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Recent electron-spin-resonance experiments on the one-dimensional Heisenberg antiferromagnet,
NENP, have observed 47-GHz transitions in magnetic fields of 1.4—5 T, depending on orientation. We
argue that these should be understood as transitions between magnon states of a wave vector near m and
different polarizations, whose energies are split by crystal-field anisotropy and magnetic fields. Neutron
scattering measurements and/or models of the magnon spectrum thus determine the ESR resonance fre-
quencies.

Integer-spin Heisenberg antiferromagnetic chains have
a singlet groundstate and a gap to the lowest excited
state, a triplet, as was first argued by Haldane. ' Experi-
mental evidence for the Haldane gap was first obtained
by Buyers et al. in CSNiC3. However a much more
one-dimensional system was studied later,
Ni(CzHsN2}zNOz(C104) (NENP). It has an exchange en-

ergy of about 47 K and exhibits no Neel order down to
1.2 K due to the tiny ratio of interchain to intrachain
couplings ( =0.0006). Neutron-scattering experiments
exhibit three different branches of magnons, with
minimum energy at wave vector n(we se. t the lattice
spacing to one) and energies 2.52, 1.34, and 1.17 meV.

More recently, electron-spin-resonance (ESR) experi-
ments have been performed on NENP. These exhibited
a thermally activated resonance at a frequency of 47 GHz
or 0.19 meV in magnetic fields of 1.4—5 T depending on
orientation. [These experiments were performed on pure
samples and are not to be confused with the ones per-
formed on doped samples, which probe lower energy de-
grees of freedom at the ends of finite chains. ] Note that
this transition energy is close to the energy difference be-
tween the two lowest magnons. In this paper we argue
that the ESR experiments should be interpreted in terms
of transitions between magnon states. Thus it is not
necessary to postulate some additional excitations, as was
done in Ref. 4. Indeed it would be dificult to understand
why these additional excitations have not been seen in
other experiments or numerical simulations. Instead the
ESR transition frequencies can be determined from
neutron-scattering data. Recent neutron-scattering ex-
periments at finite field are in excellent agreement with
the ESR data for one Geld orientation. Adopting models
for the field (and wave vector) dependent magnon ener-
gies, which agree quite well with all existing neutron-
scattering data, allows us to predict the ESR transition
frequencies at all field orientations in reasonable agree-
ment with experiment. Further neutron-scattering exper-
iments could test this picture. The models are also used
to calculate the width and temperature dependence of the
resonance. In the isotropic case the resonance is a 5
function but it is broadened by crystal-field anisotropy.

ga g~a (2)

and the sum runs over all spins on the chain. g"(co) is an
odd function of co so we henceforth assume co &0. Let us
first consider the case of an isotropic Haldane-gap anti-
ferromagnet. The groundstate is a singlet and the lowest
excitation is a triplet with a dispersion relation of the
form

E(k) =5+u (k n)!2h—+. (3)

The next-lowest excitatiori after the single magnon is the
two-magnon continuum beginning at E =26, (and k =0).
[This field-theory predi;tion is confirmed by numerical
simulations. ] Thus a'. temperatures T «6, we may ig-
nore all excitations except for the single magnon. We
now consider a weak magnetic field, applied in the z
direction with 0(gIM&H &&A. The effect on the disper-
sion of the triplet is to produce a standard Zeeman split-
ting:

E,(k)=E(k),
E~(k)=E(k)+gpGH .

(4)

Note that this result is exact in the isotropic limit. Here
z labels the magnon of total spin quantum number %=0
corresponding to fluctuations of the staggered magnetiza-
tion in the z direction and + label the magnons of total
spin quantum number %=+1 corresponding to linear
combinations of fluctuations of the staggered magnetiza-
tion in the x and y directions. The matrix elements of the

However, the models predicts a considerably narrower
resonance than seen experimentally. The temperature
dependence is predicted to be essentially exponential in
the (lowest} Haldane gap.

The ESR power absorption is proportional to the imag-
inary part of the susceptibility I (co) cc cog"(co};where

2iriy"(co)=(1 —e )f dt e' '(Ã(t)S"(0))r, (1)

where we assume the microwave field is polarized in the x
direction, Ã is the total spin operator
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total spin operator eP between elements of the triplet are
determined by rotational symmetry to be the same as for
a single spin-one operator, for all wave vectors. Thus the
ESR intensity is only nonzero when cofi=g p&H and

3.5

2.5 (T

2'"co=L2mfi5(coA g—p~H)

Xsinh(cabiri/T) f (dk/2m )e (5)

1.5
(c

1

0.5

n Q

where L is the length of the chain. At low T, the integral
is dominated by k =n and we find

2'"(r0) =LA5(co% gp—sH)
4 6 8 10

Magnetic field along x axis (T)

12

X sinh(roiii/T}e ~ +2rrh T/v

Note that the resonance has zero width because the Zee-
man splitting is the same for all wave vectors. At low

temperatures the main contribution comes from almost
stationary magnons with wave vector ( k n) —of
O(&ET /v).

Let us now consider the efFect of anisotropy. A
crystal-field term Dg;(S ) splits the z mode from the +
and —modes. A crystal-field term Eg;[(S;")—(Sf) ]
further splits the doublet. The field dependence of the
dispersion relation of the three magnon branches is no
longer determined by symmetry considerations alone; it
becomes model dependent. In the ESR experiment, the
static field was applied in the xy plane and the microwave
field in the z direction. We denote the zero field k=a
magnons with energies 2.52, 1.34, and 1.17 meV as z, x
and y, respectively, as in Ref. 6. The correspondence
with crystallographic notation for NENP is z =b, x =c,
and y =a. Upon the application of a magnetic field these
three modes mix (i.e., they are no longer associated with

I

FIG. 1. Field dependence of magnon energies at k=m for
field oriented along x (i.e., c) axis. Dashed line is boson theory,

solid line is fermion theory, and circles are experimental data

(Ref. 6). The 47-GHz transition is marked.

a definite polarization of staggered magnetization fiuctua-
tions) and their energies change. We denote the can-
tinuation of these three branches to finite field as 3, 1, and

2, respectively. The field dependence at k =m for a field

polarized along the x axis, determined from neutron-
scattering experiments, is shown in Fig. 1.

The observed ESR signal results from transitions be-
tween the 1 and 2 branches. Transitions will occur at
values of field and wave vector satisfying

IE, (k, H) —Ez(k, H)i =a)A', (7)

where co=47 GHz is the microwave frequency. With an-

isotropy present, E,(k, H}—E2(k, H) depends on k. This
has the effect of broadening the resonance. Equation (5)
is now replaced by

2&/"(N)=LA(1 —e '
) Jdke '" ' I(k, 2IÃlk, 1&l'5[IEi(k,H) —E2(k, H)l —cow],

where

E;„=—minIEi, E2] .

For some range of H the 5-function constraint can be satisfied at some value of k =ko giving

2&X"(co)=LB(1 e)e '" ' —laE, (k„H)/r}k —aE,(k„H)/akl 'I&k. , 21&'lko, »I'.

(9)

(10)

It can happen that the 5-function constraint is satisfied
for several values of k; in that case we obtain a sum of
terms of the above type. We expect Ei z(k, H) to be
differentiable functions of (k —m) . It then follows that
the Jacobian factor in the above equation blows up at the
value of H (=Ho) for which ko(HO)=n, due to the
diverging density of states. This divergence should be
proportional to IH Ho I

' and would be sm—oothed out
by three-dimensional effects. After integration over H,
the intensity is finite. Thus the peak field is determined
by the field dependence of the energies at k=m. only.
This has been measured in neutron-scattering experi-
ments for one relevant orientation of the field: parallel to
the x (i.e., c) axis. To proceed, we need to know the wave
vector and field-dependent dispersion relations E, 2(k, K}

I

and the above matrix element. These are not known
from any exact theory and have been only partially deter-
mined experimentally. Thus we must adopt an approxi-
mate model. (Alternatively, finite-lattice diagonalization
or Monte Carlo could be used. )

At least three difFerent field-theory approximations
have been introduced to study Haldane-gap antifer-
romagnets of spin s. The original one introduced by Hal-
dane' is the O(3) nonlinear o model. This becomes exact
at large s (in the low-energy limit) but has the disadvan-

tage that very little can be exactly calculated using it; in
particular the field-dependent magnon energies in the
presence of anisotropy have not been calculated. The
simplest field theory is the Landau-Ginsburg model '

where a three-component bosonic field is introduced with
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a quartic potential and is treated in the Gaussian approx-
imation. This essentially arises in the large-n limit of the
0 (n) nonlinear o model. It also becomes exact, in some
cases, near the critical interchain coupling that produces
three-dimensional Neel order. A third approximation'
involves a triplet of massive, free, Majorana fermions.
This becomes exact for the spin-one bilinear-biquadratic
Hamiltonian when the ratio of couplings approaches —1

at which point the gap vanishes, the model becomes
Bethe ansatz integrable, and a transition to a dimerized
phase occurs. " Note that, at temperatures much less
than the gap, we may use Boltzman statistics so that the
difference between fermions and bosons becomes unob-
servable by most experimental probes. Recent neutron-
scattering experiments suggest that the third model is
much more successful than the second at predicting the
field dependence of magnon energies. We will apply both
models to the ESR calculation. While both are in fair
agreement with the data on resonance fields, the
Landau-Ginsburg model agrees better. This suggests that
it may give the field dependence of magnon energies more
accurately at low fields ( (5 T) for arbitrary orientation.
Again, we emphasize that this could be checked by fur-
ther neutron-scattering experiments.

The Landau-Ginsburg model is described by the La-
grangian

X =(1/2u)~BPIBt+gpsHXP~
—(v/2)(BQ/Bx) —(1/2u) g h, P, .

Here it) is a three-component vector representing the
long-wavelength staggered magnetization field. The uni-
form magnetization density is given by

I

(gps /u)p X de)/dt T. he phenomenological parameters 6;
represent the gaps of the three branches of magnons at
zero field. A P" term is generally added for stability, but
it will not be needed for the present discussion, since we

only consider fields below the critical field. The field P
can be expanded in magnon creation and annihilation
operators

H=(H), H2, 0), H = t/H, +H2

The Euler-Lagrange equations

(d /dt)RLBQ'= BXBQ'

give, in a Fourier transformed representation

(13)

(14)

y(X t) — [e
—i(a)t kx—)a +ei(~t —kx)a1'

] (12)
dk

47TCOI

Thus we see that the uniform magnetization field

(gpii/u)PX8$/Bt is quadratic in magnon creation and
annihilation operators. There are two types of terms.
The first type annihilates or creates a pair of magnons.
These terms contribute to the susceptibility only at fre-
quencies greater than twice the gap. They are responsible
for the zero-temperature neutron-scattering cross section
near zero wave vector. ' The second type of term con-
tains both an annihilation and a creation operator, of
different polarizations. Thus it is a magnon spin-Sip
operator. It contributes to the susceptibility at lower fre-
quencies, above the minimum difference of gaps, but only
at finite temperatures where a thermal population of
magnons is present. It is this type of term with which we
are presently concerned. We take the magnetic field to
lie in the 1-2 plane

2l COgpgH2 2l cogPgH )

a) uk iI), , +(—gp&K2—)
—(gpss) H)Hq

—(gpss)~H, H, a)' u'k' 92+(gpttH—)
)'—

2l mg p&H2
—2l NgPgH

tu' u'k' 6',—+ (gpt)
—H)'

Here a) and k represent the frequency and wave vector (shifted by ir) of the magnon. By setting the determinant of the
above matrix to zero we obtain a cubic equation in co:

co +a, co +a e) +a =0,

where the coefficients are given by

a, = b, A~ b, 3 3v—k —2(gp—t)H)— —

a~=[52)+v~k2 —(gpsH2) ][6~+v k —(gp~H, ) ]+[63+v k (gptiH) ]—
X[6)+bz+2v k —(gpt)H) ]+4(h, +v k )(gpsH) ) +4(b2+u k )(gpsH2) (17)

a3= —[b, , +u k (gpsH2) ][bz+v k —(gptiH) ) ][A,,+v k——(gpt)H) ]

+(gps) H, zH[h 3+ku—(gpsH) ] .
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Q—:(a i
—3a2)/9,

R—:(2a, —9a, a 2+ 27a i ) /54,

T—=arccos(R /Q ),
(19)

In the special case H2=0, the dispersion relation of the
first magnon branch is unaffected by the field H&, which
mixes only the second and third branches, as reported
earlier:

2 g2+U2k2
1 1

coi i=(hz+5&+2v k )/2+(gp~H)

+[2(gpaH) (b2+h3+2v k )

+(gz g2)2/4]1/2

This formula, with k =0, is compared with the recent
neutron-scattering measurements in Fig. 1 using the pa-
rameters g=2.2, 53=2.52 meV, 6,=1.34 meV, and
b,2=1.17 meV. [The theoretical curve differs from the
corresponding one in Ref. 6 only in that we have used un-
equal values of b, , and b, z.] While the agreement of
theory and experiment is quite good up to h =5 T, it is
rather bad at larger fields; in particular, the critical field
at which the gap vanishes Hz, =6, /gpss is about 30%
too low. The above formula may also be applied in the
case where the field is in the three direction, by the re-
placement, h3~h&. This is compared to experiment in
Fig. 2. [Again the difference with Ref. 6 is only the use of
unequal values of 6, and hz. ] Likewise, this formula may
be used when the field is along the 2 axis, the result being
shown in Fig. 3. Note the level crossing that occurs,
since the first and second branches don't mix. This is
probably an artifact of the Gaussian approximation.
Magnon-interaction effects, modeled by the P term in
the Landau-Ginsburg approach, should mix these modes
and produce level repulsion. We now consider the case
where the field lies in the 1-2 plane but not along one of
the axes. In this case all three branches are mixed. The
solutions of the general cubic equation, Eq. (16},can be
expressed in terms of

3.5

2.5

2

1.5

0.5

0
4 6 8

Magnetic field along y axis

10 12

FIG. 3. Field dependence of magnon energies at k=~ for
field oriented along y (i.e., a) axis. Dashed line is boson theory,
solid line is fermion theory. 47-GHz transitions are marked.
Magnon interaction effects, not taken into account in producing
these curves, are expected to eliminate the level crossing shown
here.

as

co2i= —2i/Q cos[( T+2~)/3] a, /3, —

rv22= —2~Q cos[ T/3] —a, /3,
aPi = —2v Q cos[( T+4m ) /3 ] a, /3 .—

(20}

The field dependence (at k =0) is shown for the case
where the field makes a 60' angle with the x axis, in Fig.
4. Note that all three branches are now field dependent.

The magnon polarization is also given by Eq. (15).
Consider, for example the case where the field is along
the x axis. Then the 1 mode is polarized in the x direc-
tion, i.e., it couples only to (S"(k,co)S"(—k, —co) ). On
the other hand, the 2 and 3 branches have linear com-
binations ofy and z polarization, given by the solutions of
Eq. (15), which can be written in the form
Pz=(O, cosg, isin((}} and $&=(O, ising, cosg}. The angle P
gives the polarization in the yz plane, measured from the
y(z) axis for the second (third) branch. The factor of i
signifies that the y and z components of the magnon wave
function are out of phase. The polarization angle P is
given by

tang=2co&(H)gp&H/[roi(H) bz+(gp&H) ]—, (21)
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2 3 4
Magnetic field along z axis (T)

FIG. 2. Field dependence of magnon energies at k=+ for
field oriented along z (i.e, b) axis. Dashed line is boson theory,
solid line is fermion theory, and circles are experimental data
(Ref. 6). (The two theories are essentially indistinguishable in
this case.)

0.5

2 4 6 8
Magnetic field at 60 degree angle to x axis

10

FIG. 4. Field dependence of magnon energies at k=m for
field at 60' angle to x axis in x-y plane. Dashed line is boson
theory, solid line is fermion theory.
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FIG. 5. Polarization of second and third magnon branches at
k =n for field along x axis, cos2{I), sin~{I) as defined in Eq. (21).
Solid (dotted) lines are second (third) branch. At zero field, the
second (third) branch has pure y(z) polarization.

FIG. 7. Field dependence of magnon energies at k=n. for
field at 80' angle to x axis in x-y plane using boson theory. This
illustrates qualitatively what curves might look like for a 90' an-
gle if magnon interaction effects were included.

cos P and sin {I) are plotted for this case in Fig. 5.
The ESR resonance frequencies can be deduced im-

mediately. For a field applied in the 1-2 plane, a 47-GHz
transition occurs between branches 1 and 2 for a field in
the range 1.4-5.3 T. These transitions are marked in
Figs. 1 and 3. A plot of resonance field vs field orienta-
tion is shown in Fig. 6, comparing theory and experi-
ment. Note that the agreement between theory and ex-
periment is excellent when the field is oriented in the x
direction. This is no surprise because the theoretical
magnon frequencies agree with the neutron-scattering
measurements (Fig. 1) for this orientation and field. On
the other hand, the theoretical resonance field is about
6% too high for the field along the y axis. This is also not
surprising. We see from Fig. 3 that, according to the
Landau-Ginsburg model in Gaussian approximation, the
ESR transition occurs at a sufficiently large field that
branches 1 and 2 have crossed and then separated by 47
GHz. However, we expect magnon-interaction efFects to
mix branch 1 and 2, producing level repulsion. This
would likely have the efFect of producing a 47-GHz split-
ting of the two branches at a lower field (presumably still
greater than the field of closest approach). This effect
could be calculated perturbatively in the P interaction in
the Landau-Ginsburg model. We illustrate the field-

where

+igPaH (it'I XtpL +fbi XI('a ), (22)

8+=B&kvB (23)

and QL a are left (right) -moving fermion fields. The uni-
form magnetization density is quadratic in fermion fields

igpB( 4 X PL+4R X 4 ) .

Thus it contains magnon spin-flip terms just as in the
case of the Landau-Ginsburg model. {On the other hand,
the staggered magnetization has a rathered complicated
representation in this model. It is not local in the Fer-
mion fields. '

) It is convenient to combine QL and &Pa

into a six-dimensional vector and to define a 3 X 3 diago-
nal matrix

0 0

dependent energies that might occur in Fig. 7. (This is
actually the prediction of the noninteracting theory for
the field at an angle of 81 to the x axis. )

Alternatively, we may apply the fermion field theory'
to the problem. In this model, the three free massive bo-
sons are replaced by three free massive fermions of Ma-
jorana type (i.e., there is no antiparticle). The Lagrang-
ian density becomes

SL' 'd 41. +A—''d+A

0 h2 0

0 0 b, 3

(24)

After Fourier transforming, the Euler-Lagrange equa-
tions become

I I ~ l

30 60 90
6 (degrees)

Cd Uk +gpgH X
—iA m+Uk+gp&H X =0.

FIG. 6. ESR resonance field vs orientation of field in x-y
plane. 8 is the angle measured from the x axis. Dashed line is
boson theory, solid line is fermion theory, and circles are experi-
mental data (Ref. 4).

(25)
Setting the determinant of the above 6X6 matrix to zero
gives, after some algebra, a cubic equation in co, as in Eq.
(16) with coefficients
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a1= 6—
1

h—
Z

b—,3 2—(gPBH) 3—U k2,

a2 =b 15&+6,,63+b Zb 3+2(gPBH, } (b1—5263)+2(gPBH2 ) (hZ —51343)

+(gPBH) +2v k (51+82+63)+3v k (26)

a3= 616—263+2(gPBH, ) b, ,5263+2(gPBH2) 62lL, 53 (g—PBH, ) h1

(gPB 2 } ~2 (gP'BH1 } (gPBH2 } ~1~2

+ k [ ~1~2 ~2~3 ~2~3+ (gP'BH1 } (~1+~2~3)+ (gPBH'2} (~2+~1~3) (gP'BH} l

+(Vk)4[ —b, 1
—b,2

—b,3+2(gPBH) ]—(Uk)

Again, when the field is along one of the symmetry axes
that branch is unaffected. Choosing the field to lie along
the x axis, we obtain

~2 g2+~2k2
1 1

co3 2=(62+A 3+2V2k2)/2+(gPBH)2

+j(gPBH) [(62+63) +4v k ]

+ ( g2 g2)2y4] 1/2

(27)

as found previously. ' This formula was used to generate
the "fermion" theoretical curves in Figs. (1)—(3). We see
from Fig. 1 that the fermion theory fits the experimental
data much better than the boson theory at fields larger
than about 5 T. When the field is not along a symmetry
axis all three branches mix as illustrated in Fig. 4. The
corresponding ESR field is shown in Fig. 6, as a function
of angle. In this case we see that the boson theory gives a
better fit.

We may also calculate the ESR intensity as a function
of field using either model. We see from Eq. (10}that the
intensity is given by a product of a Boltzman factor, a
Jocobian, and a matrix element. Since the Hamiltonian is
quadratic, the calculation of the matrix elements in Eq.
(10) follows straightforwardly from the eigen vectors
determined by Eq. (15) or (25). In any event, most of the
field dependence comes from the first two factors. The
second factor gives a square root divergence at the field
corresponding to zero-momentum magnons. We found
that the intensity generally has an asymmetric shape as
shown in Fig. 8 for a field oriented along the x axis and a
temperature of 3 K, using the fermion theory. In this
case, half the integrated intensity lies within about .1 T of
the peak. Similar results are obtained for other orienta-
tions using either model. The experimental intensity
curve given in Ref. 4 (for a different field orientation) is
much broader, about 1 T in width, and symmetric. Some
kind of disorder in the NENP crystals may play a role in
this broadening. Likewise, it is difficult to understand the
temperature dependence in detail, using these models.
They predict an essentially exponential temperature
dependence of the form e

™n with E;„=62= 14 K.
The experimental data does not show a decrease until T is
lowered to about 5 K. Below this temperature there is a
rapid decrease, which could be consistent with exponen-
tial behavior but would correspond to a considerably
smaller gap of about 5 K.

In conclusion, we have argued that ESR experiments
at temperatures well below the Haldane gap measure
transitions between different magnon branches of wave
vector near m, split by crystal-field anisotropy and mag-
netic field. It is unnecessary to postulate any additional
excitations beyond the magnons observed in neutron-
scattering experiments. This picture is in excellent agree-
ment with neutron-scattering data on field-dependent
magnon energies where they are available and in fair
agreement with field-theory models in all cases. More
neutron-scattering experiments with other field orienta-
tions could help to confirm this picture. In particular,
applying the field along the y (i.e., c) axis, the ESR exper-
iment implies that the separation of the lowest two
branches should be 47 GHz (0.19 meV) at a field of 5 T.
Such a measurement would also probe magnon interac-
tion effects, which should lead to mixing of branches 1

and 2.
For the isotropic Heisenberg model the ESR intensity

follows exactly from simple symmetry considerations and
the assumed triplet excitation. Including crystal-field an-
isotropy the field dependence of the magnon spectrum
and the matrix elements of Eq. (10) become model depen-
dent. We have calculated them using two exactly solv-
able models, with Hamiltonians quadratic in boson or fer-
mion fields, respectively. We expect these models to con-
tain at least all the qualitative properties of the problem.
It is important to realize that the field-dependent spec-
trum can be measured independently from neutron
scattering, testing both the models and the consistency
with ESR experiments. We don't expect that use of a

41.

1.2

0.8

0.6

0.4

0.2

1.4 1.6 1.8 2 2.2 2.4 2.6
Magnetic field along x axis

FIG. 8. ESR intensity vs field for field oriented along the x
axis from the fermion theory.
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more exact model (i.e., numerical work on the Heisenberg
Hamiltonian including crystal-field terms) would lead to
major changes to the results of these models, apart from
the level repulsion effect discussed above. While it is pos-
sible that this would resolve the discrepancy in the line
width and temperature dependence, we suspect that these
are more likely the result of impurities or other nonin-
trinsic effects.

Note added in proof. The same interpretation of the
ESR data of Ref. 4 has been given independently by I.. C.
Brunel et al. (unpublished) and supported by additional

experiments by that group and by W. Palme et al. (un-

published). The latter work finds a temperature depen-
dence consistent with that predicted here. More recent
experiments [J. P. Boucher (private communication)] ob-
tain an intensity curve that is narrower by about a factor
of 10 than that of Ref. 4, consistent with that predicted
here.

I would like to thank Stan Geshwind for encouraging
me to complete these calculations and Walter Hardy for
a helpful discussion.
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