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We develop a multiple-scattering description of the inelastic scattering by spin excitations of low-
energy electrons reflected from the surface of a ferromagnetic material. The scattering efficiency per unit
solid angle is expressed in terms of an appropriately defined frequency- and wave-vector-dependent sus-
ceptibility of the near surface region of the crystal. The formalism may thus be applied to the scattering
by either Stoner excitations, or spin waves, provided the appropriate dynamic response functions are
available. We report quantitative studies of the excitation cross sections for spin waves on the Fe(100)
surface, and on the Ni(110) surface. The scattering efficiencies we calculate are compared to those for
exciting (short-wavelength) surface phonons on such surfaces, in electron-loss studies in the impact re-
gime. We then comment on possible application of electron-loss spectroscopy to the study of spin exci-

tations on magnetic surfaces, and in ultrathin films.

I. INTRODUCTION

Low-energy electrons with energies in the range of a
few to a few hundred electron volts are a powerful means
of probing the outermost atomic layers of crystals and ul-
trathin films adsorbed on surfaces. Their surface sensi-
tivity has its origin in the short mean free path in matter
in this energy range, which is typically two or three in-
teratomic spacings. During the past decade , electron-
energy-loss spectroscopy! has been employed to explore
the dispersion relations of diverse elementary excitations
localized near crystal surfaces, such as surface phonons?
and surface plasmons.’

Considerably less attention has been devoted to the use
of electron-energy-loss spectroscopy to explore the nature
of magnetic excitations on ferromagnets, or in ultrathin
magnetically ordered films on substrates. While various
spin-polarized electron spectroscopies have developed im-
pressively during the past few years, and, in fact, spin-
polarized electron-energy-loss spectroscopy has been em-
ployed to examine losses produced by spin-flip excitations
in ferromagnets,* rather little theoretical activity has
been directed toward this area.

The purpose of this paper is to develop a general
description of the energy loss suffered by electrons
reflected from a magnetic surface, by processes which flip
the spin of the beam electron. This is done within the
framework of a multiple-scattering description of the
electron-substrate interaction. One may view this
analysis as the extension to the scattering of incoming
electrons by magnetic degrees of freedom of an earlier
formalism developed to describe the excitation of pho-
nons on the crystal surface by low-energy electrons.>®
By now, the phonon cross-section analyses have been ap-
plied with very considerable success to the quantitative
analysis of electron-loss data, in the off specular
geometry, for electrons incident on rather diverse sub-
strates.” 1! The success realized by electron-loss spec-
troscopy in the study of the dispersion relations of sur-
face phonons is due, in part, to theory and its ability to
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provide quantitative interpretation of the loss spectra. It
is our hope that the development and implementation of
calculations such as those reported here will prove as use-
ful in the study of the magnetic degrees of freedom at sur-
faces and in ultrathin films.

There are distinct differences between the questions
that need to be addressed by theory in the area of surface
and thin-film magnetism, compared to those which arise
in surface lattice dynamics. In the latter case, at least at
temperatures that are modest, lattice dynamics in the
harmonic approximation suffices to describe the frequen-
cy spectrum of atomic motions in and near the surface.
The analysis of the electron-energy-loss spectrum is cast
conveniently in terms of the eigenvectors of the various
surface and bulk phonons. In the magnetic systems, most
particularly itinerant electron magnets such as the 3d
transition metals, the excitation spectrum is more com-
plex and less well understood. While very general con-
siderations suggest that at long wavelengths the magnetic
excitations are spin waves in such systems,'? at short
wavelengths (in the bulk) we encounter Stoner excitations
(particle-hole excitations in which the spin of the excited
electron flips) in the response function, whose spectral
shape is influenced by electron-electron interactions. The
spin-wave dispersion curve may overlap the Stoner con-
tinuum, with the consequence that the short-wavelength
modes suffer appreciable Landau damping.!* The nature
of the elementary excitations at the surface or in an ul-
trathin film of such a material has yet to be explored
theoretically; as remarked earlier, electron-loss studies to
date report Stoner excitations but reveal no spin waves.

Considerations such as those given above lead us to
present a discussion of the inelastic scattering in general
terms, without resort to a particular model of spin excita-
tions at the surface. We arrive at an expression for the
loss cross section that is expressed in terms of certain
wave vector and frequency-dependent response functions
of the outermost atomic layers of the material. We en-
vision its application to theoretical descriptions of mag-
netic excitations near the surface of itinerant electron
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materials, but in this paper we confine our attention to
the case where the elementary excitations are supposed to
have the character of spin waves appropriate to a local-
ized spin model. We report calculations of the magnitude
and energy dependence of the spin-wave excitation cross
section, for such spin waves on the Fe(100) and Ni(110)
surface. The results, when compared to earlier calcula-
tions of the surface phonon excitation cross sections, pro-
vide us with quantitative estimates of the relative magni-
tude of the absolute cross section for losses from magnet-
ic excitations. With these reults in hand, we discuss fu-
ture prospects for more detailed experimental studies of
magnetic excitations in ultrathin films, and at magnetic
surfaces.

Our analysis assumes the beam electron senses the
thermal fluctuations in orientation of the substrate mag-
netic moment through the exchange interaction between
the incoming electron, and the “magnetically active”
electrons in the substrate. More precisely, we model the
substrate within a muffin-tin picture. Inside each muffin
tin, we have a spin-dependent potential one may write
V(r)I+B(r)f, with f the instantaneous direction of the
local moment. Fu and Freeman have kindly provided us
with explicit forms for V' (r) and B (r), from their ab initio
studies of Fe and Ni films. It should be noted that, in
previous papers, we have found that, for the Fe(110) sur-
face, these potentials provide a remarkably quantitative
account of spin-polarized low-energy electron-diffraction
(SPLEED) data over a wide range of beam energies,'*
with no need to introduce modifications of these ground-
state potentials. These eariler calculations also suppose
the beam electron mean free path in the substrate has a
negligible dependence on spin orientation, an assumption
reinforced by our theoretical interpretation of the spin
dependence of photoelectron transmission through ul-
trathin films of Fe on Cu(100)."> The success of these ear-
lier studies provides us with some confidence that the ex-
citation cross-section calculations reported here are
indeed reliable from the quantitative point of view.

II. THEORETICAL FORMALISM

A. General discussion

In the present section we consider the inelastic scatter-
ing of spin-polarized electrons off the spin excitations of a
two-dimensionally periodic ferromagnetic crystal. In the
model we consider, the multiple-scattering aspects of the
problem are treated within the range of validity of the
muffin-tin picture and the adiabatic approximation,
wherein the motions of the spins in the crystal are regard-
ed as slow. We shall focus on obtaining a general expres-
sion for the scattering efficiency per unit solid angle per
loss energy for the case in which a single inelastic spin-
flip event is experienced by the beam electron within the
substrate. Later we show how this description, phrased
in terms of certain wave-vector- and frequency-dependent
susceptibilities of the surface region, may be applied to
the calculation of the cross section for exciting spin
waves. It is to be noted that aspects of the following
derivation closely parallel that of the scattering efficiency
for electron energy loss due to phonons [electron-energy-
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loss spectroscopy (EELS)] and earlier low-energy electron
diffraction (LEED) work,”!® so that, in the present
analysis, we focus primarily on the new aspects of the
problem.

We begin by considering the structure of the electron-
substrate scattering amplitude. The state vector of the
electron-substrate system is expressed as a product of the
beam electron state vector and substrate state vector, so
that, if we let |i ) and |s ) (|I) and |F)) denote the initial
and final states of the incident electron (substrate), then
we can express the scattering amplitude M by the formal
expression

M=(F|(s|GT|i)|IY=(F|fIT), (1)

where G denotes the single-particle propagator and T
denotes the scattering “T-matrix” for the entire crystal.
The “T matrix” is, of course, defined through the usual
relation'$

VIw)=T|i)|I), @)

where |¥) denotes the exact electron-substrate state vec-
tor and ¥V denotes the potential-energy operator for the
electron-substrate system. For the magnetic problem,
we assume the electron interacts with each substrate
atom via a spin-dependent interaction that contains ex-
change so that, in the present muffin-tin picture, ¥ is an
operator in the spin space of the electron having the form

V=3 vgpllr—R(D)|;0-8(1)], (3)
K

where o is the spin of the incident electron, R(/) is the
coordinate vector for the atom at site /, r is the incident
electron’s coordinate vector, and S(/) is the spin moment
at site /. There are two assumptions built into Eq. (3).
The first, tested and found to work very well in our ear-
lier calculations of elastic scattering from Fe(1 10),!415 js
that the potential may be taken to be spherically sym-
metric. The second is an adiabatic approximation. As a
thermal fluctuation reorients a particular moment, from,
say, the 2 direction along which it is aligned in the
ground state to the direction S(I), the spin-dependent
portion of the potential just follows the spin. We shall as-
sume it rotates rigidly.

Now, magnetic excitations produce ‘“‘small” changes in
the spin moment vector S(/) so that the scattering ampli-
tude may be expanded formally as

M=(F|f|I)

af
3s, ()

=(F|fol}+ 3

a,l

(FI8S,(D|IY+ - .
0

4)

In this expression, the subscript zero denotes evaluation
at the equilibrium state of the crystal and we can take
a=+ or — where the “ladder” operators S.(l) are
given by the usual expression S, =S, +iS,. The first
term is the amplitude calculated in SPLEED theory. For
the present process, this is indentically zero because |F)
describes a state of the substrate in which a spin excita-
tion has been created. We only consider the term linear
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in 8S,(1) since only it gives rise to single excitation pro-
cesses. If |I) is the ferromagnetic ground state with mo-
ments aligned along +2, the term (F[8S, (1,1,)|I) van-
ishes. At finite temperatures, the beam electron may en-
counter the substrate in an excited state rather than the
magnetic ground state, and a detailed balancing argu-
ment relates the cross section from this term to that gen-
erated by (F|8S_(I,1,)|I). Thus, in what follows, we
consider only losses generated by 6S _ (1,1, ).

We now describe the geometry to be considered. In
Fig. 1 we show that the crystal can be supposed to be
constructed of unit cells semi-infinite in length normal to
the surface. We label the two-dimensional translational
vector between the unit cell at /| and a reference cell 0 as
R,(1)). Clearly, this vector lies in a plane parallel to the
surface. Each unit cell consists of atoms within the layers
that are parallel to the surface under study. We use /, to
describe the location of one of these layers. Additionally,
it is assumed that each layer consists of atoms having the
same spin moment and that each layer contributes one
atom only to the semi-infinite unit cell. The general case
of two or more distinct coplanar atoms can be treated by
a “‘spin-polarized” version of the combined space
method.!’

Thus, with this geometry, if we write I as I“+sz

(where 2 is in the direction normal to the surface) and use
the expansion

85 _(I,,)= 3 ——exp[

—iq,-R(1)]1S_(q;,1,) ,
: VN, q'R(I)]S_(q

(5)

where N, denotes the number of unit cells in the basic
quantization area, then we can express the scattering am-
plitude for a single inelastic event associated with wave-
vector transfer q; as

1 . af
M(q)= 3 ——exp[—iq RU)] |z
I ||Jz \/Ns [ A as_(I) L
X (F|S_(qpuI)II) . (6)

Now we must consider the structure of (3f /35 _ (1)),

J

; 1 .
(ro|Wep =—ﬁzexp[—zq” H(IH)]
I

ﬁZ

3
Xf : d’k Mfd3rld3r2exp(—lk 'T,)

27)® DO(k,E)
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FIG. 1. An illustration of the geometry which forms the
basis of the present analysis. We regard the crystal as a two-
dimensionally periodic array of unit cells, each semi-infinite in
length. Here we depict two atoms per layer per unit cell.

within the framework of multiple-scattering theory.
Since f = (s|GT|i ), we have

af

as_ (1)

oT
as_(1)

=(s|G
0

li) . (7)
0

In the spirit of EELS,’ we define a spin-polarized EELS
wave function for a particular layer /, through

(rUI‘l/SP)—\/ S exp[—iqR(I))]
by
oT
X<r0’ aS (I) ki0i> >

(8)

where, to introduce a more explicit notation, we have let
|i)=|k;o;). The incident beam electron thus has vector
k; and spin o;. In coordinate and spin space, this be-
comes’

3T (r,ry; {R()}, {S(1)}) |°7
as_(I) 0

exp(ik;'ry), (9)

where we have used {R(/)} and {S(/)} to denote dependence on the collection of all lattice and spin moment vectors,

and

D"(k,E)=2ﬁ—rZ[E—2°(k,E)]—

with E and 37 being the incident energy and the self-energy of the electron, respectively. The imaginary part of the
self-energy leads to a finite mean free path for the beam electron. For convenience we write the scattered electron wave

function as

2m d3k exp(ik-r)
(ro|Wis )—————— exprrxr]
s Vv ﬁ2f 2773D"kE)zexP

—iqRy(1))]

Al(ka,kiai) N (10)
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where

AT (r,r; {R(D)}, {S(1)})

— 3 3 —7k-
Ay(ko k;o)= [ d’rid’rexp(—iker)) as_(I)

exp(ik,--rz) (11
0

is the matrix element that links the incident plane wave to the outgoing scattered wave.
We can now obtain an important identity for 4;(ko,k;o;) by employing the two-dimensional periodicity of the slab
geometry. In the expression above, if we let r;—r; +R(/,), where R;(/,) is the vector described earlier, then, since

oT (r;ry; {R(1},{SU1)})
aS_(1)

0
must be invariant under translation of all arguments by a planar lattice vector, it is evident that

4,(ko,k;0;)=exp[ —i(k—k;)-R(, )]A,|| o, (ko k;0;)

=exp[ —i(k—k,)-Ry(I,)]4; (ko k;,) . (12)
Thus, we can write (raI\II(SIf,)) as
) 2m ¢ d3k explik-r
(ro|¥s; >——7——f (2n)3m;"exp[*t(k k;+q,)'R,(/,)]4, (ko ,k;0;) . (13)

Further, since the sum on I yields the parallel momentum-conserving 8 function, we obtain a result that may be ex-
pressed as

1 2m p d’k explik-r) o (27)*

(1)
Wi
rol¥si ) =05 % J ami DoueE) 2 4,

8(k,—k;tq,+g)4; (ko,k;0;), (14)

where A, is the area of a unit cell and g denotes a reciprocal-lattice vector.
Now we must obtain an explicit representation of 4 1, (ko,k;0;). Itis shown in Appendix A that

4, (ko,k;o; )—-—(411')22 Y, (k) 2 {[1=7kG(K)]; lexp(—ik-R,)

2)2
X Q(L, Jexplik; R, )[1—G(k)r(k) ]z} Lo, 0 Y2 (K (15)
where
Q(lz)=(1—t,G”)_'I,z(l—G”tz)‘l

with ¢, being the ¢ matrix associated with layer /,, G and 7 are as defined in Appendix A, and I, is the loss integral,

which we evaluate in Sec. II B. Thus, with this expression, we obtain the following for {ro| \I/(SI;) ):

(1) d’k (ik-1) o (2m)?
{rol¥s )= V f(2‘n')3 exg(;c,bf) 2 Z Bk —ky gy +g) —(4m)’)

X 2 Y (k) 3 {[1-7(k)G(K)]; jexp( —ik-R,)Q(],)

217
Xexp(ik;"R,)[1—G(k)rk)]; 1 Vo100 YE(K;) -

(16)

The integral on k; can be done trivally, however, the integral on k| requires a little work The integral is done in the
complex k, plane. The calculation is fairly straightforward and has been done elsewhere;'® the result is

k(g)]
(rol\ll“))——ﬁyoexp[—tk (8)- r]zz—j{l(g—ﬁ S ({1—7[k"(8)IG[k ™ (8)]}; jexpl —ik~(g)-R,1Q(L;)
g LL' z,z,

Xexplik; "R, ) 1= G(k)r(k) ]z o 0 Yk, (17)

where y§=—(87% / A,)(2m /#*)F°(k,) (the function F° is defined in Appendix A), ko="1 (2m /#)[E—Z2°(k;,E)],
and k*(g)=[k; —q,+g, 12k, (g)] with k,(g)=V k3 —k3(g).
Now, the scattering amplitude is given by
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M(q))= 12 ﬁfd3r(kfaf|rof)(rafl‘l’(slli))(FIS‘(q",IZ)II) . (18)

The integral merely gives the condition that kf=k}(g)=[k,-“—q"+ g 1%k, (g)]. Thus, the scattering amplitude is
given by
1 Y, [k;(g)

]
M(q)=—y{—— ({1—7[k; (g)]G[k} (g)]}; lexp[ —ik (g)-R,]1Q(],)
q 76 VN, IE%‘,LEL k()] 212222 {1—7[k; (g)]G[k; (g)]}, exp[ —ik; (g)R,]Q

Xexp(ik; R )[1=Gk)r(k)];; o 100, Y2 (k)(FIS_(q L)1) .
(19)

We now want to use this expression for the scattering amplitude to develop an expression for the scattering efficiency
per unit solid angle per unit loss energy. We denote the fractional number of electrons which emerge onto the solid an-
gle d() after being inelastically scattered off a magnetic excitation of mode (q;) in the energy range do(d*P/dQdw).
We can obtain this quantity by multiplying |M|? by the ratio of final to initial electron beam flux, summing over k £ in
d (), multiplying by the energy-conserving & function 8[ E; —E; +#w(q,)] and the initial substrate ensemble probabili-
ties P;, and then summing the result overall initial and final states of the substrate. The result is

mE,cos*0;

2 cos0;

d’p
dQdow

— )#

4.3 3 A (ko k;0,)8[E;—E;+#n(q))]4)f

’ ’ z
1,1 &8

(kfaf,kiai)

X 3 1S (q,I)IF)(FIS_(q,1)|)P; (20)
LF

where 6, and 6, are the angles the initial and final electron beam make relative to the surface normal, 4, is the surface
area of the sample, and 4 ,(zg)(k 70 r,k;0;) is defined as

(g) -0 Y, [k (g)] - — -1 -
A4; (kafykiUi)——Yo > > ({I_T[kf(g)]G[kf (g)]}zlzeXP[“"kf (g)-R,]0O(,)
i LL’ |kfl(g)| 2,2,
Xexplik; R, )[1—G(k;)r(k;)];! Vo, 100, YK, . Qn
If we write

w dt
BIE,—E;+Holq)]= [ * S expliloy+olq)l] ,

where w;,=(E—E;) /#, then we can express (d2P /dQ dw) in the final form
if f i P

d2p mE;cos*6 "
= 4 A8 (k0 k)48 (k0 ,,k;0,)
dQdo 2w cosh; C%,g SAs) I r9f
© dt . ,
Xf_w 7 explioyt){(S,(q,1;,0S_(q,1,,0)) , (22)

[

evaluate the spin autocorrelation function

where S +(q”,lz',t) is the spin moment operator in the
(S.(qpl;,0S_(q1,,0)) displayed in Eq. (22). Later in

Heisenberg representation and the quantity

(S,(q,1;,1)S_(q),1,,0)) denotes the autocorrelation
function of the spin moment operator. The angular
brackets denote a statistical average over the appropriate
finite-temperature statistical ensemble. This concludes
our derivation of the scattering effficiency per solid angle
per loss energy.

As mentioned in Sec. I, we have arrived at an expres-
sion for the scattering effficiency, without resort to any
particular physical picture of the spin dynamics of the
substrate. Thus, the expression can be applied to
itinerant electron systems, and the Stoner excitations
therein, or to a localized spin model of the Heisen-
berg type. Within any such picture, one’s task is to

this paper we shall do this for the Heisenberg model.

B. The evaluation of the loss integral

We now turn to the discussion of the loss integral,
I, (L,0,|L,0,), Eq. (A12) of Appendix A. This term in-

cludes the derivative [av(r)/aS,z_ 13%, which can be cal-

culated by a reference to the single-site Hamiltonian used
in the generation of the single-site ¢ matrices.

In the case of spin-polarized electron scattering from
magnetically ordered materials, the single-site Hamiltoni-
an is given by'?
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H=ca-p+[Bmc*+V(r)|I,x,—Bo-B(r), (23)

where I, stands for the 4 X4 identity matrix, @ and 8
follow the standard notation of Bjorken and Drell.”® In
this expression, V(r) is the spin-averaged electrostatic po-
tential, and B(r) is a measure of the exchange interaction.

In ab initio electronic structure calculations, such as
those reported by Fu and Freeman? (whose potentials we
have used in our calculations), the axis of quantization of
the magnetic moments in the crystal are all taken parallel
to each other, and to a particular direction we call 2.
Thus, the potential which enters the Dirac equation, say
for a single ion located at the origin of the coordinate sys-
tem, is written V(r)I4x4—BB(r)o,. In our work, we ex-
tract from Fu and Freeman’s full potentials only the
spherically symmetric portion. From this, as mentioned
before, we have obtained excellent accounts of SPLEED
data on the Fe(110) surface over a wide energy range.!> !¢
Thus, we write the potentials we use as
V(r) xs—BB(r)o,.

Thermal fluctuations in the spin system lead to devia-
tions in the directions of the spin S at the origin away
from the 2 direction. We assume the exchange potential
B(r) just rotates rigidly with the spin. Thus, we replace
the exchange potential —pBB(r)(2-0) by the form
—BB(r)(S-0)/S, where we now regard the quantity S as
an operator that operates on the eigenstates which de-
scribe the ground and excited states of the substrate spin
system. The single-site Hamiltonian thus becomes

B(r)

H=ca-p+Bmc*+ V(r)——BTa-S . 24)
By introducing the usual ladder operators, 0¥ =0, +i o,
and ST, we obtain
- 2 B(r)
H=ca'pt+Bmc*+ V(")“BTUZSZ
_pB(r) 4o -q+
BZS(O’S+0'S). (25)

1 .,-1
I (L =——ci?
Iz( 101|L202) 2Sl

X 3 [dppldQ
oo’

Il
t 2

[
my==1I

Rz .
1

X(ot )W’B,z(pg)

’
m

XY py)

I ep) Y1 (88,6,

m! (Pl’Pz)GI‘: (p2,p3)

ymy

2
. * A
Inep) Y (p)8er 0t
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The scattering potential associated with an ion core in a
layer I, can then be identified as

BI (r)

() =V(r—B—

azSz

B (r)
s

(ctS +0~SH). (26)

In a ferromagnet below the Curie temperature, all the
moments are aligned, and we can take this direction of
magnetization as the z axis of our coordinate system. At
T=0 K, there are no thermal fluctuations of the magnet-
ic moment, and we will have only the o,S, term, but, as
the temperature is increased, fluctuations around the
magnetization direction start to occur. The last term of
Eq. (26) represents the effects of these fluctuations.

We can now evaluate the derivative in 1 IZ(L10'1|L202).

Since in our discussion of the scattering efficiency per
unit solid angle we have worked with the large com-
ponent of the Dirac four-spinor, in the above expression
we replace the 4 X4 matrix B by its upper block, the 2 X2
identity matrix. The derivative is straightforward, and
given by

v (r) B, (r) N
oS- =T 5 9 - 27
= Jo

From this we see that (in the nonrelativistic limit) excita-
tion of the substrate spin system is accompanied by a flip
of the beam electron spin. For a relativistic electron,
where the eigenstates are not eigenstates of o,, notice
that spin excitations may be created in the substrate
without a spin flip. However, the excitation probabilities
will be small for the materials of interest here.

By using this result, we have the following for
I’z(L 101 |L20'2):

[ dpipldpapdiy (kp))

mix,
77y

1
[ dppidpp2G7 (ps.py)

my=-1,

a

Xty ms (PP KpS) l

(28)
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The angular integration over d{}; can be done using the orthogonality of spherical harmonics. It gives 8, 1 8m,
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pmy
We have
!
—1 ! . .
(L0 \|Lo)= =528 i 'S S [dpuk | (kpBe,0 3, i+ [ dpipidpandiy (kp)
7o my==1
Xtg! ot (PLPIGE (P2p3)
ley
X(a*)77 B, (p3) |1, (kp3)8,, 4,8 mym! A+ [ dp4pidpspiG/ (p3,pa)
ag'o .
XtR Z;m,lmz(p4,p4)111(kp5) (29)

If we write

Wi Lterea DV =4T/VV S 0l e Y)Y (KRS e (PX

ILm,m’'

then, using the result of Appendix B, we can replace the large parentheses in Eq. (29) by the radial wave functions. The

result can be written

IIZ(LIUIILZUZ)

00" m)=—1,

X(a*)’"B, (P)[8,0,

Within the muffin-tin model scheme, B(p) can be taken
to be zero outside the muffin-tin sphere. This is a good
assumption since the 3d orbitals which contribute most
to B(p) are localized well inside the muffin-tin sphere,
and B(p)—0 rapidly for pR Ryr. Then, evaluation of
the integral requires that the radial wave functions be
known at all points inside the muffin-tin sphere. When
we compute the single-site ¢ matrices, we generate the ra-
dial functions in the course of the calculation as well.
Thus, in principle, it is possible to evaluate this integral
numerically. However, this would be time consuming.
As a remedy, we approximate the Dirac Hamiltonian by
the Pauli Hamiltonian just for the evaluation of this in-
tegral. This approximation will work very well for the 3d
transition metals of interest here. This approximation al-
lows one to phrase the result in terms of two separate in-
tegrations of the Schrodinger equation, one with the po-
tential ¥'(r)=V(r)—B(r), the potential a spin-up elec-
tron experiences in the crystal, and another with
VYr)=V(r)+B(r). The full relativistic single-site ¢ ma-
trix, ¢ 7o’ then reduces to ¢ which is diagonal in, and
mdependent of, the azimuthal indices m and m’, and
which is characterized by the phase shifts 8] (8}) corre-
spondmg to the potential V'(r) [V*(r)] through

e’ 'sin(87). The coefficients a/,, ,,- simplify to e o 21
Note also that, since the m dependence of the ¢ matrix is
removed, the m } summation drops out.

From our definition of ¢+ above we see that (o is
nonzero only if (¢ =1, ¢’=1) holds. Thus, as remarked

+ )aa'

l
ZS 2 2 fdpp 0,0, Ilm mlRl ;m ml(p)]

I im' mzRI mI mz(p)] (30)

I
above, in the nonrelativistic limit, excitation of the sub-
strate spin system is accompanied by a flip of the beam
electron spin.

So we have

1
I, (Lyoy|Ly0p)=— 25 011:1,0m,,m, 00,180, 1

T, W)
1L,—1, 161 i&,
Xi? le e

xzf

"dpp’R] (p)

XB, (PR} (p) . (3D

Here we choose to label the phase shifts by the layer in-
dex I, because, in general, the top few layers of the sur-
face region differ in magnetic moments from the bulk.
The radial integral is ?x;aluatlec)l in Appendix C, it is
equal to (1/2k)sm[8, —5, ]. The final form of

I,z(L,allea,_) is thus

) l(l )
15, z +181
IIZ(L101|L202)=_ 7S ;SLI,Lzaal,Taal,le

xsin[8; ' =8, *'] . (32)
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III. EXPLICIT CALCULATIONS
OF SPIN-WAVE EXCITATION
SCATTERING EFFICIENCIES

We now present results of explicit calculations of the
scattering efficiency for exciting spin waves on the sur-
faces of ferromagnetic crystals using the formalism
developed above. With the exception of the spin correla-
tion functions (S,(qy,l;,0S_(q;,/;,0)), all quantities
which enter the final expression in Eq. (22) may be gen-
erated through use of the (relativistic) multiple-scattering
theory developed by Feder,?> and used in our earlier
descriptions of spin-polarized elastic scattering from the
Fe(110) surface.!* This includes the matrix element which
couples the beam electron to the spin excitation. We
have seen in Appendix B that this may be expressed in
terms of the phase shifts for scattering from a single
muffin tin if we are willing to treat this object within the
framework of nonrelativistic quantum mechanics.

We shall explore here the scattering efficiency for excit-
ing spin waves on Fe and Ni surfaces, supposing these ex-
citations may be described through use of a Heisenberg
spin Hamiltonian. We generate the spin correlation func-
tions of interest through use of spin-wave theory with fre-
quencies and eigenvectors generated from a slab calcula-
tion. The procedure is quite similar to that employed in
earlier studies of phonon excitation by low-energy elec-
trons incident on surfaces;’ by this means both surface
spin-wave and bulk spin-wave contributions to the cross
section are included. The earlier literature on phonon ex-
citation by electrons establishes clearly that the electron
excites both surface and bulk phonons and, as discussed
in an early discussion of spin-wave excitations by elec-
trons many years ago,?’ the same is true when electrons
incident on surfaces excite spin waves. We direct the
reader’s attention to an early study of spin waves in a
Heisenberg ferromagnetic slab, wherein the interplay be-
tween surface and bulk spin-wave contributions to sur-
face phenomena is emphasized,’* and a review article in
which the properties of surface spin waves are reviewed,
for localized spin models.?’

We have used a model with nearest- and next-nearest-
neighbor exchange interactions, with next-nearest-
neighbor interactions half the strength of the nearest-
neighbor coupling. This is roughly correct for Fe. The
magnitudes are fitted to bulk spin-wave bandwidths es-
timated from the results of Ref. 13. At the moment, we
have used bulk exchange constants near the surface since,
at this time, we have little reliable information on hand
on the magnitude of the effective exchange couplings near
the surface. We note that it would be of very great in-
terest to address this question theoretically, within the
framework of ab initio ground-state calculations of mag-
netic materials. This could be done, at least in principle,
by spin analogues of “frozen phonon” calculations that
have been used to generate effective interatomic force
constants near surfaces.

INELASTIC SCATTERING OF LOW-ENERGY ELECTRONS BY . ..

8985

The description of spin-wave excitations near surfaces
just described is quite crude, and thus of limited reliabili-
ty, so far as reliable predictions of surface spin-wave
dispersion relations and properties are concerned. The
results, once again, are handicapped by our lack of
knowledge of the effective exchange couplings near sur-
faces, and by the possibly substantial influence of damp-
ing by interaction of (short-wavelength) spin waves by
coupling to Stoner excitations. Theses interactions damp
bulk spin waves appreciably and modify their dispersion
relation as well.!> The primary aim of the present paper
is to estimate, as quantitatively as possible, the scattering
effficiency for exciting spin excitations at the surfaces of
the much studied transition ferromagnets Fe and Ni.
These overall scattering efficiencies [d*P/dQ dw in Eq.
(22), integrated over energy loss fiw] will not be highly
sensitive to the model used for the surface spin dynamics,
since the overall scattering efficiency is easily seen to be
related to static spin correlation functions, which are in-
tegrals over the entire frequency spectrum of spin fluctua-
tions at the wave vector q; probed in the measurement.
Our use of the specific model of spin excitations described
in the previous paragraph will provide a notion of the
range of energy loss of interest, and at least from the
qualitative point of view, the features that can be expect-
ed in the loss spectrum.

After the exchange Hamiltonian for the model slab is
chosen, we proceed by introducing the Holstein-
Primakoff transformation. Thus, the operator S_(I;I,)
of Sec. II is written®* with a'( 1,1;) the boson creation
operator in the site representation

S_(1,1,)=v2Sa'W,1,)
ﬁ 172

N 3 a'(qp, L, Jexpl —iqRy(1)] -
s 9

(33)

The operator S_(qy,/,) is thus identified with the com-
bination (25)!%a'(qyl,). We may let a'(q;,s) be the bo-
son creation operator for creating the normal mode s of
wave vector q;. The index s may refer to either a surface
spin wave or a bulk spin wave. One may introduce the
eigenvector e(qys,/,) generated by diagonalizing the
spin-wave Hamiltonian for the slab.?* Then we have

a'(q,1,)=3 elqs,1,)a’(q;s) . (34)

where we assume the eigenvectors are normalized so that

3 le(qys,)1*=1. (35)
IZ

The quantity |e(q;s,],)|* measures the square of the am-
plitude of mode (qys) in the lattice plane /,.

The operator aT(qns) has the time dependence
exp[ +iw(qs)t]. Hence, in the spin-wave picture,

[ exp(ia)ift)(S+(q||,Iz',t)S_(q",Iz,O))T=%2e'(q"s,lz')e(q"s,lz)[1+ﬁ(q"s)]8[a),-f—a>(q"s)]. (36)

— 2mh
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Here

7i(qs)={exp[fin(qs)/kpT]—1} '

is the Bose-Einstein function. The sum over s in Eq. (26)
includes all bulk spin waves associated with the wave vec-
tor q;, along with surface spin waves. In practice, the
Dirac 6 function is replaced by a Lorentzian of finite
width to simulate actual loss spectra.

For simple surfaces, and Heisenberg models such as
those used here, it is also possible to generate analytic
closed expressions for the required correlation functions
through use of Green’s-function methods.”> This ap-
proach provides an alternate means of addressing aspects
of the loss spectra, which can be particularly useful when
subtle cancellations between bulk and spin-wave contri-
butions to surface response characteristics are of interest.

In Fig. 2, for electrons scattered inelastically by spin-
wave excitation from Fe(100), we show the form of the
theoretical loss cross section, for a particular choice of
scattering geometry. The incident energy is 100 eV, and
the angle of incidence is 45°. The wave vector q; is
directed along the line from T to X in the surface Bril-
louin zone. Here q is 60% of the way to the zone bound-
ary, from I'.

The prominent loss peak near 1000 cm ™! is provided
by excitation of a surface spin wave. These modes lie
below spin-wave band and thus are an analogue to the
Rayleigh surface acoustical phonons of surface lattice dy-
namics (though when their wavelength is very long com-
pared to a lattice constant, they penetrate far more deep-
ly, and have frequencies very close to bulk spin waves
which propagate parallel to the surface).”’ The loss band
at higher frequencies, which terminates in an asymmetric
peak near 3500 cm !, is produced by excitation of bulk

Fe(100): Loss Spectrum

Ei = 100eV 6; = 45° ¢ = 0.6
300 [
240 |
3
©
S 18.0
o
~
o
q
©
?
5120
6.0 |
0.0 . . . .
00 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Energy Loss(1000 cm™!)

FIG. 2. The energy-loss spectrum calculated for our model of
Fe(100). The electron energy is 100 eV, the angle of incidence is
45°, and the scattering plane is oriented so that the wave vector
q is directed along the line from T to X. The loss spectrum is
calculated for the case where qy is 60% of the way from T to X.
The prominent low-frequency loss peak is produced by excita-
tion of a surface spin wave, and the higher-frequency band with
a peak near 3500 cm™! has its origin in the excitation of bulk
spin waves.
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spin waves by the beam electron. In this example, which
is not atypical, the surface wave is the strongest feature in
the loss spectrum.

We use as a measure of the intensity of the scattering
efficiency per unit solid angle (dP /d 1), defined as

dP _ r+=,  d*P
40 J-.%“4d0de

The integral may be performed numerically from calcula-
tions such as those displayed in Fig. 2.

In Fig. 3, for scattering from Fe(100), and again with
an angle of incidence of 45° and q; 60% of the way from
T to X, we show the magnitude and beam energy depen-
dence of (dP/dQ). At nearly all energies, the surface
spin wave is the strongest feature in the loss cross section,
so to rather good approximation this may be viewed as
the cross section for exciting the surface modes. We pro-
vide similar information for Ni(110) in Fig. 4. The angle
of incidence is again 45° and the scattering_geometry is
such that q; is directed along the line from T to X, with

magnitude fixed to 60% of the distance out from T'. We
see that, for exciting spin waves on the Ni surface, the ex-
citation probability is about an order of magnitude small-
er than for Fe, a result not unexpected from the smaller
ground-state moment present in Ni. These calculations
ignore the possibility that moments in the surface assume
values larger than the bulk. Our experience with
SPLEED calculations for Fe(110) suggests that the pres-
ence of enhanced surface moments will increase the exci-
tation cross section only modestly, from 10 to 30 %, de-
pending on details of the scattering geometry.

We must now explore the significance of the magni-
tudes of (dP/d (1), displayed in the above figures. We ar-
gue that our calculated excitation cross sections are
sufficiently large that spin waves can be probed by
electron-energy-loss spectroscopy.

(37

Fe(100): Sum Over All Modes
6, = 45° ¢ = 06
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FIG. 3. The energy variation and magnitude of (dP/d Q) for
exciting spin waves on Fe(100) for the scattering geometry em-
ployed in Fig. 2. The angle of incidence is 45, and qj is directed
along T to X, with | magnitude at each energy equal to 60% of
the distance from T to X. (The scattered beam direction thus
varies with beam energy.)
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Ni(110): Sum Over All Modes
6 = 45° ¢ = 0.6
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FIG. 4. The same as Fig. 3, but now for exciting spin waves
on Ni(110). The angle of incidence is again 45°, with q; fixed to
60% of the distance from T to X.

We may see this as follows. Suppose the number of
electrons per unit time striking the surface is I, and the
detector subtends solid angle A{). Then the number of
electrons per unit time that strike the detector is
(dP/d Q)AQI,, if we include the total amount of scatter-
ing produced by all spin-wave modes which scatter elec-
trons into A{). We envision an experiment similar to that
reported by Abraham and Hopster,* wherein the incident
beam is spin polarized, and the spin of the scattered elec-
tron is analyzed as well (the ‘“complete experiment”).
Such an experiment allows one to isolate contributions
only from spin-flip processes. In Ref. 4, this approach
was used to study the Stoner excitations on a Ni surface.
Abraham and Hopster employed a beam current in the
microamp range so I, is 107!3 electrons/sec. Their
detector subtended an angle AO~2°, so AQ=m(AO)?
~10"%s. We thus have, with dP/dQ ~107° (for Fe,
from Fig. 3), so roughly 10° electrons/sec reach the
detector. The Mott detector used in this experiment has
an efficiency in the range of 1073, Thus, if these condi-
tions could be realized in a study of spin waves, the total
spectrum would produce about 100 counts/sec for Fe,
and an order of magnitude less for Ni (Fig. 4). The sig-
nals we estimate are very close to those realized in the ex-
periments reported in Ref. 4.2

We conclude our calculated spin-wave cross sections
fall very close to the scattering efficiencies realized in the
earlier studies of Stoner excitations. If we were to have a
complete theory of the spin excitations of itinerant fer-
romagnets such as Fe or Ni, the spin correlation func-
tions which appear in Eq. (22) would contain contribu-
tions from both spin waves and Stoner excitations. Quite
generally, such correlation functions are related to the
appropriate dynamic susceptibility of the magnetic mo-
ment bearing electrons. In itinerant magnets, the dynam-
ic susceptibilities contain poles produced by spin waves,
which will give a contribution to the loss cross section,
quite similar to that shown in Eq. (36), and branch cuts
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which, when their influence is incorporated, will describe
the Stoner excitations.?” Thus, cross sections for exciting
Stoner excitations and for exciting spin waves should be
close in value; the electron ‘“sees” each excitation
through the same spin correlation function. A task
which remains for theory is a proper description of the
dynamic susceptibility of an itinerant ferromagnet near
its surface, within the framework of an analysis that in-
cludes both excitations.

The scattering cross sections for exciting spin excita-
tions are very much smaller than for exciting phonons, in
the off specular geometry used to study surface phonon
dispersion relations by electron-energy-loss spectroscopy.
We illustrate this in Fig. 5 where, for scattering from
phonons on the Ni(110) surface, we show (dP/d() as a
function of beam energy. The scattering geometry is the
same as that used in Figs. 3 and 4. We note the cross sec-
tion for exciting phonons on the Fe and the Ni surface
are very similar in magnitude. Finally, the reader will
find detailed comparisons between energy-loss data on
surface phonons and theory in earlier publications.®

Quite clearly, (dP/d) associated with off specular
phonon excitation is larger than that for exciting spin ex-
citations and is roughly 3 orders of magnitude larger than
for the spin excitations in the most favorable case we
have explored, which is Fe. We have seen, however, that
signals associated with spin excitation cross sections very
close to those we calculate have been detected. The off
specular phonon dispersion curve studies have utilized in-
cident beam currents much smaller than those employed
by Abraham and Hopster. The incident currents are in
the range of 100 pA, rather than a uA. Also, to study the
dispersion relation of surface phonons, one requires very
high resolution in energy. Contemporary experiments
employ resolution in the 3-meV range; Abraham and
Hopster employed resolution of a few tens of meV (1 meV

Ni (110): Sum Over All Modes (Phonons)
B = 45° ¢ = 0.6

0.024 r
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FIG. 5. A plot of the energy variation of (dP /d (), the prob-
ability of exciting all phonon modes on the surface, as a func-
tion of beam energy, for q; 60% of the way from T to X, on the
Ni(110) surface. The scattering geometry is the same as that
used in Fig. 4.
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= 8 cm™!). At least in a transition-metal ferromagnet
such as Fe, as we see from Fig. 2, the spin-wave energies
are very much higher than the phonon energies. Very
high resolution will thus not be required, and this should
also allow use of higher incident beam currents.?

We conclude with Fig. 6, in which we explore other
isues. The first is the influence of alterations in exchange
near the surface on the loss spectrum. In Fig. 6(a), we
reproduce the loss spectrum in Fig. 2, and then in Fig.
6(b), we display the loss spectrum for the same scattering
conditions, where the exchange couplings in the outer-
most surface layer are reduced from the bulk values by
50%. The surface spin wave is downshifted and the bulk
spin-wave contributions to the spectrum reflect these
changes only slightly.

We believe these should be of particular interest in the
study of spin excitations of ultrathin films by the
electron-energy-loss method. We show in Fig. 6(c) a loss
spectrum of a three-layer Fe(100) film, with exchange
couplings equal to their bulk value everywhere. For each
value of q;, we now have three spin-wave modes, which
are standing wave excitations of the film. The spin-wave
eigenvectors are entirely confined to the ultrathin film, if
this film is placed on a nonmagnetic substrate. The value
of (dP/dQ) calculated for the three-layer film (the in-
tegrated strength of the loss cross section) differs little
from that for semi-infinite Fe. Thus, ultrathin films can
be explored as easily as thick samples with this method.
We show in Fig. 6(d) the loss spectrum calculated for a
three-layer film with exchange couplings in the two outer
layers reduced from the bulk values by 50%. The down-
shift in frequency of the various features in the spectrum
is evident.

It is our hope that the calculations presented here will
stimulate new experimental studies of spin excitations at

Fe(100): Semi—infinite Slab Js = Jg
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ferromagnetic surfaces and in ultrathin films. At the mo-
ment, in our view, our lack of understanding of the na-
ture of the short-wavelength spin excitation spectrum of
these systems places severe limits on our ability to under-
stand their basic properties.
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APPENDIX A

In the text we have defined a coefficient A,z(kcr,k,-a,»)
as

4, (ko,k;0,)= [ d’r d’r,exp(—ik-1)

AT (r,ry; {R()}, {S(D)}) |7%
as_(1,) o

Xexp(ik;-r,) , (A1)

which is the matrix element that links the incident plane
wave to the outgoing scattered wave. In the following,
we obtain an explicit representation for this matrix ele-
ment. The discussion here is phrased in language ap-
propriate to the relativistic calculations that we have
used in recent work.!>!® Additionally, the following
analysis is carried out within the framework of standard
multiple-scattering theory, which we review for com-
pleteness.
From the definition of T,'® we have

Fe(100): 3 Layer Slab Jy = Jg
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T=V+VGT , (A2)  single-site scattering T matrix. For multiple scattering
from a single-site scattering we have
so that
tg =vg +vg Gt (A5)
3T _ 3T RTUR TURGIR
as_(1,=0,1,) T laS_(L) and so, for T, we obtain'®
- ’ 0 —z7 o
_ 14 To=23tr,+ 3 tg Gig
— 1— 1 1 1 2
[( VG) 35 _(1.) ] R, R.R,
+ X' 1, Gtg,Gig t -, (A6)
X(1+GT) | , (A3) R|,Ry,R;
0
which can easily be shown to be identical to where the prime over summation signs indicate that con-
secutive R; are not to be equal [e.g., ElRl'Rles
% =(1+T,G) E)Sa—’:l) (1+GT,) . (A4) =2R1,R2,R3(R,#R2,R2¢R3), etc]. Thus, if we insert
Tz —z0 o this expression for T, into [dT/dS_(l,)], in

In order to continue on, we need to express T, the en- A,z(ko,k,- o;) then, in coordinate and spin space, we ob-

tire crystal scattering T matrix, in terms of tg(;, the tain
|

4, (ko k;0;)= far3rl d3reexp[ —i(k-r,)]

8t =18, + 3 tg, ' (n—Ry,5,—R)G N r—r3)+ - -
R,#R

z

X[8(r;= 1508, o, 15" (1~ R,,14—R, )G (ry—15)]

avlz(rs) 7293 s »
X w0 s [8(rs—r)8, ,,+GC 3(r5_f6)+tR: “(tg—R,,r;—R,)]
— 'z
X |8(r;—19)8,,,, 3 G4 r,— l's)tR “i(rg—Ry,rg—R )+ - -+ |exp(—ik;rg) . AT
R,#

z

Note we now use R, to denote R(I,=0,1,). If we now shift the arguments of the ¢ matrices such that r; —»p; +R; and
use the following expansxons,16

R7'=3 8utg” (pp ) YL (DY (B, (A8)
LL'
explik-p)=dm 3i'j;(kp) Y, (P)YF (k) , (A9)
L
G%(p' — . —_ : 2T o (1) . Y Ay =l
p—p+R,—R,)= (41le,~)?F (k;) 3 h13 (kilRl_Rzl)Jll(kip )le(kip)l
L1L2L3
Xa(LyL,Ly) Yy (Y2 (P)Y, (Ry—R,;), (A10)

where L denotes the pair (I,m), j and & ‘! are the spherical Bessel and Hankel functions,
a(L\L,Ly)= [dok)vt (R)y, (R)xE k),

and

Fo(k;)=2k, /

2k; +-——
#

82"(k 33°(k,E) ] ]

then the expression for 4 ,z(ka,k,-a ;) becomes
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4, (ko ko)=—@4r2 3 3 z Y (R)| 850 80, + 3 [tg, ()G (R, —R,)]z exp[ —ik-(R,—R,)]+ - -

LL'L L, o R,#R,
Xexp(—ik-R, ) ( L,o,|L,0,)explik;'R;)
X180 80,0t 3 [G7R =R (k)] 1
R,#R,
Xexp[ik;(R,—R,)]+ - -+ |YX(k,), (A11)
where
8Tmk;

G7r(Rj—Ry)=

zz “a(LL'L")h\P (kR —R,) Y (R, —R,i' ™V,

82106 =8y. [ dpidppldii(kp IRy, (pip2)ik(kpy)
and we have used matrix notation to express terms of the form ZL"th'L"(ki )GZ.r(R,—R,) as
(129 (k;)G? (R;—R;)];.~ Also, in the above equation for A4, (ko ,k;0;), we have made the definition
=y =1y) . A
L(Lyo\|Lyoy)=i S [dipy - dpsiy (kip) Y, (58,0801 —p2) 1 (p1.p3)G 7 (p3—py)]
oo’

oo’

9, (p,~R,) ,
e [855,8(p2—ps) + G (py— S)tR (ps:ps)]

as_(1,)
lez(kip4)YL2(ﬁ4) . (A12)

0

In essence, this is the matrix element of the potential through which the electron senses the spin excitation, evaluated
between the initial- and final-state electron partial waves, associated with the angular momenta and spin indicies indi-
cated.

Now, in the following, we shall evaluate 4 Iz(kcr,kio ;) and obtain a master formula for the scattering efficiency per

unit solid angle per loss energy in terms of J 1, since I; is model specific. After having obtained the master formula, we
shall apply it to the case in which [au,z(r)/as_ ()10 izs spherically symmetric. So, with this in mind, we continue on to
evaluate the infinite lattice sums which appear in the bracketed factors of A4 ,z(ka,kia ;). To facilitate the evaluation we
make the following definitions:

Jiy=exp(—ik;'R,) 3’ G(R, —Rpg (k)X - G(RN_I—RN)tRN(k,-)exp(ik,--RN) ,
R
R seRN
(A13)
Sy= 3 exp(—ik-RI)tR](k)G(Rl—RZ)X cee XtRN(k)G(RN—Rz)exp(ik-Rz) .
R,--R
IéNaERzN

Note, in these equations we have let G and ¢ be 2 X2 matrices with (G),, =8,,G?. With these definitions it is evident
that A,z(ka,kiai ) may be expressed as

A, (ko ko,)=—4r?3 ¥ 3 Y. (k)| 3 S; exp(—ik-R,)
: LL'L\L, 0,0, N=0 Lo,Lyo,
XII (LIUlleaz)exp(ik,-'Rz) 2 JN Yzl(ﬁl) . (A14)
z N=0 Lyo,L'0;

Now, in the expressions for Si and JF, if we let R;—d, +P, where d, denotes a vector from some global origin to an
origin in the layer at I and P denotes a two- dlmensmnal lattlce vector in this layer, and if we note that, for a given
layer, all single-site ¢ matrlces are equal, then we obtain
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zZ,z zz ZyZ Zy_ 12
J,f,=z 2; [SZZIG ! 1t;,l+(l—éSZZI)G ltzl]>< X(SZN_IZNG N Nt?~+(l—82~—12~)6 N 1"’tzN) R
1 N
— lel 2122 ZNZN ZNZ (AIS)
Sk= 3 [SZlZZtZlG +(l—82122)tzlG IX - X[SZNzt,NG +(1—82~z)tznG 1,
2, 2y
where we have used z; to denote lz." supressed the k dependences, and made the definitions
G (k)= 3 exp(—ik-P,)G(P,)
PZA
Gzizj'(k)=(1—82izj) > exp[—ik'(dzi_dzj+Pzi—sz)]G(dzl._dz].+Pz'.—sz)' (Al6)
PZ PZ

i %
If we multiply through by the first factor of J5 and the last factor of S§, sum the result from N =0 to N «, and let
S0/ =J% I =05% =297 then we obtain the relations

z=( 1 _Gzztz)—l

1+367, J |, §7=

2

Z 2z _ zzy—1
1+ 35, G ](1 1,G=)71. (A17)

Z

Now, we need to solve these equations for J? and S°. To this end, we use matrix notation and define certain vectors and
matrices whose elements are indexed by layers as follows:

(Jl )i=Ji Py (J2)i=tiji > (Sl )i=Si > (Sz)i=Siti > (R)1=1 ) (Gu)=(l_8‘j)GU Y (T)ij=8ijtl'(l_Giit,-)_l . (A18)

With these definitions we can obtain the following matrix equations for J, and S,:

J,=7"R+GJ,), §,=(R+S§,G)r, (A19)
where “~”’ denotes transpose. Solving these equations, we find J? and S? to be given by
Ji= 2(1—-G‘zt,)_l(l---G'r);l1 , 8= 2(1—-7'G)z_l§(l-—tzG”)_1 . (A20)
7 7

Thus, going back to the equation for 4 ,z(ka,k,-a i), we find

4, (ko k;0,)=—4r)* T ¥, (k) 3 {[1-7(k)G(K)]; jexp(—ik-R,)
LL’'

212
X QI exp(ik; R, )[1—G(k)r(k)]; 1 1o, 10 Y (K:) (A21)

where we have defined Q(/,)=(1 -—tzG")"IIIZ( 1-G#,)" L

APPENDIX B

When one sets out to solve the Dirac equation, the wave function is expanded in terms of the spin-angle functions
which are eigenfunctions of both J,, the z component of the total angular momentum, and the operator
K=p(I+0o-L/#i). In Sec. II, where we are computing the scattering efficiency per unit solid angle per energy loss,
however, we use eigenfunctions of the orbital angular momentum, spherical Harmonics, and Pauli spinors as the basis
of various expansions. Therefore, in order to simplify the expressions appearing in large parentheses in Eq. (29) of Sec.
II, we consider an expansion of the scattered portion of the wave function in (/,m ;spin) basis of the form

U O=TE 3 0 YOV RIRG e (X B1)

Lm,m’

The Lippmann-Schwinger equation reads
lp(k+)a(r)=¢g(r)+ 2 fd3rrGa(r__r:)Va,a’(rl)¢L+)a’(r:)
o'=11
=¢g(n)+ 3 ffd3r'd3r"G"(r-—r')T"""(r’,r”)¢ﬁ'(r") . (B2)
o'=11

Here, ¢¢(r) is the wave function for the incident electron, G°(r—r’) is the Green’s function, V"% (r) is the scattering
potential, and T7? (r',r") is the corresponding ¢ matrix. We introduce the following expansions:
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$g(r)=x°" \/V il (kr) Y R)Y,(P),

G°(r—r) zG,<r, YYERY,(P)

TOU r r’ 2 2 tl [ ru)Ylm't(?n)Ylm(?/) .
I mm’

(B3)

(B4)

(BS)

We insert these expansions into the Lipmann-Schwinger equation (B2). Affecting the integrals over the solid angles, we

obtain the following for the right-hand side:

41 Ivm . m (1 \.,0
=23 i (?)‘],(kr)Y, (R )y

while the left-hand side is given by Eq. (B1).
Now, we multiply both sides by Y,’ln 1

X 2af i YT (KORE e (F —112
<

Then, we repeat the above procedure by using Y,']n' (k) and end up with

— -1
Xaal(;m,m'Rl?m,m’(r)—l

or, equivalently,

38, 0 X% @ mRE () =i'S) [ Ji KPS B o+

Equating the coefficients of Y°" on both sides, we obtain the result

+33 [ [ ar'r2dr e 2 GE(r e g (¢ r )y ke )]x"'Y,'"'*Oc) (B6)
g m'
(7) and integrate over d{),. We get
) [Ji(kr)d,, X+ 2 [fdr’r'zdr”r"zGl"(r,r Wl mme (P’ ) j (k") ]X
(B7)
J kP8 X+ 3 [fdr'r'2dr"r”26,“<r,r')z;{;g,’,,.(r',r")j,(kr") X”'] , (B8)
[ i dr’r’zdr”r”zG,”(r,r’)t,‘?;,‘l’,',,:(r',r")jl(kr")] } .  (BY
A+ [ drridr G (rr g "'J")fz(kr")] : (B10)

o , .
Sa,a‘al;m,m’RIZm,m’(r)_l .]I(kr)am,m’ 0,0

We can absorb the i ~/ factor into the coefficients af,, .

The right-hand side is then exactly what we have in the

second large parentheses of Eq. (29) of the text. A similar argument will enable us to replace the first large parentheses

of Eq. (29) similarly:

aa,a’al‘?’m,m'Rl(z’m,m'(r)zil [jl(kr)am,m'aa

APPENDIX C

In Eq. (31) of Sec. II, we have come across the follow-
ing radial integral~

=f™
From the definitions introduced in the main text, we have
B=Ly'=V¥"), and V=LV'+¥"). The Schrodinger
equations for spin-up and spin-down electrons are

“dr 2R} (NB(PR ) . (C1)

_ Toey— gt
2mV +Vir) | (r)=E¢'(r)

B Yoy ot
2mV +V(r)]l/l (r)=Ey*(r) .

ot [drrar ek )tg;g,',,.(r’,r“)G;"(r',r")] .

(B11)

f

These will result in the following radial equations, after
converting to atomic units:

J+ “l+” u! +vu!=Eu, (C2)
r

F+ =Eu}, (C3)

Mull + Vl
r

where u/(r)=rR/(r), c=1, |, and the overdots denote
differentiation with respect to the reduced radial COOI'dl-
nates. We multiply Eq. (C2) by u}, Eq. (C3) by %', and
take their difference:

utii] —uliit +2u) B(ru}=0. (C4)

We integrate Eq. (C4) from zero to R yp:
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I %fdr {Ed?(u,tft,l—u,lllf)}

—1r, sl st

—7[111 u uru; ]RMT (CS)
since u; are zero at the origin. At r=Ryr we can use
the asymptotic wave function for u/’s since the wave
function is continuous across the muffin-tin sphere. We

have
uf (r)={[j,(kr)cos8 —n;(kr)sind{ Jr (Cé)
for r 2 Ryr. Evaluating the Wronskian appearing in Eq.

(C5) by using the above expression for u/, we end up with
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