' ')][/T&(z) .

Solving this problem requires more sophisticated nurneri-
cal techniques as the time and spatial variables are no
longer separable as in (9).

We have made several other approximations which are
expected to break down sufficiently close to T&. First,
the hydrodynamic equations take on a different form '
with p, treated as a fifth independent parameter. In this
treatment an additional parameter is introduced describ-
ing the relaxation of p, toward equilibrium. Second, in-
teractions between layers of different superQuid density
invalidate the approximation (see Sec. II) that the local
properties of He are given by the locally homogeneous
Quid. Third, the finite power dissipated in the heater
may lead to a detectable depression of Tz. ' A clear
cutoff is not known for when these effects become impor-
tant. However, the agreement of our model with the ex-
perimental data is strong evidence for the validity of our
approach using superQuid hydrodynamics to within
c-10 . An approximation which does not fail near T&,
but may contribute to uncertainties in the fitted pararne-
ters, is the modeling of the detector interface as a thermal
diffusive boundary. This is a first-order approximation
which ignores coupling to fourth sound and lumps the
parameters (~', 5,R ) of the salt grains and 4He together
(see Sec. II and Ref. 11}.

V. CONCLUSION

We have developed a numerical method for solving the
boundary value problem of second sound in a resonant
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cavity under the influence of the gravitational inhomo-
geneity. The model was extended to include second-
sound damping and finite-amplitude effects. Application
of this model to existing second-sound data, combined
with a shift in the location of Tz, allows satisfactory
agreement with RG predictions for the critical exponent
g. The agreement is extended over the entire range of the
data. Neither the new model or the T& shift alone are
sufhcient to obtain a good fit to the data. The results in-
dicate that second-sound damping and finite-amplitude
effects are negligible in the regime of the MLP experi-
ment except extremely close to T& where the amplitude
of the wave itself approaches T& on the positive tempera-
ture swing. Our model overcomes many of the limita-
tions of the MLP time-of-fight model and represents a

significant improvement in the treatment of gravitational
effects in superfluid helium. In particular, we show that
the variations in superfluid density due to gravity have an
important effect on the propagation of second sound for
c & 10 . Future second-sound experiments should strive
for a more accurate determination of the transition tem-
perature. In addition, the range of useful measurements
could be pushed closer to T& with a shorter cell and a
reduction in the driving amplitude.
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