PHYSICAL REVIEW B

VOLUME 46, NUMBER 14

1 OCTOBER 1992-11

Longitudinal modes in quasi-one-dimensional antiferromagnets

Ian Affleck
Canadian Institute for Advanced Research and Physics Department, University of British Columbia, Vancouver,
British Columbia, Canada V6T 1Z1

Greg F. Wellman*
Physics Department, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
(Received 6 May 1992)

Neutron-scattering data on CsNiCl;, a quasi-one-dimensional spin-one antiferromagnet, exhibit an
anomalous mode. It was later proposed, based on a Landau-Ginsburg model, that this should be viewed
as a longitudinal fluctuation of the sublattice magnetization. This theory is elaborated in more detail
here and compared with experimental data on CsNiCl; and RbNiCl;. In particular, we give explicitly a
renormalization-group argument for the existence of such modes in Néel-ordered antiferromagnets
which are nearly disordered by quantum fluctuations, due to quasi-one-dimensionality or other effects.
We then discuss the non-Néel case of a stacked triangular lattice such as CsNiCl; where longitudinal and
transverse modes mix. In this case the quantum disorder transition is driven first order by fluctuations
and the longitudinal mode always has a finite width. Effects of a magnetic field on the magnon spectrum
are calculated both in conventional spin-wave theory and in the Landau-Ginsburg model and are com-
pared with experimental data on CsNiCl;. This model is compared with an alternative Lagrangian-

based one that was proposed recently.

I. INTRODUCTION

It was argued by Haldane' that one-dimensional
integer-spin Heisenberg antiferromagnets have an excita-
tion gap above a singlet ground state. The first experi-
mental evidence for the Haldane gap was obtained by
Buyers et al.? in neutron-scattering experiments on
CsNiCl;. The spin Hamiltonian for this material is high-
ly isotropic (i.e., Heisenberg-like) in spin space and ap-
parently exhibits a ratio of interchain to intrachain cou-
plings of about 2%. This weak interchain coupling pro-
duces magnetic order at a temperature of 4.8 K, about
of the intrachain coupling. Because the lattice structure
is of stacked triangular type, the ordered state has anti-
parallel neighboring spins along the chains and neighbor-
ing spins at angles of 27 /3 in the planes. (See Fig. 1.)
Neutron-scattering experiments at temperatures of about
10 K, above the ordering temperature but still quite small
compared to the exchange energy, indicate the existence
of a gap in the purely one-dimensional case. Experiments
in the ordered phase, below 4.8 K also exhibit anomalous
behavior. Apart from the Goldstone modes predicted by
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FIG. 1. Orientation of spin vectors on the six inequivalent
sublattices (see Fig. 2) for the stacked triangular lattice antifer-
romagnet.
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spin-wave theory, a portion of another excitation branch
with a finite gap is also observed. This was argued® to be
a longitudinal mode, i.e., a longitudinal fluctuation of the
sublattice magnetization, and a Landau-Ginsburg model
was constructed to study the problem. In this model the
long-wavelength staggered magnetization field is treated
as a three-vector field, ¢, of arbitrary magnitude and
direction in spin space. In a magnetically ordered state
this field has a nonzero ground-state expectation value.
In a simple Néel state, as would occur for a bipartite lat-
tice (in which all spins are parallel or antiparallel), fluc-
tuations in the direction of this field give the usual two
Goldstone modes of spin-wave theory. Fluctuations in
the magnitude of the field correspond to the longitudinal
mode. The necessity of three modes follows from con-
tinuity from the disordered phase where the ground-state
expectation value vanishes and the magnon is a triplet.
The stacked triangular lattice is more complicated. Now
a transverse fluctuation on one site is not orthogonal to a
longitudinal one on a neighboring site in the same plane.
Consequently, the transverse and longitudinal modes mix
in the Landau-Ginsburg model.

The Landau-Ginsburg model predicts that the longitu-
dinal mode has a finite decay rate into a pair of Gold-
stone modes (even at zero temperature). Consequently, it
is possible to view the longitudinal mode as a two-
magnon resonance, making contact with the traditional
Holstein-Primakov approach to spin-wave theory. This
decay rate depends on the size of the |¢|* coupling in the
Landau-Ginsburg model. The width-to-gap ratio van-
ishes linearly at weak coupling. If this decay rate is too
large the longitudinal mode might not be observable. In
general, the observability of the longitudinal mode is an
empirical question, but there is one case where we can
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predict with confidence that the longitudinal mode is
very long lived. This occurs in the simple Néel case when
the system is very close to being disordered by quantum
fluctuations. This would correspond to the case where
the sublattice magnetization is very much reduced com-
pared to its classical value (s) at T =0 due to quantum
fluctuation effects. The strength of these fluctuation
effects is determined by the spin Hamiltonian. One way
of enhancing them is by making the system quasi-one-
dimensional. As the ratio of interchain to intrachain
couplings is lowered, eventually the order is destroyed,
even at T =0. When this ratio is only slightly larger than
this critical value, the longitudinal mode is very long
lived. This follows from the fact that this second-order,
T=0 quantum phase transition is in the four-
dimensional universality class and is consequently
governed by the weak-coupling Landau-Ginsburg model
(see, for example, Ma®, i.e., the model becomes exact,
with a very small coupling constant very close to the crit-
ical point. Consequently, at the critical point the gap of
the longitudinal mode vanishes, as does the width-to-gap
ratio. Sufficiently close to the critical point, on the or-
dered side, the longitudinal mode will then be very light
and highly stable.

However, the magnetic ordering transition in a stacked
triangular antiferromagnet is in a different universality
class than the simple Néel case. This can be seen from
the fact that a Néel state is invariant under rotations
about the unique ordering axis, whereas the triangular
state has no such residual U(l) symmetry. A
renormalization-group analysis in this case indicates that
the Gaussian fixed point is unstable.® This indicates the
occurrence of a fluctuation-induced first-order phase
transition. Since the |¢|* coupling constants do not renor-
malize to zero in this case, the longitudinal mode does
not become perfectly stable.

In general, the question of whether or not the longitu-
dinal mode will be sufficiently narrow to be observed is a
heuristic one. It is reasonable to expect it to be more ob-
servable for systems which are quite close to the quantum
disorder transition.

We emphasize that the renormalization-group argu-
ment for the stability of the longitudinal mode depends
crucially on the fact that the transition is in the four-
dimensional universality class, since it occurs at T =0.
The finite-temperature transition is, of course, in the
three-dimensional universality class and, consequently,
exhibits much less trivial critical behavior. There is no
reason to expect a stable longitudinal mode in this case.

The outline of the rest of this paper is as follows. In
Sec. II, we review the Landau-Ginsburg model and the
calculation of the dispersion relation for both Néel and
triangular cases. We also discuss the extent to which
neutron-scattering data on CsNiCl; (Refs. 2 and 6) and
RbNICl; (Ref. 7) agree with this model. While the agree-
ment is not completely satisfactory, we argue that the
CsNiCl; data clearly call for a nontrivial extension
of spin-wave theory. In Sec. III, we give the
renormalization-group arguments for the stability of the
longitudinal mode in the Néel case and for the first-order
nature of the transition in the triangular case. In Sec. IV,
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we calculate the magnetic field dependence of the mag-
non dispersion relation, both in ordinary spin-wave
theory and in the Landau-Ginsburg model. It is again
clear that spin-wave theory fails to capture, even qualita-
tively, trends in the experimental data.b It is unclear how
good the agreement with the Landau-Ginsburg model is;
a detailed comparison will require the calculation of in-
tensities and lifetimes and more experiments. Section V
summarizes the agreement between experiment and
theory. The Appendix compares the Landau-Ginsburg
model to another one which was recently proposed.®

II. LANDAU-GINSBURG MODEL

We begin by discussing a single chain, Heisenberg anti-
ferromagnet:

H\=2J38;'8;4; . 2.1
i

The continuum limit is defined by introducing' the pair
of noncommuting vector fields, ¢(z) and /(z) representing
the long-wavelength staggered and uniform magnetiza-
tion, respectively. (z measures distances along the chain.
We set the lattice spacing equal to one for the time be-
ing). Because the integral of I over the entire chain gives
the conserved total magnetization, its commutation rela-
tions are fixed to be

[H(2),1i(z") =i 1¥z2)8(z—2") ,
[I(z),¢/(z") ] =i€T*¢*(2)8(z—2") .

(We set i=1.) The commutation relations of the com-
ponents of ¢ with themselves are not fixed by any symme-
try requirement and depend on the spin magnitude, s.
We make the large-s semiclassical approximation that
they commute. A correct treatment of the large-s limit
also requires that we impose the constraints
|¢|2—11|*/s*=~|¢|*=1, ¢-1=0. This defines the non-
linear ¢ model upon expanding the Hamiltonian to
second order in / and d¢/dz. A perturbative treatment
of the o0 model involves expanding ¢ about its ground-
state expectation value. This gives two Goldstone modes,
the same spectrum as obtained from spin-wave theory (at
long wavelengths). However, this is known to be com-
pletely the wrong picture in one dimension. Quantum
fluctuations disorder the ground state. Roughly speak-
ing, ¢ fluctuates around the unit sphere so that
(0/¢|0)=0. The spectrum consists of a triplet of mas-
sive magnons which correspond to the three components
of ¢. [Since the field theory is Lorentz invariant, the
magnon  dispersion has the relativistic form
E(Q —m)=V(vQ)*+ A2, where Q is the momentum, A
the gap, and v~=4Js the spin-wave velocity. Thus, we
may regard A/v? as the rest-mass.] The Landau-
Ginsburg model is designed to give the correct behavior
at a mean-field level.> We simply relax the constraint on
¢ and replace it by a quadratic plus quartic potential.
The full Lagrangian density is given by

| _vlas |
at 2 | oz

(2.2)
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The quartic term is, in general, necessary for stability.
The uniform magnetization density is then determined
from the commutation relations to be

1=(1/v)$p X3¢/t . 2.4)

This model becomes essentially exact in the large-n limit
of the O(n) o model. We may estimate the normaliza-
tion factor for the staggered magnetization as
S, =( —1)isV'g ¢, where g~V'2/s, based on the large-n
and large-s limits.
We now consider a quasi-one-dimensional system:
chains planes
Hy=J 3 S;8;+J" 3 S§;'§; .
(ij) (i j)

(2.5)

Here the first term is over all nearest-neighbor pairs on
the same chain and the second is over all nearest-
neighbor pairs in the same plane, with J' <<J. (Each
nearest-neighbor pair occurs twice in the above sums.)
The Landau-Ginsburg Lagrangian is obtained by intro-
ducing a separate field ¢;(z) for each chain i and then
coupling the staggered magnetization vectors at adjacent
points on neighboring chains. (A coupling of uniform
magnetizations could also be included but this leads to
corrections of higher order in J'/J and, in any event,
does not qualitatively alter our conclusions.) Thus, the
three-dimensional Lagrangian is given by

Ly=[dz| 3 Li[¢:(2)]=2's S 29|
i Ly

(2.6)

Here the second sum is over nearest-neighbor chains. In
the ordered state, {¢;(z)) will be constant along each
chain. Dropping the ¢t and z derivative terms, the La-
grangian becomes minus the potential energy. We see
that whether or not order occurs is determined by a com-
petition between the Haldane gap, A, and the interchain
coupling J'. The critical value of J' is O(A?/vs). In the
disordered phase, at small J' where {0|$|0) =0, we cal-
culate the magnon dispersion relation by simply ignoring
the quartic term. We see that there is a triplet of massive
magnons with a dispersion relation

Epipier( @, —7,Q) =V v?Q2+ A2 +8Jvsf(Q),  (2.7)
where
FlQ=13e M (2.8)

and the sum runs over the vectors §; to nearest-neighbor
sites in the planar lattice (assumed to be Bravais). This
formula is valid for Q, =. The shift of Q, by 7 is due to
the fact that ¢ is the staggered magnetization.

Let us now consider the ordered phase which occurs
for sufficiently large J'. We now must distinguish be-
tween different lattice types. We first consider the case of
a tetragonal lattice; i.e., a square lattice of chains. (The
following discussion could be trivially generalized to the
case where the transverse lattice is rectangular rather
than square). The ordered ground state is the simple
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Néel state with all nearest-neighbor spins antiparallel.
Writing
(¢; )= T¢oZ

on the two sublattices, the potential energy per spin be-
comes

(2.9

V(do)=(A%/20 —8J's)p3+(A/4)d§ . (2.10)
We see that the critical value of J' is
J. =A%/16vs . 2.11)

For larger J' the size of the sublattice magnetization is
given by

3=(16J's —A%/v) /A . (2.12)
We expand L to second order in small fluctuations:
¢=(¢:,0,,601¢.), (2.13)

x and y fluctuations are transverse and z fluctuations are
longitudinal. These do not mix to quadratic order. We
may then read off the dispersion relations

E(Q,—m,Q)=V v?Q2+8J'vs[2+f(Q))],
E (Q,—m,Q)=V v?Q2+8J'vs[2+ £(Q,)]+A} ,

(2.14)

(2.15)

where

A=V 20A$3=V'2(16J'vs —A%)=132us(J' —J!) .
(2.16)
For the square lattice of chains, of spacing a,

f(Q)= cos(aQ, )+ cos(aQ,) > —2 . (2.17)

Note that E, vanishes at the antiferromagnetic wave vec-
tor (7 /a,m/a,w). E;, on the other hand, has a gap A,
at this wave vector. Note that all three dispersion rela-
tions, that of the triplet in the disordered phase, Eq. (2.7),
and those of the longitudinal mode and transverse modes
in the ordered phase, Eq. (2.15), become identical at
J'=J] i.e., as we vary J', the spectrum varies continuous-
ly, the triplet of the disordered phase splitting up into the
two transverse modes and one longitudinal mode of the
ordered phase.

The intensities of these modes take a very simple form.
The canonical commutation relation,

[6(x,0),d(x",1)]=ivd(x —x') ,
implies that the spin correlation function is
$Q,—m,Q,E)=(SS°NQ,—7,Q,,E)
« (¢$%*)(Q,E)
«<8[E—E,(Q)]/EXQ) . (2.18)

[To obtain the neutron-scattering cross section, §“ must
be multiplied by the Lorentz factor (1—Q2), and a sum
over a must be performed, depending on polarization.]
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Thus, in particular, the intensity of the transverse modes
(a =1,2) blows up at the ordering wave vector, whereas
the intensity of the longitudinal mode remains finite. The
transverse modes would appear in xy polarized experi-
ments and the longitudinal mode in z polarized experi-
ments. As we shall see, things are considerably more
complicated in the case of a stacked-triangular lattice.
The transverse modes are simply the standard result of
linear spin-wave theory’ for Q~# and J'<<J. To see
this, note that the standard spin-wave theory spectrum is

Egwr(Q)=1(4Js+8J's 2 —[4Js cosQ, +4J'sf(Q,)]* .
(2.19)

Expanding to first order in J'/J and Q7 inside the square
root, and using v =4Js, we obtain precisely the first of
Eq. (2.15). The longitudinal mode, on the other hand, is
not a standard spin-wave theory result. The reason is
that, in spin-wave theory, the spins are considered to be
of fixed length, as in the nonlinear o model. The longitu-
dinal mode occurs in the above treatment simply because
we have relaxed the constraint on the magnitude of the
field ¢ in passing to the Landau-Ginsburg model. Actu-
ally, the two theories are not quite as different as they at
first appear. To see this note that the longitudinal mode
is unstable, even at zero temperature. It can always de-
cay into a pair of transverse modes (i.e., Goldstone bo-
sons). This is kinematically allowed since the Goldstone
modes are gapless whereas the longitudinal mode has a
gap. It is allowed by conservation of the z component of
total spin, since the longitudinal mode has §°=0,
whereas the two species of transverse modes have
$?==1. Decay into a pair of Goldstone modes of oppo-
site spin conserves spin. Such a decay vertex occurs in
the theory due to the (A/4)|¢|* term in the Lagrangian.
Expanding ¢ as in Eq. (2.13), we obtain a cubic term:

Lewic=—Adod, (63 +67) . (2.20)

We see that the decay rate, which goes like the square of
this coupling constant, is O(A). The Landau-Ginsburg
model actually reduces to the nonlinear ¢ model in the
limit where A— o and A2— — o with —A2/A=1, since
then the magnitude of ¢ is forced to be exactly one. In
this limit the mass of the longitudinal mode goes to
infinity, as does its decay rate. How light and narrow the
longitudinal mode is depends on the parameters in the
model. In particular, its mass is controlled by J'—J; and
its width by A. We expect that spin-wave theory will ex-
hibit a two-magnon resonance with a finite energy gap.
This resonance may then be identified with the longitudi-
nal mode. Whether or not the longitudinal mode is stable
enough to observe depends on the parameter A in the
Landau-Ginsburg model. We will argue, using the renor-
malization group, in the next section, that the width-to-
gap ratio of the longitudinal mode vanishes in the limit
J'—J,. This corresponds to the fact that the renormal-
ized coupling constant A vanishes at the critical point.

We now consider the effects of anisotropy. If we con-
sider axial anisotropy which breaks the SU(2) symmetry
down to a U(1) subgroup, rotation about the z axis, then
we must distinguish the easy-plane and easy-axis cases.
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In the first case, the U(1) symmetry is spontaneously bro-
ken so there is a single Goldstone mode. Again the longi-
tudinal mode is unstable against decaying into the Gold-
stone mode. In the second, easy-axis case, the U(1) sym-
metry is not spontaneously broken in the ordered phase,
only the Z, symmetry S*— —S? is broken. Consequent-
ly, there are no gapless Goldstone modes. Spin-wave
theory and the Landau-Ginsburg model predict that the
two branches of would-be Goldstone modes have equal
gaps. However, according to the Landau-Ginsburg mod-
el, the longitudinal mode still has a vanishing gap at the
critical value of J’, and thus becomes lighter than the
would-be Goldstone modes sufficiently close to the criti-
cal point (on the ordered side). Therefore, it becomes
kinematically unable to decay in this region and should
exist as an infinitely stable excitation.

We now turn to the case of a triangular lattice of
chains. We choose the triangular lattice to lie in the xy
plane with links parallel to the x axis, as shown in Fig. 2.
The lattice spacing is a. The spacing between spins along
the chains we take to be ¢ /2, in order to agree with stan-
dard conventions for CsNiCl;, which has two formula
units per unit cell. We choose a basis of primitive lattice
vectors:

a,=(a/2,—v3a/2,0),
a,=(a/2,V3a /2,0),
a,=(0,0,¢) .

(2.21

It is also convenient to define a set of three linearly
dependent in-plane lattice vectors, §;, with i =1,2,3:

(2.22)
835 _al —a2=( _a,0,0) .

(See Fig. 2.) The reciprocal lattice is also triangular. The
primitive vectors, b;, i =1,2,3, defined by the conditions

bi 'aj=217811 (2-23)
are given by
1—‘/30 2 > 2 ’ ’
4r (V3 1
=—|-—=,= 24
b, Via | 2 ,2,0 , (2.24)
b,=27(0,0,1)
c

FIG. 2. Labeling of sites and lattice vectors in the basal
plane.
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FIG. 3. The reciprocal lattice, projected onto the basal plane,
showing the paramagnetic Brillouin zone, the wave vector cor-
responding to (1,7, 1) and the reflection symmetry n—1—1.

(See Fig. 3.) Wave vectors are expanded in reciprocal-
lattice vectors:

3
Q=(01,0,,0:)= 3 Oib; . (2.25)

i=1
We also sometimes refer to wave vectors by x, y, and z
components, and use Q, to label the projection of the
wave vector onto the basal plane. The classical ordered
state now involves three different directions, making an-
gles of 277 /3 with each other. We choose these to lie in
the xz plane, with one of them lying along the z axis, in
agreement with the conventions of previous work. See
Fig. 1. Hence, the classical state at lattice point x; is
given by

S, =s(sinQqx;,0, cosQy°x;) , (2.26)
where the ordering wave vector, Q,, is given by
Q=(4,4,1) (2.27)

in the notation of Eq. (2.25). It is also convenient to
define the projection of the ordering wave vector onto the
basal (xz) plane, Q,:

Q,=(4,1,0).

Note that Q, lies on the x axis, at a corner of the
paramagnetic Brillouin zone, which is a hexagon, as
shown in Fig. 3.

The interchain coupling term in the Lagrangian is now
of the form

L,=—(4J'/¢) S fdz $:(2)-¢;(2) .
(i,j)

(2.28)

(2.29)

Noting that, for two neighboring chains, ¢; ¢, = — 143,
and that each chain has six nearest-neighbor chains, we
find the potential energy per chain, per unit length, in the
ordered state:

V(o) =(A%2/20 —12J"s /c )3+ (A /4)b} . (2.30)
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FIG. 4. Unit vectors in spin space.

Now the critical value of J' is

J.=A% /24vs , (2.31)

and the sublattice magnetization in the ordered state, for
J'>J,is

$3=(24J"'s /c—A2/v) /M . (2.32)

To obtain the excitation spectrum, we expand the La-
grangian density to quadratic order in small fluctuations
around the ordered state. For this purpose, it is con-
venient to introduce two orthogonal unit vectors, both ly-
ing in the zx plane in spin space, at each lattice site, i, €;;,
and €,;. €,; is parallel to (¢, ) and €,; is perpendicular to
it. (See Fig. 4.) In terms of the projection of the ordering
wave vector onto the basal plane, Q,, we may write

’e\L,- E( Sian'xi,O, COSQz'X,‘) y
(2.33)
€,,=(c0sQ,x;,0, — sinQ, x;) .

Introducing the transverse xz fluctuation, ¢,;, the trans-
verse y fluctuation, ¢,;, and the longitudinal (xz) fluctua-
tion, ¢;;, as well as the unit vector parallel to the y axis,
€,, we decompose the field at each site as

b =CL(dot ) +E8;; 18y - (2.34)
We now substitute this decomposition into the Lagrang-
ian, Eq. (2.6), and expand to quadratic order in ¢;, ¢,,
and ¢,. It is important to note that we obtain cross
terms between the transverse xz mode, ¢,, and the longi-
tudinal mode, ¢, . This does not occur in the case of a bi-
partite lattice. It occurs here because longitudinal and
transverse fluctuations on neighboring sites are not or-
thogonal to each other as illustrated in Fig. 5. On the
other hand, the transverse y mode, ¢,, is unmixed (to
quadratic order). The terms quadratic in the y mode are

2 2
_ 1 |96y v | 9%y
‘Ly_‘s;" | A 2| 3
_A o Ao, |4
2w #3; 2 o3 c (%)4’2:952] .

(2.35)

The terms quadratic in the transverse and longitudinal xz
modes are
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2

2 2 2
1 |9y v | 9y A , 1 |9 v | 9L A2 5 Ao 2
=% |—|—| —= — =t — —= | == -2 = 4302,
L ; [ 2w | o ] 2| oz 2% 2 | Tar 2| az 20 0L T PO+ I0L)
—(4J's/c) (2) [—1¢1d1; H(—21)dpidr;+ (€L €)briby; + (€1 €L;)d16.;] - (2.36)
ij
Here we have used the fact that €;;-€;; =¢,;-¢,;= — 1 for nearest-neighbor sites. The other dot products, €,;-€;;, take

on the values +V/3/2. In terms of the lattice vectors, 8; [see Eq. (2.22)], the interchain term in L, can be written

3
'sz,ic=—'(4J'S/C)2 2 2 {"%Wl(xi)d’l(xiiab)+¢L(Xi)¢L(Xx‘i6b)]
i b=1+

F(V3/2)[1(x;)bL (x;£8,)— bp(x,)61(x,18,)]} . 2.37)

At this point we Fourier transform. It is convenient to define Fourier modes, ¢(Q), over the entire paramagnetic
Brillouin zone in the basal plane, shown in Fig. 3. In this way, we only obtain three branches of excitations, corre-
sponding to ¢, and two linear combinations of ¢, and ¢;. Of course, the basal plane antiferromagnetic Brillouin zone
has only 1 the area so there should be 3 times as many excitation branches. This simplifying step is possible because of
the symmetry of the antiferromagnetic ground state under simultaneous translation by one lattice spacing and rotation
of the spins by 27 /3 about the y axis. This symmetry is incorporated into the definition of the components ¢, and ¢,
via the rotating coordinate system, €, and €;. To obtain the experimentally observable neutron-scattering cross section,

we must translate the xz branches into the antiferromagnetic zone, giving a total of five branches. Explicitly, we see
from Eq. (2.33) that

Q)= i 1[—ni¢L(Q+nQ2)+¢1(Q+nQ2)]/2,¢2(Q), i1[¢L(Q+nQ2)+ni¢1(Q+nQ2)]/2 . (2.38)
We find that the dispersion relation for the y mode is given by

Ey(Q, —27/¢,Q)=V (vQ, *+(8vJ's /c)[3+2f(Q))], (2.39)
where now

f(Q,)= cos(27Q )+ cos(2wQ,)+ cos[2m(Q; +Q,)] . (2.40)
The two xz modes are given by the solution of the eigenvalue equation:

(vQ, )2+ (8J'sv /c)(3—f) i8V3J'suf /c é, é:
—i8V3J'suf /c (vQ, 2+ (8J'sv /c)N(3—f)+A2 | |4, =E? A (2.41)

where

F(Q)=sin(27Q, )+ sin(27Q, )+ sin[27(Q, +Q,)] . (2.42)
Note that this is a slightly different notation than in Ref. (3):

A2 =48J'vs /c —2A% . (2.43)

The two frequencies are
EX(Q,—27/¢,Q)=(vQ,)*+(8J'vs /c)[3—f(Q,)]+ A2 /2+V/ (A2 /2)2+3[8J'svf(Q,) /c |* . (2.44)

The intensities of the modes can be calculated from the eigenvectors obtained from Eq. (2.41). Normalizing the
eigenvectors to one |§,|>+ |, |>=1, we may write

1
Yy, — —
NQ,—2m/c,Q,E)x EZ(Q)S[E E,(Q)],
&(Q,—27/c,Q,E)=8%Q,—27/c,Q,E) (2.45)
1 | —nid; . |?
> —?E—E,ﬂ&i—l-(Q+nQ2)8[E—Ei(Q+nQ2)].
+ n=-—1 +

The shift of Q by nQ, (n ==1) results from the rotating coordinate system implicit in the definition of ¢, and ¢, see
Eq. (2.38). The constants of proportionality are the same in both of the above equations. Finally, solving the eigenvalue
equation, (2.41), we obtain
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(8V3J'suf /c —n{A} /2F V/ (A} /22 +3[8J'suf /c *})?

(2.46)

|$1:t_ni$L:t|2=

(8V3JI'sv /cf )2+ (AL /2F V(A2 /22 +3[8'suf /c 1*)2

We see from its definition, Eq. (2.43), that
A% <48J'vs /c provided that A’>0. However, A? must
be regarded as a renormalized parameter and, for
sufficiently large J'/J, it may become negative. There-
fore, it is interesting to consider the qualitative behavior
of this spectrum as a function of the parameter A% for
0<A?Z < w0, with J' held fixed. Let us first consider the
limit, Ai — co. In this limit, £, — o and

EX > (0Q,)*+(8J'vs /c)[3—£(Q))] .

In this limit, E_ becomes purely transverse and E .
purely longitudinal. This limiting formula for E_ can be
seen to be the same as that of conventional spin-wave
theory” in the limit of small Q, —2#/c and small J'/J.
Likewise, the y mode, which is unaffected by Ai, has the
same dispersion relation as the corresponding mode in
conventional spin-wave theory in this limit. However, as
we reduce A%, the transverse xz fluctuations mix increas-
ingly with longitudinal fluctuations so that E _ deviates
from the spin-wave theory result. Likewise, the other
branch of energy E , moves down in energy. Finally, at
J'=J/, A7 =0 and the xz energies become

E%(Q,—2m/c,Q,)—(vQ,)*+(8J'sv /c)

X[3—£(Q))
+V3[f(Q)]. (2.47)
Using the identity
FIQDEVEF(Q)=—2f(QxQ,) , (2.48)
we see that
E3(Q,—27/c,Q))—(vQ,)*+(8J'sv /c)
X[34+2f(Q,FeQ,)],
(2.49)

where e=sn[f(Q,)]. Comparing with Eq. (2.39) and Eq.
(2.7), we see that E;,,(Q), E(Q), and E.(Q+teQ,) all
become identical at J'=J/. Furthermore, in this limit
the eigenfunctions take on the simple form
¢,+=Fei¢,.=1/V2. Thus, in the formula for the
neutron-scattering intensity, Eq. (2.45), two of the terms
vanish and the other two become identical, giving

,

f

FIG. 5. A longitudinal fluctuation on sublattice A4 is not or-
thogonal to a transverse fluctuation on neighboring sublattice B.

f
SQ,E)=8Q,E)=8"(Q,E)

at A2 =0. The neutron-scattering cross section in the or-
dered phase goes over continuously to that of the disor-
dered phase. Note that the way this occurs is that the in-
tensity of two of the five branches goes to zero and the
other three become degenerate, with zero gap in the limit
A% —0. For a relatively small value of A; we should ex-
pect two of the five branches to be very weak and the oth-
er three to lie quite close to each other.

The theoretical spectrum is compared with the experi-
mental results>® on CsNiCl; in Fig. 6. The theory con-
tains three parameters, v, J', and A;. These can be used
to fit the slope 3E /3Q,(Q,), the bandwidth of the basal
plane dispersion at Q, =27 /¢, and the gap of the stronger
mode of nonzero energy at the ordering wave vector [i.e.,
E_(b;+2Q,)]. This procedure gives 2v/hpc~1.38
THz, J' /hp=0.0052 THz, and A; /bhp=0.28 THz. (hp
is Planck’s constant; we attach the subscript P to distin-
guish it from the magnetic field. We follow the standard
convention in the neutron-scattering literature of quoting
frequencies rather than angular frequencies; hence, they

az(n,n.U

Frequency (THz)
o
w

Frequency (THz)

FIG. 6. Dispersion relation (Ref. 6) in CsNiCl; compared to
the Landau-Ginsburg model: (a) y polarization, (b) xz polariza-
tion. Thick, thin, and dotted lines represent strong (I >0.64),
medium (0.13 <71 <0.64), or weak (I <0.13) relative intensity,
where the intensity is normalized to one for the y mode at
0,0,1). (See Fig. 7.)
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must be multiplied by hp, not # to obtain the correspond-
ing energies.) Given the weak intensity of two of the
branches, as shown in Fig. 7, the agreement between
theory and experiment is fairly satisfactory. The main
discrepancy is that the second xz branch,
E  (Q+Q,)=E, [see Fig. 6(b)], is only resolved for small
Q, where its energy is about 10% lower than the theoreti-
cal prediction. Is it important to realize that various
effects (such as perturbative corrections from the A¢*
term in the Lagrangian) will renormalize the dispersion
relation. It may well be that these effects reduce the ener-
gy E, sufficiently that it can only be resolved from E, at
small Q,. The prediction of normal spin-wave theory? is
compared with experiment in Fig. 8. Here we use
J/hp=1%(2v/c)=0.345 THz and the same value of J' as
above. Both theories fit the y mode quite well; indeed
they make essentially identical predictions. However,
conventional spin-wave theory disagrees badly with the
observed xz dispersion. Of course, there are also renor-
malizations of spin-wave theory which can be calculated
in a 1/s expansion using the Holstein-Primakov or
Dyson-Maleev formalism. Is it possible that these might
eventually lead to good agreement between theory and
experiment?

In fact there is a qualitative feature of the data which
conventional spin-wave theory will not be able to capture
including arbitrary higher-order corrections. This is the
striking fact that the energy of the xz polarized mode ob-
served at Q, =0 is at about 21 times higher energy than
that of the upper mode at the ordering wave vector.
Spin-wave theory predicts that these two frequencies
should be equal. Furthermore, this is actually a conse-
quence of a symmetry and thus should survive all
higher-order corrections. The symmetry argument is
most easily understood by plotting the xz mode in the en-
tire paramagnetic Brillouin zone. The observed neutron-
scattering intensity is then obtained by translating this
branch into the reduced zone, Q—-Q=xQ,. The paramag-
netic reciprocal lattice is shown in Fig. 3. The experi-
mental results shown in Fig. 6 correspond to moving
along the x axis, Q, =4w7/a, shown in Fig. 3. Note that
a link of the reciprocal lattice is a perpendicular bisector
of this line, cutting it at p=21. This implies that the
dispersion relation is symmetric about 7—1—1. The

4 ¢
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n

FIG. 7. Intensities from the Landau-Ginsburg model for
CsNiCl,. Curves 1, 2, 3, and 4 refer to xz-polarized modes not-
ed in Fig. 6(b).
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FIG. 8. Dispersion relation (Ref. 6) in CsNiCl; with xz polar-
ization compared to conventional spin-wave theory.

fact that the excitations can be defined over the entire
paramagnetic Brillouin zone is a consequence of the sym-
metry of the antiferromagnetic ground state under com-
bined translation by one site and rotation by 27 /3. The
symmetry 7—1—7 is a consequence of a symmetry of
the paramagnetic Brillouin zone. Thus, we expect this
symmetry to survive all higher-order corrections. Upon
translating the spectrum into the antiferromagnetic zone,
this symmetry implies that the upper xz branch is sym-
metric about =1 and, in particular, implies the equality
of the energies of the upper xz mode at (§, 3, 1) and the xz
mode at (0,0,1). Any model which predicts a single xz
branch in the paramagnetic zone will predict that these
energies are equal. (This includes the alternative model®
discussed in the Appendix.) Thus, the observed marked
difference in these energies indicates that there are two
different xz branches in the paramagnetic zone, as pre-
dicted by the Landau-Ginsburg model. Note that this
model also obeys the same symmetry. Both xz branches
have the feature that the upper energy (upon translating
into the antiferromagnetic zone) at (4, 1,1) is degenerate
with the energy at (0,0,1).

RbLNICl; is another s=1 quasi-one-dimensional
Heisenberg antiferromagnet with properties very similar
to those of CsNiCl;. The only important difference ap-
pears to be that the ratio of interchain to intrachain cou-
plings is about 80% higher in RbNiCl;. So far, only un-
polarized neutron-scattering experiments have been re-
ported on this compound.” They exhibit a dispersion re-
lation very similar to that of CsNiCl;. Again only a sin-
gle spin-wave energy is observed near (0,0,1). Again this
energy is considerably higher than that of the upper
mode at (1,1,1). However, in this case it is higher by a
factor of approximately 2 rather than 2. A fit can be ob-
tained to the Landau-Ginsburg model, this time with
2v/hpc=1.94 THz, J'/hp=0.0143 THz, and
A; /hp=0.9 THz, corresponding to a negative value of
A%, perhaps indicative of large renormalization effects
due to the interchain coupling. The agreement between
theory and experiment seems to suffer from the same de-
fect as in CsNiCl;. See Figs. 9 and 10. Branch number 2
of Fig. 9 is again not observed near (4, 1,1). The situation
near (0,0,1) is more ambiguous since polarized experi-
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FIG. 9. Dispersion relation (Ref. 7) in RbNiCl; compared to
the Landau-Ginsburg model. Thick, thin and dotted lines
represent strong (I >0.64), medium (0.13 <71 <0.64), or weak
(I <0.13) relative intensity, where the intensity is normalized to
one for the y mode at (0,0,1). (See Fig. 10.)

ments have not yet been performed. A single broad peak
is observed. Since it has the same shape at two different
equivalent wave vectors, if it results from two branches
they must by very close together in energy. Since the
predicted splitting between y and xz modes is larger in
this case, due to the increased three-dimensionality, this
is difficult to understand. An alternative possibility is
that the observed peak only results from the y branch.
Possibly the higher-energy xz branch is too broad to be
observable in RbNiCl,. If this is the case then the spec-
trum is not qualitatively different than that predicted by
conventional spin-wave theory. The main quantitative
difference is that branch 3 is higher in energy than pre-
dicted by that theory. This issue could be resolved by po-
larized neutron-scattering experiments.

Experiments have also been reported on the s =3
quasi-one-dimensional antiferromagnet, CsMnl;.° This
differs in several respects from the other two compounds.
Apart from having a larger, half-integer spin, it may also
exhibit more Ising anisotropy; the spins on the B and C
sublattices (see Fig. 1) are measured to make an angle of
51° with the z axis rather than 59° as in CsNiCl,. It is not
clear if the Landau-Ginsburg model is ever applicable in
the case of half-integer spin since the zero-temperature
phase transition may be in a different universality class,
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FIG. 10. Relative intensities in the Landau-Ginsburg model.
Curves 1, 2, 3 and 4 refer to xz-polarized modes noted in Fig. 9.
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even for a cubic lattice. In any event, since the spin is
quite large in this case, as is the anisotropy, it seems like-
ly that conventional spin-wave theory would provide an
at least qualitatively reliable description. So far only a
single peak has been observed near (0,0,1). Polarized
neutron-scattering experiments are needed to determine
if this peak again contains contributions from two
branches. The various other branches predicted by aniso-
tropic spin-wave theory have not yet been observed.

III. RENORMALIZATION-GROUP ARGUMENTS

In this section we apply renormalization-group
methods to go beyond the Gaussian approximation to the
Landau-Ginsburg model used in Sec. II. We use univer-
sality arguments to justify the passage from “hard-spin”
to “soft-spin”” models. We show that the phase transition
as a function of interchain coupling, J’, is second order
for a bipartite lattice but first order for a stacked triangu-
lar lattice. In the former case we show that the longitudi-
nal mode becomes stable at the critical point. We verify
the conclusions in this case by comparing with the large-
n limit of the O (n) nonlinear o model.

It must be emphasized at the outset that we can deduce
exact results (subject to generally accepted assumptions)
about these problems because of the fact that the phase
transition as a function of J' at zero temperature is in the
four-dimensional universality class. Since this is the
upper critical dimension for the phase transition, it is
Gaussian up to logarithmic corrections. Consequently,
conclusions drawn from a weak-coupling analysis of the
Landau-Ginsburg model become exact at the critical
point.

We begin by considering the bipartite lattice case. As
we approach the critical point we expect the correlation
length to diverge, both along the chains and also for in-
terchain correlations. Thus, we may replace the discrete
sum over chains in Eq. (2.6) by an integral. Upon rescal-
ing lengths in the basal plane appropriately, we obtain
the standard ¢* quantum field theory in (3+1) space-
time dimensions with Lagrangian density:

L=(1/2v)(3¢/3t)*— (v /2)(V¢)?

—(A372)|912—(A/4)|p]* . (3.1)

Here A} is an effective parameter in this long-wavelength
theory which corresponds roughly to A2—16J'vs /c. A
crucial point is that this model is Lorentz invariant due
to the second-order time derivative. (See the Appendix
for a review of how this second-order term arises.) We
expect all breaking of Lorentz invariance to become ir-
relevant near the critical point. The Feynman path-
integral formulation of the theory is most easily studied
by going to imaginary time (i.e., Euclidean space): t—ir.
The Euclidean space Lagrangian density is

Ly=1V,072+(A3/2)|¢]2+(1/4)|¢]* . (3.2)

Here V, represent the gradient in the four-dimensional
space, and we have absorbed the velocity v into a rescal-
ing of the time coordinate. This is precisely the standard
classical Landau-Ginsburg Hamiltonian in four (space)
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dimensions which would be used to model a finite-
temperature classical magnetic transition. The Feynman
path integral corresponds to the usual Boltzmann sum.
Thus, the fact that the classical system in four dimensions
is governed by the Gaussian fixed point applies immedi-
ately to the quantum system at 7" =0 in three dimensions.
This result is well known in quantum field theory, of
course; it is usually referred to as the triviality of ¢*
theory.

The renormalization-group flows* are shown in Fig. 11.
The critical trajectory separating broken and unbroken
symmetry phases flows into A3=A=0 at long length (or
time) scales. This is much different than in lower dimen-
sions. In 4—e€ space-time dimensions, the Gaussian
(A=0) fixed point is unstable and the phase transition is
controlled by a fixed point at A, of O(e). In three space-
time dimensions, A is expected to be O(1) at the critical
point. Consequently, the zero-temperature phase transi-
tion, as a function of J’, is much more trivial than the
one that occurs as a function of temperature. In the
T =0 case, along the critical trajectory, the effective cou-
pling constant is governed by the £ function

dA/d InL =—(11/87%)A%+(69/647*)A+ --- . (3.3)

The solution, at large length scales and small couplings is
ML)—MLy)/[14+(11/87)ML) In(L /Ly)] - (3.4)

The coupling constant flows to zero logarithmically slow-
ly at large length scales. Away from the critical point,
this decrease of A ceases at a scale L of order the correla-
tion length. (See Fig. 11.) On the ordered side, we may
estimate this scale as the inverse size of the order parame-
ter: Ly/L <{¢). Thus, we obtain the universal predic-
tion

ML)—87%/11|In(¢)| 3.5

as (¢)—0. To lowest nontrivial order in A, the mass of
the longitudinal mode, for A3 <0 is given by A2 = —2A2,
and its decay rate is given by

T =AA, /327 . (3.6)

Thus, the width-to-gap ratio is T'; /A; =A/327. The
renormalization-group prediction can be obtained from
this by simply replacing A by A(L), the effective coupling

unbroken
A symmetry

X
| \\4 gg,

(\: - nonlinear

S W, ¢ model
broken ** g<g
symmetry

FIG. 11. Renormalization-group flow for O(3)—0(2)
universality class in four dimensions.
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constant at scale L. (The anomalous dimension factors
which normally arise cancel between A; and A;.)
Hence,

T./AL— 3.7)

S
44|In(g)| -
The longitudinal mode becomes infinitely stable at the
critical point. We note that §% contains a two-magnon
continuum starting at zero energy as well as the longitu-
dinal mode. The strength of this two-magnon contribu-
tion vanishes as the critical point is approached. This
means that the spin Green’s function, expressed as a
function of the invariant momentum p2=E?—v?p?, has
both a cut on the positive p? axis beginning at p2=0 and
a pole displaced off the axis at p?~A2 +2iA; . As we
approach the critical point, the intensity of the cut goes
to zero and the pole approaches the origin along a trajec-
tory which approaches the real axis. We give an explicit
example of this behavior below, using the large-n limit.

So far, we have only discussed the Landau-Ginsburg
model in this section. However, by universality, we ex-
pect these arguments to be much more general. The
Gaussian fixed point is expected to be the universal stable
fixed point governing the symmetry-breaking phase tran-
sition SO(3)—SO(2) in four space-time dimensions.
Essentially any model which undergoes such a phase
transition is expected to flow to the zero-coupling
Landau-Ginsburg fixed point under renormalization.
This should be true, for example, of the nonlinear o mod-
el. Formally, this is obtained from the Landau-Ginsburg
model by taking A}— — o with A2/A held fixed. In this
limit ¢?=1; longitudinal fluctuations have infinite mass.
However, if we assume that the renormalization-group
flows shown in Fig. 11 extend all the way to infinity, then
we conclude that the nonlinear 0 model renormalizes
from A= o all the way to A=0 at the critical point. This
flow is noted schematically in Fig. 11. This implies that
the Landau-Ginsburg model should be better than the
nonlinear o model for describing the physics close to the
critical point. We expect that the quantum Heisenberg
model, which is the starting point or microscopic model
for the study of quantum spin systems, will also be at-
tracted to the Gaussian fixed point.

An instructive illustration of the above discussion is
provided by the large-n limits of both Landau-Ginsburg
and nonlinear ¢ models. We briefly review this limit, fol-
lowing the notation and approach of Ref. 11. The start-
ing point is to generalize the three-component vector, ¢,
to n components, and then let n— . The four-
dimensional Langrangian is written exactly as in Eq. (3.1)
except that we replace the coupling constant A by A/n in
order to have a smooth large-n limit. The nonlinear o
model is obtained by taking the limit A3— — o with
(¢)*=—nA3/A=n/g held fixed. In this limit longitudi-
nal fluctuations of ¢ are frozen, at short wavelengths, so
¢ obeys the constraint ¢*=n /g. The parameter g is the
coupling constant of the nonlinear ¢ model. (The model
is often written in terms of a rescaled field, so that the
constraint becomes ¢>=1 and a factor of n /g appears in
front of the derivative terms in the Lagrangian.) A con-
venient way of dealing with the large-n limit is to intro-
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duce an auxiliary field y(x) in terms of which the (Eu-
clidean space) Lagrangian is rewritten:

L=1V,9-V,p+nx?/2A+(ix/2)(|¢12+nA3/A) . (3.8)

Upon doing the Gaussian integration over the auxiliary
field x in the path integral, we obtain the original La-
grangian. Note that, the nonlinear 0 model limit, the
term in L quadratic in Y vanishes so the effect of the y
integration is to impose the local constraint
¢*=—nAl/L. The next step is to integrate over the
fields ¢ in the path integral. This can be done exactly
since they now appear only quadratically in .L. Because
there are n ¢ fields, the resulting trace-log term has a pre-
factor n. In order to study the possibility of spontaneous
symmetry breaking in which (¢ )70, it is convenient to
integrate only over n —1 of the ¢ fields and leave ¢, in
the action so that it may obtain an expectation value.
The resulting effective action becomes

S(¢,x)= [ d*x[1V,$,Vep, +nx? /21
+(ix/2)¢3+nAl/n)]

+[(n—1)/2]trIn[ —3*+ix] . (3.9)

We now look for a saddle-point configuration in which
the fields ¢, and ) are constant and expand the functional
integral in powers of the fluctuations away from the sad-
dle point. It can be easily seen that this gives a series in
1/n. The saddle-point configuration is of two possible
types depending on the values of A and A? (or g in the ¢
model limit). In the broken-symmetry phase, which we
are interested in here, () =0 and {¢,)70 at the saddle
point. The value of (¢,) is determined by setting to zero
05 /9y. This gives the equation, in the large-n limit,

d'% 1
(2m)* k2

()2 =—nAl/A—n [ (3.10)

We must impose an ultraviolet cutoff A on the momen-
tum integral (effectively given by the lattice spacing and
the exchange energy, J, in the quantum spin problem), so
the above integral gives A2/1672. We see that a solution
exists (i.e., the system is in the broken symmetry phase)
provided that —A3/A> A%/167% (or 1/g>A%/1672 in
the o model limit). We now expand the action to quadra-
tic order in the fluctuations around the saddle point, writ-
ing ¢;=(¢)~+¢,. The term quadratic in y involves the
integral

d% 1 1
Qm)* k% (k+p)?

Bpr=if (3.11)

For momenta much less than the cutoff,
B(pH)=(1/327H)[1+ InA%/(—p?)] .

Here we have made the analytic continuation back to real
time and p>=E?—p~2. Rescaling x by a factor of V'n,
the quadratic part of the action, written in momentum
space, in matrix form, becomes
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d4
s=if ;;r%m(p),x(p)]

¢.(—p)
x(—p)

p? i(¢)

X |=i(¢) [1/A+B(p?)]

(3.12)

Here (¢ ) is given by Eq. (3.10). The progagator (i.e., the

Fourier transform of the time-ordered Green’s function)

is given by the inverse of the matrix appearing in S.
Thus, in particular, the ¢; propagator is given by
__i{1/A+(1/327)[ 1+ InA?/(—pH)]}

pHI/A+(1/320)[1+ InA2/(—pD)]} —(¢)?

(3.13)

In the nonlinear 0 model limit, this takes the simpler
form

D(pH)=(d.¢.)(p)
__ i/32a)[1+ InA*/(—p?)]
pA1/320%)[1+ InA2/(—p?)]—($)?

The real part of D gives the 11 components of the
neutron-scattering cross section, { $!&'!). This illustrates
all the general features expected from the
renormalization-group arguments. First focus on the
weak-coupling limit of the Landau-Ginsburg model, as-
suming 1/A>>(1/327%)In(A2/{$)?). We see that D(p?)
has a pole given approximately by p2=~A{$)?>~A2. The
pole is actually displaced slightly off the real axis since
In(—p?) has an imaginary part for positive p2. Thus, at
the pole,

Imp2~AA} /327 .

(3.14)

(3.15)

The position of the pole can be written as A +2iA; T,
where T is the decay rate. Thus, we find

T~AA, /641 . (3.16)

This agrees with Eq. (3.6) up to a factor of 2 which arises
from rescaling A and making the large-n approximation.
A better approximation to I' is obtained by making the
replacement

1/A—1/Ag=1/A+(1/327%) InA%/A} (3.17)
in Eq. (3.16), with A; determined by
(¢)2=A%[1/A+(1/327%) In(A%/A2)] . (3.18)

We see that Eq. (3.16) will be approximately correct with
these replacements whenever A g <<321.

A is just the effective coupling constant determined
from the renormalization group (in the large-n limit)
evaluated at the scale A;. We see that, for A3 << A2, the
effective coupling becomes small, even if the bare cou-
pling is not. In fact, this remains true even in the non-
linear o0 model limit, where the bare coupling is infinite.
In this case, Eq. (3.17) reduces to
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1/Ag=(1/327*)InA%/A2 . (3.19)

Thus, we see explicitly, in the large-n limit, that the non-
linear ¢ model becomes equivalent to the Landau-
Ginsburg model with a small coupling constant, near the
critical point where ($)2 and AZ vanish. Up to a Inln
term, we may replace A2 by (4 )? inside the logarithm.

We also see from Egs. (3.13) and (3.14) that, for
|p2| << A2, the propagator has a cut:

2 v 2,2

D(p*)— 272() InA*/(—p”°) .
This arises from the two-Goldstone boson intermediate
state. Thus, the real part of D, which gives the neutron-
scattering cross section, has a constant part at small posi-
tive p2 coming from the two-magnon contribution and
then a resonance at p’~—A? from the longitudinal
mode. As {¢$)2—0, the resonance moves down to p2=0,
and right at the critical point the propagator reduces to
D(p?)—i/(p®+ie); the real part collapses to a § func-
tion at p2=0. Close to the critical point most of the in-
tegrated intensity comes from the resonance, not the cut.

We now turn to the triangular lattice case. It is impor-
tant to realize that the order-disorder phase transition is
in a different universality class than in the bipartite case.
This follows from the fact that there is an unbroken
SO(2) symmetry in the Néel state on a bipartite lattice
(rotation of the spins about the unique ordering axis) but
not in the triangular lattice where the ordered state in-
volves three different axes making angles of 27 /3 with
respect to each other, as shown in Fig. 1. Now, taking
the continuum limit of the three-dimensional Landau-
Ginsburg model, we must introduce three fields, ¢;,
i=1,2,3 labeling the three inequivalent sublattices in the
basal plane. The quadratic part of the potential energy is
of the form

3
V=3 (A%/20)|¢; > +120's(p, ¢, + by 3+ d3-9)) .

i=1

(3.20)

(3.21)
It is now convenient to change variables to
6,=(2¢,—,—¢,)/V6, (3.22)
¢, =(6,—3)/V2, (3.23)
$.=(;+¢,+63)/V3 . (3.24)
This diagonalizes the quadratic terms giving
V,— LA /v —120'5)(1¢, 17+ 8,1
+1(A2/v+24T's)|¢,|* . (3.25)

We see that, as we increase J', the a and b modes eventu-
ally become gapless whereas the ¢ mode gets a larger gap.
¢. is the ferromagnetic order parameter; its gap vanishes
if J' is sufficiently large and negative. Since we are in-
terested in the antiferromagnetic case, we may simply
drop the massive mode, ¢., from the low-energy theory.
The two remaining modes, ¢, and ¢,, can be combined
into a complex three-vector field:
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S=(¢,+id,)/V2 . (3.26)
The original spin operators are related to ® by

S, x Re(®e' &™) | (3.27)

where Q, is the ordering wave vector projected onto the
basal plane, given in Eq. (2.28). The complete Landau-
Ginsburg model may be rewritten in terms of @ (after el-
iminating ¢_) as

L=V,0*V,®>+AID*- D+ (A,/4)(D*-D)?

+(A,/4)(@-D)(D*-D*) . (3.28)

Here A} is an effective renormalized gap parameter, as
before. The two coupling constants, A; and A,, are deter-
mined by the original single coupling constant, A. To
lowest order in A, they have the values, A,=4A/3,
A,=2)A/3. They are both positive, resulting in an or-
dered state with Re®lIm®. This gives the expected
2w /3 structure, from Eq. (3.27). Higher-order correc-
tions to the Lagrangian are obtained from integrating out
¢.. However, these only produce corrections to A%, Ay
and A, together with terms of higher order in derivatives
or in powers of the fields. This follows from the discrete
symmetry ¢,—¢,—>¢;—¢,, which corresponds to
® e 2"/3®. This symmetry forbids any other non-
derivitive quadratic or quartic terms. [Note that this Z,
symmetry is actually enlarged to a U(1) symmetry in the
Landau-Ginsburg model. Only by keeping sixth-order
terms in £ is the symmetry reduced to the Z; subgroup.]
Thus, the effective Landau-Ginsburg Lagrangian density
must have the form of Eq. (3.28) with some effective pa-
rameters, A%, A,, A,. The B function has been calculated
for this model:’

dM\/d InL = —(1/16m*)(TA3+4A,A,+4A3)+0(A%)
(3.29)

dA,/d InL=—(1/167*)(6AA,+3A3)+0(A%) .  (3.30)

The resulting renormalization-group flows are shown in
Fig. 12. Note that only the line A,=0 flows to the origin
in coupling constant space. Otherwise all trajectories
flow to A;=— 0, A,==+ . Thus, we see that the Gauss-
ian fixed point is not stable, for this phase transition, in
four space-time dimensions. The usual interpretation of
this kind of renormalization-group flow is that the phase
transition is driven first order by fluctuations. This is
signified by the negative value of A, upon renormaliza-
tion. Including positive |¢|® terms for stability, we find a
first-order phase transition in Landau Theory. There has
been some controversy lately over the corresponding
phase transition in three dimensions, which would corre-
spond to the finite-temperature transition in CsNiCl;. It
may be first or second order. However, in four dimen-
sions there seems to be no question; the Gaussian fixed
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*, field is included, with the field lowering J,. Thus, in
\"/ weak fields, for J' only slightly bigger than J. the
Landau-Ginsburg model predicts behavior much different

than does conventional spin-wave theory. This behavior

P P N goes over smoothly into the simple Zeeman splitting of

ST

FIG. 12. Renormalization-group flow for triangular lattice
antiferromagnets in four dimensions.

point is unstable so the transition is expected to be first
order.

What does this imply about the longitudinal mode?
We should expect that, as the interchain coupling J' is
decreased in the ordered phase, the sublattice magnetiza-
tion will decrease smoothly for a while, but eventually
will make a discontinuous drop to zero at J.. Corre-
spondingly, we expect that the mass of the longitudinal
mode will decrease smoothly before dropping abruptly to
zero. It also seems plausible that the effective coupling
constants will at first decrease, before the first-order tran-
sition point is reached. Thus, we might expect the
width-to-mass ratio of the longitudinal mode to decrease
with increasing J'. Of course, this ratio will never reach
zero; before this happens the transition to the disordered
phase will occur. The value of this ratio at the first-order
transition point, J;, is nonuniversal. Whether or not the
longitudinal mode is observable in a stacked triangular
system is an empirical question. As we have tried to ar-
gue in Sec. II, the experimental evidence in CsNiCl; sug-
gests that it is.

IV. NEUTRON-SCATTERING IN A FINITE FIELD

In this section we consider the effect of a magnetic field
on the magnon dispersion relation in the ordered phase
for the case of a stacked triangular lattice antiferromag-
net.!> We first present the result of conventional spin-
wave theory. (As far as we know, this simple result has
not been published before in its entirety.) We then
present the analogous result using the Landau-Ginsburg
model; i.e., including the longitudinal mode. Some com-
parison is then made with finite-field neutron-scattering
experiments on CsNiCl,.® Finite-field effects in the disor-
dered phase of Haldane gap antiferromagnets have been
discussed elsewhere.!> In the case under consideration
here, where crystal-field (or exchange) anisotropy can be
ignored and the Zeeman energy is smaller than the Hal-
dane gap, the result is extremely simple. The Haldane
triplet simply undergoes a Zeeman splitting with energies
A, Atgugh, where h is the magnetic field. As we have
emphasized above, in the Landau-Ginsburg model we go
smoothly from disordered to ordered phases by varying
the interchain coupling. (However, the transition is
driven to first order by fluctuations in the stacked tri-
angular lattice case.) This remains true when a magnetic

the disordered phase as J'—J.. The finite-field experi-
ments provide evidence for such an effect in CsNiCl;.

Following the experimental setup, the spins are or-
dered in the xz plane (at & —0), as in Fig. 1 and the mag-
netic field, A, is applied along the y axis. We first consid-
er the classical problem, regarding each spin as a classical
vector, of length s. This gives the starting point for stan-
dard spin-wave theory. (Note that this is not quite the
same as the classical limit of the Landau-Ginsburg model
because that model is developed in terms of the staggered
magnetization.) Classically, each spin cants in the y
direction by the angle 6, without changing its orientation
in the xz plane. The classical energy per spin is

E/N=—2Js2cos20—gpuphs sinf

2
+6J's? |1— 3 cos“@
2
Minimizing E with respect to 0 gives
. 8ugh
sin@ NTYERTYON 4.1

We note that, for CsNiCls, J /hp=0.345 THz, so, for the
maximum field of 6 T used in the experiment, sin~0.06.

To calculate the dispersion relation using conventional
spin-wave theory, we expand around the classical ground
state, calculated above, to quadratic order in magnon
creation and annihilation operators. The calculation can
be considerably simplified by the observation that, as in
the zero-field case, the classical ground state is invariant
under translation by one site together with a rotation by
27 /3 in the xz plane. (This symmetry is not destroyed by
canting.) For zero canting, the spin operators on the 4
sublattice (see Fig. 1) are expanded as

S°=[Vs/2(a"+a),iVs/2(aT—a)s—ata]. (42)

This is the correct representation when the spin points in
the z direction in the classical approximation. Here a
(a’) annihilates (creates) a boson. To obtain the correct
representation on the six different sublattices, in the pres-
ence of canting, we simply rotate S° by the rotation ma-
trix which produces the correct classical state from the
one where the spin points in the z direction. The needed
rotation matrices are R, the cant (rotation by —6 about
the x axis), R,, a rotation by —2m/3 about the y axis,
and R, a rotation by 7 about the y axis. The needed rep-
resentation on the six different sublattices, shown in Fig.
1,is

SA =KIS(I) ’
Sz=R,S,,
SCZK%SA )



I&

Sp=R;S,,
Sg=R;3Sg,
SF=£3SC .

The Hamiltonian may now'be written in the fully
translationally invariant form:

N
H=2 2 JS? X; 'és(l)x.-i-s
=1 ) o e
: 0 0
+J 21 Sl.xj ‘Asl,xj+8, _g'lLBthj’y > (4.3)

where the 8,’s are the lattice vectors defined in Eq. (2.22)
for i =1,2,3 and §,=a,, defined in Eq. (2.21). 4 and B
are real matrices:

]

+J'sf(Q,)(1—35in%0) aBaQ—[2Js cos’0 cos(cQ, /2)+3J's cos29f(Ql)](aI-\,aT_Q +aga_q) | -
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4Js cos20—4Js sin%6 cos(cQ, /2)+gugh sind+12J's
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A=R 1T_2£1
1 _ V3sing V'3 cosf
2 2 2
_ | V3sing 2 sin’@ 3 sinf cosf
=| ———— cos‘0— ,
2 2 2
_V3cos§  3sinfcosd sin0— cos’0
2 2 2
-1 0 0
B=RTR;R,=| 0 cos20 sin20
0 sin260 — cos26
Note that, while B is symmetric, 4 is not. Thus, the

Hamiltonian of Eq. (4.3) is not invariant under reflections
in the basal plane. We now Fourier transform. Since the
Hamiltonian of Eq. (4.3) has the full lattice translation
symmetry, we may introduce Fourier modes in the full
paramagnetic Brillouin zone. The quadratic terms in H
become

2

2
3cos”6 _1]

(4.4)

f(Q)) is defined in Eq. (2.40). We now diagonalize H, by a Bogliubov transformation, giving the dispersion relation
EXQ)={4Js[1— sin*6 cos(cQ, /2)]+J's[6+ f(Q,)—3sin?0f (Q,)]}2—[4J, cos?d cos(cQ, /2)+3J’ cos’0f (Q,)]* .

Defining E,(Q) to be the zero field energy,
EXQ)={4Js+J's[6+ f(Q)]}?
—[4Js cos(cQ, /2)+3J'sf(Q)T?,

this can be conveniently rewritten as

E(Q =V E}(Q)+c(Q)s*sin , (4.6)
where
c(Q)=32J7[ cos¥(cQ, /2)— cos(cQ, /2)]
+8JJ'[Scos(cQ,/2)f(Q))
—3f(Q,)—6cos(cQ,/2)]
+1272[£(Q,)*=3£(Q))] . @.7)

Taking into account the rotating reference frame implicit

in the definition of the aj’s, we find a single branch of

magnons with y polarization and two with xz polariza-
tion:
E,(Q)=E(Q), (4.8)
E,,+(Q)=E(Q*Q) . 4.9)

Note that, in zero field, E,(Q) vanishes at Q=0 and

4.5)

also at the 12 corners of the paramagnetic Brillouin zone.
(See Fig. 3.) Consequently, E, and E,,; each vanish at
one inequivalent wave vector in the antiferromagnetic
zone. These are the three Goldstone modes correspond-
ing to the complete breaking of rotational symmetry. E,
and E,,_ vanish in zero field at (Q,,Q,,Q0;)=(5,1,1),
the ordering wave vector. [See Figs. 6(a) and 8.] At
nonzero field, E(Q) only vanishes at Q=0 since ¢(Q)
vanishes at Q=0 but not at the corners of the paramag-

0.6 [ T T T T T T

0.5 |
0.4 |

0.3 |

Frequency (THz)

0.2

0.1 |

0

0 0.1 02 03 04 05 06 0.7

n

FIG. 13. Dispersion relation of a y-polarized mode in a mag-
netic field of » =0 and 6 T, according to spin-wave theory and
Landau-Ginsburg model.
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FIG. 14. Field dependence of y-polarized spin-wave frequen-
cies (Ref. 6) at wave vector (0,0,1) in CsNiCl;, compared to the
Landau-Ginsburg model.

netic zone. Thus, only E,,  vanishes at the ordering
wave vector. This corresponds to the fact that, classical-
ly, rotations of the canted spin configuration in the xz
plane cost zero energy but any rotation involving a
change in the y components of the spins costs energy. In
fact, ¢(Q) is relatively small, of O(J'J) whenever Q, =0.
Consequently, the change in the energies of the xz modes
for fields less than 6 T in CsNiCl; is negligible for all
wave vectors considered in this paper. Only the y mode
is significantly effected by a 6-T field, and that effect is it-
self rather small except near the ordering wave vector.
The y-mode dispersion relation at fields of O and 6 T is
shown in Fig. 13. We do not show the xz dispersion rela-
tion at 6 T because, to the naked eye, it is indistinguish-
able from the zero-field result in Fig. 8.

Note that this field dependence, predicted by spin-wave
theory, is completely different than that which occurs in
the disordered phase. In this case, for the field applied
along the y axis, the y mode, which has §”=0, is com-
pletely unaffected by the field and the xz modes, which
have §”=1x1 and a Zeeman splitting Tgugh.

Let us now consider the experimental field dependence
at (0,0,1), (0.1,0.1,1), and (0.39,0.39,1) shown by the cir-
cles in Figs. 14—19. Note that the y mode is quite weakly
affected by the field, and its field dependence is quite well
predicted by conventional spin-wave theory. However,

1 — T T T T
-

Q=(.1, .1, 1) y polarization

0.8 ]
£ 06 .
5 i
é‘ 0.4 E ]
w 4
0.2 |
0 L 1 1 it
0 2 4 6 8 10

Magnetic Field (T)

FIG. 15. Field dependence of y-polarized spin wave frequen-
cies (Ref. 6) at wave vector (0.1,0.1,1) in CsNiCl;, compared to
the Landau-Ginsburg model.
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FIG. 16. Field dependence of y-polarized spin-wave frequen-
cies (Ref. 6) at wave vector (0.39,0.39,1) in CsNiCl;, compared
to the Landau-Ginsburg model.

the xz mode shows a stronger field dependence than the y
mode and is not at all described by conventional spin-
wave theory which predicts essentially field-independent
frequencies. Remarkably, the experimental behavior is
much better fit by the disordered phase behavior than by
spin-wave theory, despite the fact that the system is in
the ordered phase. Since the Landau-Ginsburg model in-
terpolates smoothly between spin-wave theory and the
disordered phase behavior, we might expect it to give a
good description of this behavior.

We now consider magnetic field dependence in the
Landau-Ginsburg model. The Lagrangian is obtained
from Eq. (2.3) by the replacement

3¢ /0t —0¢ /3t +guzh X . (4.10)

We must first recalculate (¢ ) in the presence of the field.
Assuming a uniform value of ¢ on each sublattice of
chains, we obtain the potential energy per antiferromag-
netic unit cell:

V—3 A% o A 4
=2 —2;¢.-+< /4);i —

i=1

(gushXx¢,)’
2v

+(AT's/C) by byt by byt dydy] . 4.11)

Choosing the magnetic field to lie along the y axis, we see

1 T T T T
5=(0,0,1) xz polarization 1
0.8 +~ _
E 06 o — ]

3 [

g o4l © .
. i //_6_—-\“:
02 g 1

0 1 1 1

0 2 4 6 8 10

Magnetic Field (T)

FIG. 17. Field dependence of xz spin-wave frequencies (Ref.
6) at wave vector (0,0,1) in CsNiCl,;, compared to the Landau-
Ginsburg model.
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FIG. 18. Field dependence of xz spin-wave frequencies (Ref.
6) at wave vector (0.1,0.1,1) in CsNiCl;, compared to the
Landau-Ginsburg model.

that the minimizing configuration for the ¢;’s is still the
27 /3 structure in the xz plane, but with a different mag-
nitude of ¢. This might seem to contradict the classical
result discussed above which involved a canting of the
spins in the y direction. However, there is no contradic-
tion because this canting is uniform along the chains.
Thus, it does not show up in ¢, the staggered magnetiza-
tion, but only in

1=(1/v)¢X(3¢ /3t +guphXd)=(guz/v){¢)*h .
4.12)

Assuming the 27/3 structure, the potential energy per
chain per unit length becomes

V—{[A2—(guph)*]/2v—120's /c}$*+Ag*/4 . (4.13)

Note that the applied field decreases the effective A and
favors the ordered phase. The sublattice magnetization is
given by

#*=[(guph)*+24J'sv /c —A*]/Av . (4.14)

This sensitive dependence of the sublattice magnetization
on external field leads to a strong field dependence of
magnon energies.

To calculate the dispersion relation, we introduce the
same rotating coordinate system and modes as in Eqgs.
(2.33) and (2.34) and expand the Lagrangian to quadratic
J

—E2+02Q0248J'sv /(3— f)c
2igughE +8V3il'svf /c

This gives a quartic equation in E with four real solutions
of both signs. Since f(—Q,)=—f(Q,), the classical
solutions at wave vector —Q are —1 times the solutions
at wave vector Q. At the quantum-mechanical level, it
can be seen that the magnon energies are given by the ab-
solute values of all four classical frequencies, at each
wave vector. The doubling of the number of solutions
occurs because the modes at Q and —Q are mixed. The
same wave-vector shift occurs, due to the rotating refer-
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FIG. 19. Field dependence of xz spin-wave frequencies (Ref.
6) at wave vector (0.39,0.39,1) in CsNiCl;, compared to the
Landau-Ginsburg model.

order. The terms quadratic in the y mode, ¢,, are exactly
the same as previously, Eq. (2.35), except that the value
of {¢) has changed, now being given by Eq. (4.14). On
the other hand, the terms quadratic in transverse and lon-
gitudinal xz modes, ¢, and ¢, are the same as previous-
ly, Eq. (2.37) (expressed in terms of the new value of
(#?), plus the additional terms

gugh | 0dy; by,
&sz=2 v atl i~ a: é1i
( X2 +%))
L 2:’:‘ a2 (4.15)

At this point we Fourier transform with respect to space
and time. The energy of the y mode is given by

E,(Q,—27/¢,Q,)?
=(vQ, )+ (8J'vs /¢)[3+2f(Q,)]+(gugh)* .

(4.16)

This is the same result as obtained from conventional
spin-wave theory, Eq. (4.6), for small Q,—27/c and J'.
The agreement with experiment, shown in Figs. 14-16, is
quite good. The classical equations of motion mix the
transverse and longitudinal xz modes as before. The clas-
sical frequencies are now given by the vanishing deter-
minant condition:

—2igughE —8V3iJ'svf /c
=0.
—E*+v?Q2+8J'sv(3—f)/c+ A2 +2(gugh

(4.17)

™

ence frame as at zero field. Thus, there is a single y mode
and, in general, eight xz modes given by the absolute
value of the four solutions of Eq. (4.17) shifted in wave
vector by +Q,, defined in Eq. (2.28). The xz frequencies
are quite strongly field dependent, due to the field depen-
dence of (¢), unlike in conventional spin-wave theory
where the field dependence of xz modes is minute.

The field dependence at wave vector (0,0,1) of the xz
modes is shown in Fig. 17. There are only four indepen-
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dent xz branches at this wave vector. They display be-
havior reminiscent of Zeeman splitting, as expected, and
as observed experimentally. There is some experimental
evidence that the single zero-field xz peak is actually split
into two with frequencies of about 0.42 and 0.58 THz.
However, due to the low beam intensity in this polarized
inelastic-neutron-scattering experiment, the apparent
double-peak structure may not be statistically significant.
(See Fig. 3a of Ref. 8.) Higher-intensity experiments are
needed to resolve this issue. If this splitting is really
present, it is probably a result of crystal-field anisotropy.
Such anisotropy can be included in the Landau-Ginsburg
model. We expect it to split the upper zero-field xz peak
into two components. (It also mixes xz and y modes.)
We also show the experimental results and theoretical
predictions for xz polarization at wave vectors (0.1,0.1,1)
and (0.39,0.39,1), in Figs. 18 and 19. The nonzero field
dependence of xz-polarized branches disagrees badly with
conventional spin-wave theory which predicts an essen-
tially field-independent spectrum given in Fig. 8. It is
more difficult to say how well it agrees with the Landau-
Ginsburg model because we have not yet calculated the
intensity or width of the branches at finite field and be-
cause of the low intensity and resolution of the experi-
ments. At (0,0,1) and (0.1,0.1,1), we expect the lower
branches to be of very low intensity at small fields. The
Zeeman-like behavior of the upper branches is in at least
rough agreement with experiment. Note that, at
(0.39,0.39,1), near the ordering wave vector, the lowest,
Goldstone, xz branch is essentially field independent,
whereas the next lowest branch is split into two by the
field.

V. CONCLUSIONS

We may summarize the agreement between theory and
experiment as follows. In CsNiCl,, the y-polarized spin-
wave spectrum is in good agreement with both theories,
which make essentially the same prediction. The xz-
polarized spin-wave spectrum disagrees badly with con-
ventional spin-wave theory. In particular, we have
identified two qualitative features which are missed by
this theory: the large ratio of frequencies of the upper
mode at (0,0,1) and (4,1,1) and the strong field depen-
dence. It is more difficult to estimate the agreement be-
tween the Landau-Ginsburg model and experiment for
xz-polarized modes. Certain qualitative features are well
explained: the existence of a mode near (0,0,1), which is
nearly degenerate with the y mode and about 21 times
higher than the upper mode at ({,1,1); strong field
dependence which is Zeeman-like near (0,0,1). The most
serious discrepancy is probably the nonobservation, near

1,4, 1), of xz branch number 2, shown in Fig. 6(b), pre-
dicted at a frequency of 0.28 THz and an intensity of
about ; that of branch number 3 at 0.18 THz. However,
we can argue with some confidence that it must be there
since it is the continuation of the upper branch which is
observed near (0,0,1). It seems quite likely that its energy
is renormalized downward so that it cannot be resolved
from branch 3, near ({,1,1). This hypothesis could be
checked by measuring intensities. Another fact to keep
in mind is that the upper branches are, in general, of
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finite width. These widths have so far not been calculat-
ed; in particular, we do not know their wave-vector
dependences. Possibly the second branch becomes unob-
servably broad near (1,1, 1).

The number of so far unobserved modes becomes
higher at finite field. Thus, higher-intensity and resolu-
tion finite-field experiments may provide a more definitive
test of the Landau-Ginsburg model.

As we have emphasized, the spin-wave spectrum of the
Landau-Ginsburg model goes over smoothly from the or-
dered to disordered phase (ignoring fluctuation effects
which drive the transition first order for a stacked tri-
angular lattice). Thus, certain features of the experimen-
tal data, taken in the ordered phase, which are reminis-
cent of the behavior of the disordered phase, are ex-
plained naturally by the Landau-Ginsburg model. These
features include the fact that the xz modes are nearly de-
generate with the y mode near (0,0,1) and the fact that
these three modes exhibit a Zeeman-like field depen-
dence. These features are approximately reproduced by
the Landau-Ginsburg model with the choice of parame-
ters we have made. There is some indication that
CsNiCl, is exhibiting behavior near (0,0,1) which is even
more like the disordered phase than that of the Landau-
Ginsburg model with these parameters. It is quite possi-
ble that higher-order corrections to the model might
reproduce this; i.e., these might give an effective A,
which depends on wave vector and might be smaller near
(0,0,1) than near the ordering wave vector.

A major experimental issue which needs to be resolved
is whether the xz mode at (0,0,1) is split into two com-
ponents even in zero field. The experimental situation
presently seems ambiguous. If so, this presumably
represents an effect of the Ising anisotropy.

The situation in RbNICl; remains more ambiguous
pending polarized neutron-scattering experiments. We
do not know whether a portion of branch 2 lies inside the
peak observed at (0,0,1). It is possible that this peak con-
tains only the y mode and that branches 1 and 2 are at
higher energy and may be too broad to be observable.

Another type of theoretical prediction that we have
made involves the dependence on interchain coupling.
We have predicted a first-order transition for a stacked
triangular lattice but second order for a tetragonal lat-
tice. If a material could be found with an interchain to
intrachain coupling ratio very close to the critical value,
then it might be possible to study the transition by apply-
ing pressure to the sample. One could search for such a
material by looking for ordered systems with very small
antiferromagnetic moments. We note that, in the tri-
angular case where the transition is first order, the mo-
ment would decrease, upon decreasing the ratio, to some
limiting nonzero value, before dropping discontinuously
to zero. Since this limiting value is not known, it is
difficult to estimate how close CsNiCl, is to the phase
transition.
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APPENDIX: FORM OF THE LAGRANGIAN

An alternative Lagrangian was proposed recently® for
quasi-one-dimensional antiferromagnets which also con-
tains longitudinal fluctuations but gives a rather different
spin-wave spectrum. The purpose of this appendix is to
compare the two approaches and justify the form of the
Lagrangian used here.

The path-integral formulation of a single quantum spin
is written in terms of a unit vector S(¢) with an action
= sA[S(t)]—fdtH[sS(t)] where A is the orlented

area swept out on the unit sphere by the closed path S(t)
and H (sS) is the Hamiltonian.!* (See Fig. 20.) There is a
47 ambiguity in the choice of area, 4, but the weight, e’
in the path integral is single valued since s must be an in-
teger or half-integer The equations of motion are de-
rived by varying the action with respect to an
infinitesimal change in the path S(1)—S(2)+8S(2). Using
(see Fig. 21)

54= [drs8-[SxaS/ar], (A1)
we obtain the Euler-Lagrange equation
s38(1) /8t = —S(r) X 8H /88(1) . (A2)

For a lattice of coupled quantum spins with a Hamiltoni-
an of the general form

H=5s>3J8;8,, (A3)
iJj

this gives the first-order classical equation

98, /3t=—s 3 J;8;XS; . (A4)
J

Note that this is the classical torque equation. The con-

tinuum limit is obtained, for an antiferromagnet, by keep-

ing only long-wavelength fluctuations of the uniform and

staggered magnetization density, / and s¢, respectively;

i.e., we approximate

s8; = 1(x,)+(—1)s¢(x,) , (A5)

where we obtain a plus or minus sign for the two sublat-
tices, and we have again set the lattice spacing to one.
For a stacked triangular lattice, i labels distance along

FIG. 20. Classical path traced out on the unit sphere by the
time evolution of the spin variable.

FIG. 21. The change in the area resulting from an
infinitesimal deformation of the path.

the chain. Note that [dx I(x) is the total conserved spin

and s¢ is the Néel-order parameter. In the large-s limit,
we expect [ and ¢ to both be of O(1). Assuming that /
and ¢ vary slowly, the unit-vector constraint on S; be-

comes
=1-1%/s*=~1,
é-1=0.

(A6)

We substitute this form, Eq. (A5), into the action, assum-
ing that both fields I and ¢ vary slowly over one lattice
spacing. Noting that 4 [S(t)] is odd under S(t)— —S(z),
we see that the leading term cancels between neighboring
sites. There is a correction, of O(1/s), which couples /
and ¢:

8A=(1/5) [dr1-[$Xd¢p/d1] . (A7)
In general, it is also important to keep the other correc-
tion which is a triple product of ¢, d¢/9t, and 3¢ /dx.
This gives the topological term in the nonlinear o model
in (1+1) dimensions. However, for integer s, this term
has no effect. The one-dimensional Heisenberg Hamil-
tonian is also rewritten in terms of / and ¢:

3 205%8,8; 52 [dx[— 1+ Ld ¢ /dx )*+21%/5?]
i

=v [dx[(g/D1*+(1/2g)(d¢/dx )]

+const , (A8)

with v =4Js and g =2/s. Including the time-derivative
term, we obtain the Lagrangian in the form

L= [dx[I-($Xd¢/0t)—(vg /2)I?
—(v/2g)(3¢/0x)*] .

Note that, written in this form, the Lagrangian contains
only a first time derivative. If we replace ¢ by (¢ ) in the
time-derivative term, then it becomes identical to the one
used in Ref. 7 in the long-wavelength approximation. To
obtain the second-order time-derivative term of Eq. (2.3)

(A9)
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we simply eliminate /, using the Euler-Lagrange equation
ugl=¢Xo¢/at . (A10)

This is equivalent to integrating out / in the path integral
where it appears quadratically. This gives a new term in
L, of the form

Liyinetic =(1/2vg)($ X3 /3t )* . (A11)

Finally, using the large-s result |¢|>=1, we may replace

(¢ X3dp/3t)— (3¢ /3t) . (A12)

Thus, we see that the first- and second-order time-
derivative forms of the Lagrangian are actually
equivalent. The difference between the results of the
present approach and those of Ref. 8 lies in the passage
from hard to soft spins. The approach that we have tak-
en consists of beginning with the Lagrangian in second-
order form, Eq. (2.3), and then relaxing the constraint of
the field ¢ and introducing a phenomenological potential
energy with quadratic and quartic terms. No derivation is
given in Ref. 8 of the effective Lagrangian used there.
Furthermore, it was not claimed to describe the disor-
dered phase or the vicinity of the transition. It does seem
clear that an essential feature of that approach is that the
constraint is relaxed before the field / (i.e., near zero
wave-vector component of the spin operator) is eliminat-
ed. It may help to clarify the difference between the two
approaches to attempt to derive a somewhat generalized
Lagrangian, which shares some essential features with
that of Ref. 8, but is also, in principle, applicable in the
disordered phase. Thus, we begin with the Lagrangian in
first-order form, Eq. (A9), and then follow the same steps
as above, i.e., we relax the constraints, ¢2= 1,1-¢=0and
introduce a potential energy. We may still eliminate I
after removing the constraint. However, the kinetic term
is now (1/2vg)(¢ X d¢ /3t )? rather than (1/2vg)(dé/3t)*.
These two forms are no longer equivalent with the con-
straint removed. If we replace ¢ by (¢) in the kinetic
term, then we obtain, up to a multiplicative constant, the
term that is effectively used in Ref. 8. This alternative
form of the Lagrangian contains, to quadratic order, no
time derivatives of the longitudinal component of ¢.
Consequently, the Euler-Lagrange equation 8L /8¢; =0
becomes a constraint equation. For a standard Néel
state, it simply imposes the constraint ¢; =0, but in the
triangular lattice case where the Lagrangian contains
cross terms between longitudinal and transverse com-
ponents of @, the constraint determines the longitudinal
component of ¢ to be proportional to the transverse part.
Thus, the number of excitations is not increased relative
to ordinary spin-wave theory; there is no extra branch.
However, the mixing in of the longitudinal component
with the transverse ones can substantially modify the
dispersion relation and intensities.

Which of these approaches is correct? We present ar-
guments here in favor of the approach used in this paper.
First of all, as discussed in Sec. III, the passage from
hard-spin to soft-spin modes can be accomplished using
the large-n limit of the O(n) nonlinear 0 model. Using
this approach, the kinetic energy has the (3¢ /3¢ )* form.
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Indeed, a Lagrangian density of the form

L=(1/20)(¢ X3¢ /3t)*—(v/2)(d$/3x)*+ - - - (A13)

is not Lorentz invariant. The spin-wave velocity is no
longer v but is rather given by v/{¢). Thus, as we de-
crease the interchain coupling, the velocity increases and
would actually diverge at the critical point in the Néel
case. The disordered phase would not contain harmonic
magnon excitations. If we begin with a Lorentz-invariant
hard-spin long-wavelength theory, such as the nonlinear
o model, then we should expect that whatever renormal-
ization processes produce an effective soft-spin model
should preserve the Lorentz invariance, and hence not
change the spin-wave velocity. Including small breaking
of Lorentz invariance, some renormalization of the spin-
wave velocity would occur but there is no reason to ex-
pect it to diverge at the critical point. A possible solution
to this problem might be to also modify the spatial
derivative term, taking a Lagrangian density of the form

L=(1/2v)($ X3¢ /3t —(v/2)($Xd$/dx )+ - - .
(A14)

This is now Lorentz invariant and the spin-wave velocity
no longer depends on {(¢). However, the disordered
phase would again not contain harmonic magnons. Fur-
thermore, there is no reason why the (3¢/9x)* term,
present in the hard-spin Lagrangian, should be excluded
from the soft-spin Lagrangian.

From a more general perspective, (3¢/0x)?> and
(3¢ /dt)* are a couple of perfectly good terms which
respect all the symmetries of the problem and there is no
reason to exclude them from the Lagrangian. The same
is true of (¢ X3¢ /3t)? and (¢ X3¢ /dx)>. In general, we
should include all four terms (together with quartic inter-
chain couplings) in the effective Lagrangian. The quartic
terms were omitted in our treatment in the usual spirit of
Landau-Ginsburg theory. If we are sufficiently close to
the critical point so that {¢) is small, then they are
unimportant. Further from the critical point they could
be included and would modify the spin-wave spectrum.
(Indeed by including them with several additional free pa-
rameters, we could presumably get a better fit to the ex-
perimental data.) However, they do not change the quali-
tative picture presented here. In particular, as long as
the (8¢ /9t)? term is present in the Lagrangian, the extra
branch will be present.

Apart from these theoretical arguments, there is an ex-
perimental reason to prefer the Lagrangian used here. As
discussed above, the main qualitative feature which dis-
tinguishes the present approach from the alternative of
Ref. 8 and from conventional spin-wave theory is the
presence of an additional excitation branch in the
paramagnetic zone. We argued in Sec. II that the experi-
mental evidence for this branch in CsNiCl, is very com-
pelling. The presence of an xz polarized mode at (0,0,1)
with an energy 2. times higher than that of the upper
mode at (4,4,1) implies the existence of a second xz-
polarized branch in the paramagnetic zone since with a
single branch these two modes would have to be degen-
erate. In both conventional spin-wave theory and in the



model of Ref. 8, this degeneracy cannot be lifted by
higher-order corrections due to the symmetry argument
spelled out in Sec. II. We note that in Ref. 8 the theory is
not compared to the polarized data of Ref. 6. The agree-
ment then looks very good since the extra xz branch is
masked by the y-polarized branch near (0,0,1). As the
above discussion indicates, it is crucial to compare the
theory with the polarized neutron-scattering experiments
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of Ref. 6. The present theory gives an extra xz-polarized
branch, albeit with an energy which is about 10% higher
than experiment near (0,0,1). The alternative of Ref. 8
does not contain this experimental feature at all.

In conclusion, both theoretical and experimental argu-
ments favor the Lagrangian used here with a (3¢ /dt)?
term, or perhaps better still, a combination of both types
of terms.

*Present address: Physics Department, Princeton University,
Princeton, NJ 08544.
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