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We developed a method based on functional integration to treat the dynamics of polarons in one-

dimensional systems. We treat the acoustical and the optical case in a unified manner, showing their

differences and similarities. The mobility and the diffusion coefficients are calculated in the Markovian

approximation in the strong-coupling limit.

I. INTRODUCTION

The main task of this paper is to develop a formalism
to treat the dynamics of acoustical or optical polarons in
the strong-coupling limit. Although we are applying the
formalism to a specific problem we think that it can also
be applied to a large class of phenomena, especially prob-
lems involving quantization of zero-frequency modes in
theories which have solitons as solutions of their semi-
classical equations of motion.

When we have a particle (electron) interacting with a
given background (phonons in this case) and wish to
study its effective dynamics, it is now well known that we
must trace over the phonon coordinates and study the
time evolution of the reduced density operator of the
electronic system. However, in the specific case of
electron-phonon coupling, the "effective propagator" for
this operator is extremely cumbersome, preventing us
from getting any simple result out of this standard
analysis. Therefore, one should search for an extra step
before blindly tracing the phonon coordinates out of the
problem.

We start from a very intuitive point, treating the
electron-phonon Hamiltonian as a "semi-classical" Ham-
iltonian. ' This "semiclassical" picture provides us with
solutions which are solitons, that is, solutions which do
not change their shape with time. These solitons will be
the basic entities for the future solution of the problem.
We show that the best basis in which one can expand the
field operators of the quantum Hamiltonian is obtained
from the problem of an electron trapped in a self-
consistent potential well. We will call it the "adiabatic
basis since the strong-coupling limit is the adiabatic hm-
it (see Sec. II).

Once we have obtained the Hamiltonian in adiabatic
form, we can eliminate the electronic part perturbatively,
that is, we trace over the electron coordinates. This
treatment gives rise to an effective Hamiltonian for the
phonon system which has renormalized phonons and a
zero-frequency mode, namely, the polaron. An impor-
tant feature of this Hamiltonian is that it can be straight-
forwardly generalized for a noninteracting many-electron

system.
Using the well-known "collective coordinate forrnal-

ism, " we transform the effective Hamiltonian into a
Hamiltonian of a particle, the polaron, coupled to a new
set of phonons. It can be shown that for a small polaron
momentum the problem can be put in a very simple form.

Actually, this is a more systematic way to apply the
ideas used by Schuttler and Holstein to a quantum dissi-

pation problem as the necessary step before the tracing
procedure. Here, we shall repeat part of their arguments
for the sake of completeness.

Finally, using the functional integral formalism, we can
show that the polaron behaves as a Brownian particle due
to the scattering of phonons. So, we have developed a
method which allows us to calculate the physical quanti-
ties of interest, such as the dainping parameter (mobility)
and the diffusion coeScient without appealing to kinetic
theory.

In Sec. II we will present the model and exhibit the
adiabatic basis for the strong-coupling limit while in Sec.
III we obtain the effective Hamiltonian for the polaron
coupled to the renormalized phonons. In Sec. IV we use
the functional integral formalism in order to show how
this problem can be treated as a Brownian motion prob-
lem and in See. V we use the previous results to calculate
the physical quantities of interest. Section VI contains
our conclusions.

II. THE POLARON MODEL
AND THE ADIABATIC EXPANSION

Since in this paper we will treat the problem of an elec-
tron coupled to acoustical or optical lattice vibrations
(phonons) in a unified manner, we decided to develop
these two problems in parallel, in order to show their
differences and similarities.

A. Optical case

The optical polaron model is based on the Frohlich
Hamiltonian for electrons coupled to longitudinal opti-
cal phonons. This Hamiltonian can be written in the
second quantized form, in one dimension, as
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o~+ A D
2v 2 2m Bx Bx a

(2.1)

f(x, t) =P—o(x)e (2.6)

as well as in static solutions for the lattice (adiabatic solu-
tion}

here 8 and g are the momentum and position operator
for the phonon field and P and P the creation and de-
struction operators, respectively, for the electron field.
They obey the following commutation rules:

[g(x, t), @x',t) ]=i f&5(x —x'),
Ig(x, t),f (»', t)I =5(»—x'),

where [,] denotes commutation and I, ] anticommutation.
All the other commutation (or anticommutation) rela-
tions are zero.

In (2.1), coo is the frequency of the phonons, v=M/a is
the lattice density, M the ion mass, a the lattice parame-
ter, m is the effective mass for the electrons in the con-
duction band, and D the coupling constant.

In order to analyze the physical content of (2.1) we will
treat the operators as ordinary functions and interpret
the electron field as the wave function for one electron in
the lattice. In other words, we would say that we are
treating the problem in the mean-field approximation
where the operators are replaced by their mean values
over configurations. It is emphasized that this is not an
exact calculation but just an artifact to obtain the best
basis in which we would expand the operators of the
Hamiltonian (2.1} in order to get the strong-coupling re-
gime. It can be easily shown that the following Lagrang-
ian can generate the Hamiltonian (2.1):

r T

I.=Id '"—-" ' '+~ y'~
2 dt 2 dt dt

rt(x, t) = rto—(x) .

From (2.4)—(2.7) we get

(2.7)

iri d D
2
+ go(x) Po(x)=Eogo(x)

2m d» a
(2.8)

bio(x) =— Po(x) .
Mco0

(2.9)

D , No=Eoko .
Maco0

This is a nonlinear Schrodinger equation which can be
solved exactly. There is a localized static solution which
reads

g (x —xo)
Po(x) = sech (2.11)

where

1 mg= D
fico()

(2.12)

and

We can think of (2.8) and (2.9) as follows: we put the
electron in the lattice and the latter adjusts itself to the
presence of the former. As a consequence, the electron is
trapped by the potential well formed around itself.

Substituting (2.9}in (2.8) we get

A2 d
(2.10)

2m

Bg' Bg D
2m a a a

"1"'~ (2.2)
$2g 2

Sm
(2.13)

where f is normalized:

x x, t =1. (2.3)

is the binding energy of the electron in the potential well.
xo is an arbitrary constant which gives the center of the
packet described by (2.11).

The lattice displacements are given by (2.9)

(2.4)

The equations of motion for the Lagrangian (2.2) are

.„ay a2 a2y D
dt 2m Q»2 a

(Eo) g(x —xo)
i} (x)= —2a

D 2
sech~ (2.14)

8 D+to i}+ (g( =0.
M

(2.5}
which is symmetric around the electron position.

The potential well where the electron is trapped is
given by

Equation (2.4) is the Schrodinger equation for an electron
in a potential given by

g(x —xo)V(x)= —2(E (sech0 (2.15)

V (x, t)= rt(x, t), —D
a

while Eq. (2.5) is an equation for an oscillator with fre-
quency co0 forced by the presence of an external field,

~f~ . The picture is that of an electron which distorts the
lattice which, in its turn, produces a potential for the
electron; a self-consistent interaction.

We are interested only in stationary solutions for the
electrons, that is, solutions of the form

We can identify the parameter g as the strength of the
interaction since the potential (2.15) becomes very weak
for distances greater than g '. Therefore, g ' defines
the polaron length.

B.The acoustical case

For electrons interacting with acoustical phonons, the
Hamiltonian can be written as
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+ vus Bi) fi Bg Bp
2v 2 Bx 2m Bx Bx

vari~
d 0o

2m v(v, —u )
(2.25)

+D )
pterBx

(2.16)

where v, is the sound velocity in the lattice and all other
de6nitions are maintained.

The second term in (2.16) coines from the Debye
dispersion relation for acoustical phonons

t

P (g) = sech0 2
(2.26)

Again we have obtained a nonlinear Schrodinger equa-
tion which is characteristic of a self-consistent interac-
tion. The solution obtained if v is smaller than the veloci-

ty of the sound is

co=u, fk[, (2.17)
where

where k is the phonon wave vector.
For (2.16) the "semi-classical" Lagrangian is

'2 2 '2
v (jg vus 87/I. = x
2 dt 2 Bx

dt dt

1 m D
irtu, /a

2
1—

2
S

with the electron binding energy given by

mv A g'
Ep=

2 8m

(2.27)

(2.28)

fi Bg Bg Bil
2m Bx Bx Bx

(2.18)

(2.19)

(2.20)

which produces the following set of equations of motion:

.„a1( r' a'1( aq
dt 2m Qx Bx

a'q , a'q D a(l(['
V Bx

t I

ih(g) = — tanh
2mD 2

(2.29)

The solution is unstable for v & v, .
The interpretation is almost obvious: the electron and

the lattice displacement move together with velocity v.

Observe that the wave function (2.16) and the binding en-

ergy (2.28) have exactly the same shape as in the optical
case for u =0 (the adiabatic case). We expect that the po-
tential which the electron feels must be the same. From
(2.24)

These equations are interpreted in the same way as for
the optical case as a self-consistent interaction, where the
potential that the electron feels is

V(x, t) =D

and the potential is given by

$2 t2

V (y) =D = — sech
dg 4m 2

(2.30)

l
g(x, t) =go(g)exp (mvx Eot )— — (2.21)

and

i)(x, t)=i)o(y) .

From (2.19)—(2.22),

(2.22)

2m d+2 dg 2

d'gp D
, 0 X

(2.23)

(2.24)

Equation (2.23) is the Schrodinger equation in the vari-
able p and (2.24) has the form of a wave equation of the
same variable. Substituting (2.24) in (2.23) we get

Unlike (2.4) and (2.5), this system of coupled equations
admits a traveling solution. %'e can obtain a general
solution for (2.19) and (2.20) defining a variable
g=x —xp —vt, where xp and v are arbitrary constants.
We look for solutions of the form

Observe that, for u =0, (2.30) has the same shape of
(2.15). This exhibits something fundamental in the phys-
ics of the two problems. Observe that the parameters g
and g' have the same form for v =0:

2
1 m D
a M E,

L

where E, is the characteristic energy of the phonon sys-

tem; Scop in the optical case and %cod in the acoustical
case, where

coD =v, /a

is the Debye frequency. So, g and g' play the same role i.n
both problems and, from now on, we will call them g.
Actually, we will work only with the static case, v =0,
observing that this means that we are not taking into ac-
count the kinetic energy of the lattice in (2.18) (Born-
Oppenheimer approximation). This explains why we are
using the term "adiabatic. "

Here, it should be noticed that one must reconcile

g &)1 (strong coupling) with the continuum model we
have been using. It has been shown in Ref. 2 that there is
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a vast range of polaron sizes where both conditions are
met.

C. The adiabatic expansion

As we have seen, for the acoustical as well as for the
optical case, the potential well which traps the electron is
the same. As a consequence the wave functions and bind-
ing energies are also the same. As we have treated the
problem in a variational way, we expect that the wave
function, {2.11}or (2.26), is the ground-state wave func-
tion for the electron in the adiabatic limit and zero tem-
perature. Nevertheless, we expect that for finite tempera-
tures the electron can be found in some excited state of
this well due to its interaction with thermal phonons. As
the interaction is self-consistent, the potential well must
change its shape, changing the potential energy of the
electron. If the temperature is not too high, so it does
not remove the electron from the well, we might imagine
that due to virtual transitions the electron absorbs energy
from the lattice and immediately emits this energy,
remaining in the ground state.

In order to find these excited states we have to solve
the Schrodinger equation for the electron in the potential
well, (2.15) or (2.30) (put xp =0):

~'

d' fi'g' gxP„(x)— sech P„(x)=E„P„{x).
2m dx2 " 4m

and 5(k) is the phase shift due to the scattering of the
free states given by

kg5(k ) =arctan
k —g /4

(2.35)

Here we have imposed periodic boundary condition in
x =+L /2 with L ~ oo.

The "adiabatic expansion" is made by expanding the
electron field operators in (2.1) or (2.16) in this basis,
yielding

P(x, t)=gp(x)&p(t)+ g P„(x)a„(t),
n=1

fi(x, t) =Pp(x)&p(t)+ g P„'(x)tt„(t),
n=1

(2.36)

(2.37)

The field displacement as well as its conjugate momen-
tum density can also be expanded in this basis as

+ oo &kx

ri(x, t) =gp(x)+ g Ok(t) (2.38)

where a„and a„are, respectively, the destruction and
creation operators for each state of (2.31}. They obey the
following anticommutation rules:

[&„(t),t) (t)}=5„

[t„(t),8 (t)}= [8„(t),8 (t)}=0 .

(2.31)
This equation can be solved exactly and gives one

bound state as expected [see (2.11)and (2.26)]:

+ oo &kx

+x, t)= g P, (t}
N

(2.39}

&g gx{{)p{x}= sech
where N =L/a is the number of ion sites and k is given
by the periodic boundary conditions

with energy

kg 2

EO=-
8m

and a set of doubly degenerate free states

k„+ig tanh(gx /2)/2
VL k„+ig/2

„(x)= e

with energy

fi2k 2

where k„ is the solution of

2n~ 5{k.)k„= —,n =0,+1,+2, . . .

(2.32)

(2.33)

(2.34)

k =, n =0,+1,22, . . . .

As g and 8 are real, we must have

with the usual commutation rule

[qk(t), pk (t) ]=i%5k, k

If we substitute (2.36)—(2.39) in (2.1) and (2.16), and use
the orthogonality of the adiabatic states

X OX n X =0, (2.40)

IdxP„(x}P„(x)=5„„.

and Eqs. (2.9), (2.14},and (2.31), we obtain
(i) for the optical case:

Hp =Ep+Epa pap+ g'E„a„a„
n=1

k = —oo

PkP k Ma)O+
2 qkq k—

+—
qk f {k}(apap—1)+ g f„(k)a~„+f„'(—k)a„ap+ g f„(k)a„aa n=0 m=1

(2.42)



8862 A. H. CASTRO NETO AND A. O. CALDEIRA

where

&0 + fi2 ' 2
2

ep= f dx gp(x)= =—IEpI, (2.43)

f (k)= —Jdx Pp(x)e'"",1
(2.44)

f„(k)= fdx {{)p(x){{)„(x)e'"",
1

N

f„(k)= Jdx P„'(x)P (x)e'""1

N

(ii) for the acoustical case:

(2.45)

(2.46)

Hg =ep+Epapap+ g E„a„a„F

n=1

+ PkP k MV k
+ X +

2 40 —k
k = —oo

+ikDqk fp(k)(a pap
—1)+ g f„(k)apta„+f„'(—k)asap+ g f„(k)a~a

m=1
(2.47)

Notice that (2.42) and (2.47) are exact results, no approxi-
mations have been made so far.

Since we are interested in the strong-coupling limit, the
phonons cannot excite the electron out of the well.
Quantitatively this means that

IE. I »1,
where E, is the phonon characteristic energy and I Ep I

the modulus of the binding energy of the electron. The
inequality above allows us to define an expansion parame-
ter for the strong-coupling limit, a, as

a=
I I

«1.
If now we scale the Hamiltonians (2.42) and (2.47) by

the characteristic phonon energy, we can easily see that
the pure electronic part is of the order of a ' while the
interaction term is of the order of a ' and consequent-
ly much smaller than the former. ' Using this result we
will eliminate the electronic part of the Hamiltonian by a
perturbative treatment and obtain a renormalized pho-
non Hamiltonian.

Consider the pure electronic part as the nonperturbed
Hamiltonian. Its eigenstates can be written in the Fock
space as

It/rp) =Inp=l;n =0), j=1,2, 3, . . . (2.50)

D2
Ep ' = — g Vp(k&k')g qk (2.51)

where

„(k) „'(k')
Vp(k, k')= g F E

(2.52)

(ii) for the acoustical case:

E„' '= —D gkk' Vp( k, k')ykq
kk'

(2.53)

Therefore, we write the Hamiltonians for the renorrnal-
ized phonons as

Ho, A
=e+

k = —oo

+ g (flkk" 1 60—k
k' = —oo

(2.54}

with energy E0. This state is exactly the adiabatic state
given by (2.11)or (2.26).

We can now apply the Rayleigh-Schrodinger perturba-
tion theory to this problem. The first-order term is null
because we have just one electron. The second-order
correction is easily calculated and it gives

(i} for the optical case:

In„n„. . n„), . (2.48)
where

n. =1 .Ji=0
The ground state is given by

(2.49)

where n0 is the occupation number for the ground state.
We simplify the calculation assuming that there is only
one electron in the problem (see Appendix A for the case
of many electrons); that is, and

6=E' +Ep =
0

2

(fIkk'} ~p6kk' Vp(k&kg 2 2 2D

Ma

2D

(2.55)

(2.56)

(2.57)
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Qk (t)= f e '""5g(x,t),
N a

(2.58}

P„(t)= dxe '""Cx,t) .
&X

One can easily check that

[5g(x, t), @x',t)]=i%'5(x —x') .

Now, using (2.58}and (2.59) in (2.54), we get

(2.59)

VCOQ0 =E'+ x ' +
2v 2

The Hamiltonian (2.54} was already obtained some
years ago for the acoustical case and it can be rewritten
in a different form in terms of some new operators
5g(x, t) and tl x, t) defined by [c.f., (2.38)]

up (x)= tanh sech
V15a X X

2 2 2
(3.5)

and for the acoustical case

for the acoustical case.
Observe that to solve (3.3) and (3.4) is equivalent in the

momentum space to diagonalize (2.56) and (2.57). These
equations often appear in works about polaron dynam-
ics ' ' and we do not intend to solve them in this work.
For (3.3) there is a closed solution which we will use
later, while for (3.4) we will make some approximations
which are suitable for our purposes.

An interesting and important solution of those equa-
tions can be found directly. These are the zero-mode
solutions, that is, solutions with QQ=O (see Appendix B}.
For the optical case we have

VCOp
2

5'fdx'F(x, x')5g(x') ' (2.60) u Q (x)=&3ag/8sech
2

(3.6)

and Examining (3.5) and (3.6) and comparing with (2.14}
and (2.29), we see that, in both cases,

2v 2 Bx up(x) =C rip(x), (3.7)

8 B5t}
d gF( g) 85t}

where

P„'(x}$„(x')
F(x,x')=4gfp(x)fp(x ) g (k„+g /4)

(2.61)

(2.62)

where C is a constant which appears due to the normali-
zation of up. The above relation clearly expresses the
translational invariance of Hamiltonians (2.1) and (2.16).
Notice that although we have put xp =0 in (2.31},in or-
der to obtain the adiabatic basis, the center of the soliton
solutions (2.11), (2.14), (2.26), and (2.29} is arbitrary and
therefore we must have u„also expanded about this
point; that is,

These results agree perfectly with those obtained by other
methods. '

III. THE EFFECTIVE HAMILTONIAN

As we are interested in the excitation spectrum of the
Hamiltonians (2.60) and (2.61), we have to diagonalize
them. If we choose

5g(x, t) = g Q„(t }u„(x},
n=p

(3.1}

where u„are the normalized eigenfunctions of (2.60) or
(2.61),

f u„'(x)u (x)=5„dx
a

(3.2)

they must satisfy the following integrodifferential equa-
tions:

(i) Q„u„(x)=copu„(x) copfdx'F(x,—x')u„(x'}

for the optical case, while

(3.3)

d u„ 5 du„(x')
(ii) Q„u„(x}=—u, z +U, fdx' F(x,x')

()x dx

(3.4)

u„=—u„(x —xp) . (3.8)

Suppose that we move the center of the functions (2.14)
or (2.29) by an infinitesimal quantity 5x Q. Then,

uQ(XQ )5XQ
rip(xp+5xp) =rip(xp)+

C
(3.9)

where we have used that Qp 0.
At first sight (3.10) shows a free particle with momen-

turn Pp and a set of decoupled harmonic oscillators.
Nevertheless, it is not possible to take it seriously be-
cause, initially, we have implicitly assumed that the lat-
tice displacement cannot be inde6nitely large. From
(2.51) and (2.53) we see that the energy correction de-
pends on the lattice displacement which must be Snite in
order for the perturbation theory to be valid.

Let us observe that, due to (3.9), the polaron displace-
ment is proportional to the displacement of its center,

where we have used (3.7). By (3.9} we conclude that the
zero-mode frequency corresponds to the translation of
the soliton, in other words, to the motion of the polaron.

Once we have the eigenfunctions of (3.3) and (3.4), we
would expect to write the Hamiltonian in the form

P,' - P„' mQ'„
(3.10)
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that is,

qo=5xo/C .

From (3.1), we have

(3.11)

and

dx du (x)G„=f u (x)
a dX

(3.17)

5'q(x t)=qouo+ y q u
n=1

or, using (3.7) and (3.11),

anp
5'(x, t)=5xo + g q„u„.

n=i
(3.12)

couple the polaron to the renormalized phonons.
In the strong-coupling limit (3.14) can be simplified.

Due to (3.5), (3.6), (2.14), (2.29), and (3.7), we can rewrite
S„ as

T

EoS„— uo(x)
Mo Nag D a dX

Therefore, we can assume that xp is a true dynamic vari-
able, that is, xo=xo(t). So, based on (3.12), we will
rewrite expansion (3.1) as

5'(x, t)=rio[x —xo(t)]+ g q„(t)u„[x —xo(t)] . (3.13)
n=1

As the integral only gives a numerical factor, this yields

M 1 Eo

Mo vag D a

Now, from (3.15),

This procedure is known as "collective coordinate for-
malism. "' Observe that (3.13) changes the kinetic part
of (2.60) or (2.61) because xo is also a function of time. It
is shown that the new Hamiltonian in the presence of
the polaron position operator, xp, is given by

p„MQ„H=e+ g +
2

and

so

M
Mp

E
m Ep

(ME, )'

+ P QG„—q„p„, 1+ g S„q„
0 n, m =1 n=1

fi M 00

QS„1+gS q
8M0 „—1

(3.14)

E 1/2

&S„q„
I oI

1

and, therefore, this sum is very small in the strong-
coupling limit. Within this approximation we get

Here [, ] denotes anticommutation and P is the momen-
tum operator associate to xp..

p„MQ„H=e+ g +
n=1

and

[xo(t),P(t)] =i% + P QG„q —P„
0 n, m =1

(3.18)

[q„(t),p (t)]=i%'5„

with all the other commutators being zero.
In (3.14) we have

The second term in (3.18) is the energy of noninteract-
ing phonons and the third term can be interpreted as the
kinetic energy of the polaron. Observe that

+ oo

Mo=vf dx

2
d Qp

(3.15)

xo= . [xo,A']= P —g G„q P„
0 n, m =1

(3.19)

and so P cannot be the polaron momentum because, since

as being the classical soliton mass which becomes
'2

m EoMP=—
8 Scop

for the optical case, and
2

32 E(
3 Avg

for the acoustical case.
The new quantities

5„= M p dx d'90 d+n

Mo" a dx dx
(3.16)

MQ.
'"

q„+i Pn (3.20)

it is a constant of motion. From (3.19) we interpret Moxo
as the polaron momentum and Q„G„q p„as the
momentum of the phonon field. Observe that Hamiltoni-
an (3.18) is very close to the electromagnetic Hamiltoni-
an, where the coupling between the particle and the field
are obtained via the potential vector (see Sec. IV).

If we define the destruction and creation operators
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1/2

2A
(3.21)

(3.26) describes the dynamics of a Brownian particle, that
is, a heavy particle in a bath of light particles which col-
lide with it.

which obviously obey

[b„,b ]=5„
one can rewrite H as

K=e+ g fiQ„(btb„+ —,')+ (P Ph—), (3.22)

where

1
2E

' 1/2

+
' 1/2

n

' 1/2

n

n m

XG„(b b„—b b„) . (3.23)

Gnm = —
Gmn (3.24)

Observe that the momentum of the phonon field con-
sists of two parts; a diagonal part [the first term on the
right-hand side of (3.23}] which commutes with the
phonon-number operator,

8'= g b„b„,
n=1

and, therefore, conserves the number of phonons in the
system. This term is responsible for scattering. The oth-
er term does not commute with the number operator and
is related with absorption or emission of phonons by the
polaron (Cerenkov process). We will restrict our problem
to typical polaron kinetic energies much smaller than the
phonon energies, in other words, small velocities. In this
limit the occurrence of emission or absorption of phonons
is not possible due to the simultaneous conservation of
momentum and energy. In terms of our parameters this
means that

)x, ~ «Qz, /M, . (3.25)

Only scattering, and therefore virtual transitions, will be
relevant for our problem.

With this approximation the polaron dynamics will be
described by the following effective Hamiltonian:

2

K= I' QAg„b b„—+ g fiQ„b„b„,
0 n, m=1 n=1

Here we have used the fact that, from (3.15), G„ is an-

tisymmetric in the interchange of m and n.,

IV. FUNCTIONAL INTEGRAL METHGD

p(0) =ps(0)pa(0), (4.2)

where the symbol S refers to the polaron (system of in-
terest) and R to the phonons (the reservoir of excitations).

Condition (4.2} means that we put the electron in the
lattice which is in thermal equilibrium at temperature T.
So, we consider the phonons as described by their equilib-
rium distribution,

(4.3)

where

Z=tra(e ")
with

(4.4)

(4.5)

Here trz denotes the trace over the phonon variables and
IC~ is the Boltzmann constant. Pa is the free-phonon
Hamiltonian which is given by the last term on the
right-hand side of (3.26).

As we said, we are interested only in the quantum dy-
namics of the system S, so, we define a reduced density
operator

(r) =tr„[Pt}], (4.6)

which contains all the information about S when it is in
contact with R.

Projecting now (4.6) in the coordinate representation of
the polaron system

The starting point for the calculations of the transport
properties of the polaron is the well-known Feynman-
Vernon formalism" that the authors have recently ap-
plied' to the Hamiltonian (3.26).

We are interested only in the quantum statistical prop-
erties of the polaron and the phonons act only as a source
of relaxation and diffusion processes. Consider the densi-
ty operator for the system polaron plus phonons, p(t}
This operator evolves in time according to

P r ) e iPt/—itP(0 )e iPt/s (4.1)

where 8 is given by (3.26) and p(0) is the density opera-
tor at t =0 which we will assume to be decoupled as a
product of the polaron density operator, ps(0), and the
phonon density operator, pz(0):

(3.26) x, ~q&=q~q& (4.7)

where

(Q„+Q )

QQ„Q
I™ (3.27)

b„~a„&=a„)a„&, (4.8)

and in the coherent state representation for bosons (the
phonons)

As we will show in the next section the Hamiltonian we have' (see also Appendix C)
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p, (x,y, t)= fdx' fdy'J(x, y, t;x',y', 0)p, (x',y', 0) . In (4.9), J is the superpropagator of the polaron, which
can be written as

(4.9)

Here we have used (4.1},(4.2), (4.6), and the complete-
ness relation for the representations above, namely, where

y {i/fi){SO[x]—So[y])
x' y'

(4.12)

fdq~q)(q~=l,

a a=1,
(4.10)

(4.11)

Mox (r')
So[x]=f dt'

0 2
(4.13}

where d a=d (Rea)d(lma) as usual.
is the classical action for the free particle. F is the so-
called inhuence functional

p; —
I

I' —IPI'&2 —lP'I'&2 D 2

7T" m" P
(4.14)

where p denotes the vector (p„p2,p3, . . . , p~) and SI is a
complex action related to the reservoir plus interaction

I'

1 da', daSi[x,a]= dt' —a. ,
—a'.

0 2 dt' dt'

I

on. The result can be written as

a„(r)=e " P„+ g W„(r)P~ (4.22)

with

1
(H —x—h )R I (4.15)

a„'(r)=e " a„"e " + g W„(r)e a~
m=1

(4.23)

Hz = g AQ„a„'a„,
n=1

hi = g Ag„a a„.

(4.16)

(4.17)

where W„and W„are functionals of x (r) which obey
the following equations:

W„.(r)= f'W„".'(i }dr
0

n, m =1

Here we have obtained a result which is very close to the
electromagnetic coupling where the Hamiltonian depends
on the vector potential, A, through

eA

+ g f 'W„"„'(r )W„„{t)dt',
0

W„(r)=f W„'"(t')dr'
T

+ g f W„"„~(r')W„(r')dr',
I( =1

(4.24)

(4.25)

but the Lagrangian depends on

v A.
i{Q„—0 )t'

W„' '(x(t'), t')=ig„x(t')e (4.26)

In our case the Lagrangian formulation simplifies the
problem transforming a nonhnear problem into a linear
one. The action (4.15) is quadratic in a, so it can be
solved exactly. Observe that the Euler-Lagrange equa-
tions for (4.15) are

W„"'(x{r'),r')= W„"'(x{r'),r') (4.27)

[observe that W„(t)= W „(0)].
Now we expand the action (4.15) around the classical

solution (4.22) and (4.23) and obtain, after some integra-
tions in (4.14),

a„+iQ„a„ixg g—„a =0,
m=1

(4.18)
F [x,y] = g (1—I „„[x,y]n„)

n=1
(4.28)

a„' iQ„a„'+—ix g g„a' =0,
m=1

which must be solved subject to the boundary conditions

(4.19)

a„(0)=P„,
a„*(t)=a„* .

(4.20)

(4.21)

Due to (3.24) we have g„„=0,so, the modes are not
coupled among themselves. This makes (4.18) and (4.19)
easy to solve. That set of equations represents a set of
harmonic oscillators forced by the presence of the polar-

n„=(e —1)
PfiQ„

(4.30)

Notice that (4.28) and (4.29) are exact, no approximations
have been made so far.

I „=W„' [y]+W „[x]+g WI' [y]WI„[x] (4.29)
1=1

with
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We see from (4.24} and (4.25) that W„can be ex-
pressed as a power series of the Fourier transform of the
polaron velocity, x, so, due to the small polaron velocity
condition (3.25), we expect that only few terms in (4.24)
will be sufBcient for a good description of the polaron dy-
namics.

Another way to see this is to notice that (4.24) and
(4.25} are the scattering amplitudes from mode k to mode
j. The terms that appear in the sum represent the virtual
transitions between these two modes. With these two ar-
guments in mind we will make use of the Born approxi-
mation. In matrix notation,

W(r)= f 8""(t')dt'
0

+f W' '(t') f W' '(t")dt "dt' . (4.31)
0 0

Therefore, in the approximation of small polaron velocity
I

F [x,y] =exp g I „„[x,y]n„
n=1

(4.32)

Observe that if the interaction is turned off (I ~0) or the
temperature is zero (T =0) the functional (4.29) is one,
and, as we would expect the polaron moves as a free par-
ticle.

Substituting the Born approximation (4.31} in (4.32}
and the latter in (4.12) we find

J= Dx Dyexp —S xy +— xyx' y'
(4.33)

where

the terms in (4.29) are small and we can rewrite, as a
good approximation,

MS=f dr' [xz(t') —y2(t')]+[x(t'}—y(t')]f dt"Ir(t' —t")[x(t")+y(t")]
0 2 0

(4.34)

and

y= f 'dr f 'dr"
I r„(t' r")[x—(t') y(r')]—

0 0

X [x(t")—y(t")]]
with

I z(t)=irte(t) g g„n„cos(Q„—Q )t,
n, m =1

(4.35)

(4.36}

y(t) =y( T)&(r), (4.44)

I

memory effects. It should be emphasized that although
(4.40) and (4.41) have only indirect physical meaning,
through the study of the motion of the center of a wave
packet and the spreading of its width, y(t) really plays
the role of the damping parameter in the equation of
motion of the former (see Ref. 14 for details).

Furthermore, we shall prove that (4.43}can be written
in the form

I' t(t)=carte(t) g g„n„sin(Q„—Q )t .
n, m =1

Now, if we define the new variables R and r as

x+y
2

r=x —y,

(4.37)

(4.38)

(4.39}

r'(r) 2f dt'y(t—' r)r'(t')=0, —
0

where

(4.41)

the equations of motion for the action in (4.34) read

R (r)+2f dt'y(r t')R (t') =0—, (4.40)
0

where y( T) is a damping parameter which is temperature
dependent and 5(t} is the Dirac 5 function. The form
(4.44) is known as the Markovian approximation because
in this case the memory is purely local and does not de-
pend on the previous motion of the particle.

If we use (4.40) and (4.41) with (4.44) and expand the
phase of (4.33) around this classical solution we get the
well-known result for the quantum Brownian motion'
where the damping parameter y (temperature indepen-
dent) is replaced by y(T) and the diffusive part is re-
placed by (4.35). As a consequence, the difFusion parame-
ter in momentum space will be given by

d I ~D(t) =irt
dt2

dI Iy(r)=
Mo dt

or, using (4.37),

(4.42) = —i)1 8(t) g g„n„(Q„—Q )
n, m =1

Xcos(Q„—Q )t . (4.45)

y(t) = g g„n„(Q„—Q )cos(Q„—Q )t
AO(t)

MO n m=1

(4.43)

is the damping function.
In terms of these newly defined variables, we can easily

see that (4.40} and (4 41) have the same form of the equa-
tions previously obtained in the case of quantum Brown-
ian motion, ' except for the fact that they now present

We will also prove that D (t) has the Markovian form

D (t) =D(T)5(t), (4.46)

where D(T) and y(T) obey the classical ffuctuation-
dissipation theorem at low temperatures. '

In what follows we shall define a function S(co,co')
which will, in analogy to the spectral function J(co) of
the standard model, ' allow one to replace all the summa-
tions over k by integrals over frequencies:
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S(co,co') = g g„5(co—Q„)5(co'—0„) .
n, m =1

(3.24) it is easy to see that

S(co,co') =S(co', co) . (4.48)
Notice, however, that unlike J(co) in Ref. 14, this new

function S(co,co') is related to the scattering of the envi-
ronmental excitations between states of frequencies ~ and
co' (as seen from the laboratory frame). Moreover, due to

I

From now on we shall call S(co,co') the "scattering func-
tion. "

Notice that we can rewrite (4.43) and (4.45) as

and

Ae(t)
y(t) = f des f dec'S(co, co')(co co'—)[n(co) n(—co')]cos(co co'—)t

2Mp p p

ill'8(t)D(t)= — f dc&) f dpi)'S(ci) co')—(ci) co') —[n(co)+n(co')]cos(co —co')t .
2 0 p

(4.49)

(4.50)

Concluding, we have established that the Hamiltonian
(3.26) leads to a Brownian dynamics, that is, the polaron
moves as a particle in a viscous environment where its re-
laxation and diffusion are due to the scattering of pho-
nons.

V. MOBILITY AND DIFFUSION

Equations (4.43) and (4.45) show that the polaron
transport properties depend essentially on the coupling
parameter g„. From (3.17) we see that this parameter
can be obtained if we know the eigenfunctions of (3.3)
and (3.4}.

First of all we can show that (3.3) and (3.4) have solu-
tions with definite parities. This is easily seen by chang-
ing x by —x in (3.3) and (3.4} and x' by —x' in the in-
tegral term. From (2.62} we observe that
F( —x, x') =F(x,x—') and therefore u„(x) and u„( —x )

obey the same eigenvalue equation. In other words, the
Hamiltonians commute with the parity operator and
therefore it is possible to classify their eigenfunctions as
odd or even. Now we must study the optical and the
acoustical cases separately.

A. Optical case

Turkevich and Holstein obtained the exact solutions
for (3.3). For the odd modes the eigenfunctions are

1/2

(n +2)(n +3)

I

(3.5).
The even modes can be written as

(a+ 2)(a+ 3)

g(a+ 3)—g(1)=—tan
2 2

and f is the digamma function. Its eigenvalues are given
by

1/2
4

Q~ —
ctPp 1

a +5a+4
We will use the convention given in Table I.

As the labels for the even solutions are not integers we
define e„=n —a as the difference between our
classification and the label. Table I shows us that the
eigenfrequencies go quickly to cop while e„goes to zero.

From (3.17) we note that G„only couples functions
with opposite parity. Substituting (5.1) and (5.4) in (3.17),
we get

where

2g sin[ lr(ll m +E)]'
~ n.[(n —I+e ) —1]

(5.5)

X [P +l(Y) P+l( ——Y)],[1—Y (x)] d
2

(5.4)
where the allowed values of a are solutions of

dP„+q
X [1—Y (x}],n =0,2, 4, 6. . . ,dF

(5.1)
TABLE I. Conventions for classification of the eigenfunctions.

n 7l CX

where

Y(x)=tanh
2

(5.2)

and P„are the Legendre polynomials.
The eigenvalues of the problem are

1/2
4Q„=a)p 1—

n +5n+4
(5.3)

In particular, the zero mode, n =0 and Op=0, is given by

0
1

3
4
5

6
7
8
9

10

0
0.523
2
2.601
4
4.648
6
6.674
8
8.692

10

0
0.648
0.882
0.912
0.949
0.958
0.971
0.975
0.981
0.983
0.987

0
0.477
0
0.394
0
0.352
0
0.326
0
0.308
0
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[(n +2)(n +3)(2n +5)(m e—+2)(m —e +3)(2m —2e +5)]'~

[(n+m+a ) +10(n+m —e )+24]
(5.6)

for n =0,2,4,6. . . , m = 1,3,5,7. . .
Observe that (5.5)) is strongly peaked around n =m+1. Therefore, the most important contributions to summations

involving G„will come from these forms (observe that e goes to zero as m goes to infinity):

G„=gK„[5(n m ——1)—5(n —m +1)]
for n even and m odd.

From (4.47) and (3.27}we get
2

S (to, to') =— g [C„„,[5(to—Q„)5(co'—Q„,) +5(co—Q„,)5(to' —Q„)]

(5.7}

where n is even and

+C2„+,[5(a)—Q„)5(t0' —Q„+,)+5(co—Q„+,)5(co' —Q„)]], (5.8}

(Q„+Q )
C~m K~m

Q„Q

Substituting (5.8) in (4.48) we find

fig 2

y(t) = — 8(t)g [C„„,(Q„—Q„,)[n (Q„}—n(Q„, ) ]cos(Q„—Q„,}t
n

+C„„+) (Q„~)
—Q„)[n (Q„+)

—n ( Q„)]cos[(Q„~)
—Q„)t]] .

(5.9}

(5.10)

K =no/L, (5.11)

We will define wave vectors for each n in (5.2) in the
form

$2g 2

y(t) = 8(t)
0

x I"

2 16m

L
dn

dQ

cos[(4m ttoo/L )(1/K )]
K4

where L is the length of quantization (L~ ao }. Equation
(5.10) then becomes

'2

y(t) =— 8(t) f dKC (K,K)
SMp L 0

f2g 2

y(t) = 8(t)
0

dn 4o
xcos xt

Q)0 0
J

This integral can be easily done if we change variables,
4' cop

. The integral then becomes
L K

n. dQ
Xcos — t

where we used the limit L~ 00.
It is easy to see that by (5.3)

(5.12) and finally

~p r ySC T mlSC T

(5.14)

dQ 4H ~o
as L~00

dK
(5.13}

and by (5.9) and (5.6) that

L KC (K,K)= as L —+00 .

dn dn
dQ dQ a=~0

'

We shall rewrite (5.12) as

Now, using the fact that the frequencies approach the
value cop very fast when n increases, we make the follow-
ing approximation:

which has the form (4.44).
For low temperatures, Kz T &&Imp, we have

~ gg2 &~o s~,nc~r—
6 Mo K~T

(5.15)

~ gg2 K~T
6 M0 0

(5.16)

so y(T) goes to zero as T goes to zero, as expected. So,
for very low temperatures the mobility is extremely high
and the polaron moves as a free particle. This is an ex-
pected result since at T=O there are no phonons to be
scattered.

For high temperatures, K~ T))Scop,
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and the mobility goes to zero at T~~.
The difFusion parameter (4.49) can be calculated in the

same way. It gives

fiD(T)=— (ruu (e ' —1)0 (5.17)

For low temperatures this parameter is too small, go-
ing to zero as T~O. The fluctuations are once again
small due to the absence of phonons. For high tempera-
ture we see that the fluctuations also increase linearly
with T.

Observe that

=2MOE2) T(1—e '
)

y( T)
(5.18)

which gives the classical result of the fluctuation-
dissipation theorem' for the Brownian motion at low
temperatures.

8. The acoustical case

As we do not have exact solutions for (3.4) it will be
necessary to make some approximations in the present
analysis. Observe that (3.4} is a Schrodinger-like equa-
tion for a particle in a nonlocal potential

2ise(k) 2i50(k)

(k) (
(

2is@(k) 2i50(k))
2

Consequently, the transmission and reflection coefficients
are given by

T(k)=~t(k)~ =cos [5o(k)—5z(k)],
R (k) =

~
r (k)

~

=sin [5o(k)—5z(k) ],
(5.24)

(5.25)

and T(k)+R(k) =1 as expected.
Once we have the phase shifts of the problem we can

find the transmission and reflection probabilities using
(5.24) and (5.25), or alternatively, if we have the refiection
and transmission amplitudes we can obtain the phase
shifts

This expression can be interpreted as a wave incident
from the left on a potential whose t (k) and r(k) are the
transmission and reflection amplitudes.

We can construct (5.23) from (5.21) and (5.22) as'

i6E . i60
uk(x) =e uz(k, x)+ie uo(k, x)

'(3 F(x,x')
(}x Bx

1 Im[t (k)+ r (k)]
2 Re[t(k)+r(k)]

(5.26)

Qk +k u„(x)=0,
dx

where we have used that

(5.19)

From (2.62) we observe that V(x,x') goes to zero as x
goes to infinity. Actually, the potential is almost zero ex-
cept in the range

1 1——(x& —.

Out of this range the wave function can be well described
by

1 Im[t(k) —r(k)]
2 Re[t (k) —r (k)]

(5.27)

1677 ik er(k)=
g

(5.28)

Actually, Schuttler and Holstein obtained these
coefficients in the limit of long and short wavelengths
after a rather intricate algebra (in the results of Ref. 5, R
and T depend on the polaron velocity which is very small
in our case and we have put it equal to zero):

(i) for k »g,

a)=v, ik/ . (5.20) t(k)=1+ 2'
5k

' (5.29)

us(k, x)=&2a/L cos[k~x~+5E(k)], (5.21)

uo(k, x) =&2a/L sgn(x)sin[k~x~+5o(k}], (5.22)

The solutions of (5.19) must be classified as even or odd.
%e choose (ii) for k «g,

3ik gkr(k)=-
g

t(k)=1- 3ik gk

g

(5.30)

(5.31)

1 ifx)O,
sgn(x)= '

and 5z(k) and 5o(k) are the phase shifts for the even and
odd modes, respectively, which must appear due to the
presence of the potential.

Another possible solution of (5.19) is

5~(k) =5o(k) =
Sk

'

(ii) for k «g,

(5.32)

These results allow one to compute the respective
phase shifts as

(i) for k »g,

u„(x)=&2a/L [t (k)e'""8(x —1/g)

+ [e'" +r (k)e '""]8(—x —1/g) I .

(5.23)

55(k)=—

5o(k) =0 .

3k

(5.33)
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So, the phase shifts are very small. We would say that
there is a propagation of sound waves through the polar-
on.

If the interaction between the electron and the lattice is
strong, the range of the potential is small. Therefore, the
contribution to the integral in (3.17) due to the true solu-
tion is almost the same as the one we would have got had
we used the free solutions (5.21) and (5.22).

First, we impose periodic boundary conditions which
give the allowed values for k:

k„=, n =+1,+2,+3. . . . (5.34)

u z„&(x)=uE(n, x),
uz„(x}=uo(n,x),

for n =+1,+2,k3. . . .
Now we can evaluate (3.17). It yields

(5.35)

(5.36)

In order to classify the solutions we will use the following
convention:

2k„sin[(k„—k )L /2]
Gz„, z

= — cos[5E(k„}—5o(k )]+
n m

1—cos[(k„—k )L /2]
sin[5E(k„)—5o(k )]

n m

(5.37)

As in the optical case we have a matrix with zeros in the diagonal and with off-diagonal terms which decrease as a func-
tion of their distance to the main diagonal.

When L ~~ we will have [using (5.24)]

2k sin[5E(k) —5o(k')]
G = — m5(k —k'}&T(k)+Pkk' k —k' (5.38)

where P denotes the principal value. Substituting (5.38) in (4.47), transforming the summations into integrals, and using
(5.20) we get

S(co,to')= —
z

co &T(co)5(co to') z—z
—

z sin [5E(to)—5o(co')] .2L 1 to(co+co )

Vs 4'tt vz t0 (co N )

cos(Qt),

In (4.48) we will change the variables of integration and rewrite (4.47) as

fi8(t) 0 0 0 0
y(t) = d8 dQS 8+—,8——Q n 8+— n8 ———

2Mo p 2' 2 2 2

(5.39)

(5.40)

where

A=co N

CO+ N

2

Observe that we have replaced the limit on the integra-
tion by the cutoff frequency, co&.

Actually we are interested in a time scale, t, which is
much longer than the typical phonon period or

t &&a)g)

contribute to (4.48},we get

f(8)= 8 R (8),
4 vg

(5.43)

f2 Ace/Kg T

(T)—
&

dcocd R (cv)
8nMov, Ktt T o (e~~xsr

1 p

where we have used (5.25).
So, we conclude that we have here a Markovian pro-

cess with the damping parameter given by

(5.41)

where

f(8)= —lime S 8+ —,8——2
E'

e~p 2' 2
(5.42)

Now, using (5.39) and noticing that the 5 term does not

With this approximation the cosine term in (5.40) oscil-
lates rapidly, giving no contribution to the integration,
except when 0 is close to zero. So we can approximate
(5.40) as

De6ning a new variable

N =gVzK/2

and a typical phonon temperature, T„by
Agv,

C

we can evaluate (5.44) which reads

fg2 T
y(T)= I

p

(5.44)

(5.45)
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where

I(S}=SJ dKK R (K)
0 (esK 1 )2

(5.46)

suit' which is expected to be valid in the high-
temperature limit.

VI. CONCLUSIONS

is exactly the result obtained by Schuttler and Holstein
for the polaron mobility using the kinetic theory.

For small temperatures, T«T„we shall use the
long-wavelength reflectivity [see (5.30)] since it gives the
largest contribution to the occupation number

R (~)= 9az . (5.47)

Then, using (5.46) and (5.47) we can approximate (5.43)
by

4

( T) 27fig T
16m MD T,

(5.48)

This result shows that the acousticai polaron, as the opti-
cal one, behaves as a free particie as T~0.

For high temperatures, T && T„we use the expression
for short wavelengths [see (5.28}],

R(a)=4m x e (5.49)

and one has

315fig TFT=
64m MD

(5.50)

(5.51)

where

RJ(S)=J da
e "—1

(5.52)

which means that the mobility decreases for high temper-
atures. We can calculate the diffusion coefficient (4.49) in
the same way and we get

fi
D( T) = Ks T,J(S),

7T Q

In the foregoing sections we have shown that the semi-
classical (mean-fleld) method enables us to visualize the
polaron physics and allows us to treat the strong-
coupling limit of an electron interacting with a lattice.
The advantage of dealing with this method is the fact
that, in terms of the coordinate and the modified pho-
nons, we reduce the problem to a new model for treating
quantum dissipation. In a sense, the nonlinear character
of the electron-phonon interaction is somehow "hidden"
in the solitonlike solution whose center is regarded as the
polaron coordinate.

Eliminating the electron operators by perturbative
techniques (that is, tracing over the electron coordinates)
and using the well-known collective coordinate formal-
ism, we get an effective Hamiltonian for the polaron in
the presence of renormalized phonons. That Hamilton-
ian, in the approximation of small polaron velocity, is re-
duced to a very simple form which takes into account
only processes which involve polaron-phonon collisions.

We developed a functional method to treat the Hamil-
tonian in the limit of the small polaron s velocity. Our
method showed that the polaron moves as a Brownian
particle which collides with the light particles of the envi-
ronment. This method provided us with a tool for a sys-
tematic calculation of the damping parameter (and, as a
consequence, the mobility) and the diffusion coefficient as
function of the temperature. We have also shown that in
the time scale of interest the motion is essentially
Markovian, that is, it does not have memory.

An important comment about our work is that it is ful-

ly quantized and the "semi-classical" argument is only
used as an artifact. Furthermore, it confirms some im-
portant results for the acoustical polaron obtained by
Schuttler and Holstein using kinetic transport theory.

and we have used the fact that the difFusion is a Markov-
ian process.

For small temperatures, T« T„ the difFusion
coefficient is given by

D(T)=27g'AK T'
16~ y4

(5.53)

and the fluctuations decrease very fast as the temperature
is lowered, exactly as in the optical case. So, the relation
between relaxation and diffusion is the classical one for
the Brownian motion

D(T)
y(T)

For high temperature, T &&T„
315kD(T)= KsT .

16~

(5.54)

(5.55)

And, exactly as in the optical case, the fluctuations in-
crease linearly with temperature, this is the classical re-
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APPENDIX A

In this appendix we wish to calculate the first-order
correction in energy due to a many-electron wave func-
tion in (2.42) and (2.47). In the case of many electrons
the ground state is the Fermi sphere with radius kF,
which is given by

kF= (A 1)
2a 1V
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where N, is the number of electrons and X the number of
sites.

The nonperturbed Hamiltonian is

HO=Eoa~o+ g E„a„a„ (A2)
n=1

in the acoustical case. This causes a change in the energy
given by

h(k)h( —k)
2a Ma)0

with the ground-state wave function

Ig &
= Ink = l, k ~ kF ,n„. =O, k & k~) .

The ground-state energy is

EP N A
(k )3 Ag

A' yga2 4m

(A3}

for the optical case, and

b, (k)b, ( —k)
2MU,

for the acoustical case.

APPENDIX B

or

E'"= gfqq(k—)e(k~ IqI }qk-
qk

where we have accounted for the spin degeneracy.
The first-order correction is given from the interaction

term in (2.42) or (2.47),

E'"=(+H, Iy, ) .

For the optical case it reads
Define a function g (x,x'}

P„' (x}P„(x')

o (k„+g /4)
g(x, x')= (B2)

Let us first show how to obtain the zero-mode solution
for the optical case. Making 00=0 in (3.3}we get

uo(x)= fdx'F(x, x'}uo(x') . (B1)

where

(&) ~ k(k)
Qk ~

Q
(AS)

Then, from (2.31),

82

Bx
gsech + g(x, x')

2 2 4

b,(k) = kF5(k)
N

2kF 2k
arctan IkIcsch

g'

= —Lsech sech +5(x,x'}, (B3)
4 2 2

where we have used the completeness of the adiabatic
states

For the acoustical case,

E'"=igkh(k}qk .
k

(A6)

(A7}

$0(x)$0(x')+ g P„'(x}P„(x')=5(x,x')
n=0

and the explicit form for $0(x).
Let us rewrite (1) as

(B4)

So, at first order the ions are displaced from their equi-
librium positions by

6( —k)
Macoo2

in the optical case and

ikb, ( —k)
Mcok

uo(x}=g sech f(x),
2

where

f(x)=f dx'g(x, x')sech uo(x') .

Then, from (3),

(BS)

(B6)

d2 2'
+ 2sech

dx2 2
—1 f (x)=sech

2
gX—uo(x)+ —Jdx'sech uo(x')

L

(B7)

(BS)

The last term in (B7) must vanish because uo(x) is odd.
Using (BS}we get

d2 2

4 2
+ g 6sech —1 f(x)=0 .

The solution is easily obtained and reads

f (x)=sech tanh
2 2

(B9)
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Substituting (B9) and (B5) and normalizing it, we get

uo(x) =v'15ag /2tanh sech
2 2

(B10)

APPENDIX C

We shall evaluate here the functional form for the su-

perpropagator, J. From (3.26) we see that the Hamilton-
ian can be put in the form

For the acoustical case we must use (3.4) with 00=0,
which reads

H =H~ +H~+HI, (Cl)

d uo d duo
2

= fdx'F(x, x'), (x') .
dx dx dx

Now, using (B2) we should define

gx t duoh(x)= fdx'g(x, x')sech, (x')
2 dx

and rewrite (Bl 1) as

(Bl 1)

(B12)
n=1 n, m =1

Hr= P X Ag b b/MO ~

n, m =1

From (4.6) we get

where

Hs=P /2MO,

Hrt= QAQ„blab„+ g fig„blab„
2

(C2)

2MO, (C3)

(C4)

duo 2d gx=g sech h(x) ' .
dx 2

This can be easily integrated yielding

I

uo(x) =g' f dx'sech h (x'),
oo 2

where

uo( —oo )=0 .

Observe that h (x) also obeys Eq. (S), so

(B13)

where

d2a d2P d2Pt p~, ', OK xa x'

(C5)

d ak
&xlp, (t)ly &= f f g „&xalp&t)lya&

k=1

or using the completeness relations (4.10) and (4.11) we
can, with the help of (4.2), write

p, (x,y, t)= fdx'f dy'p, (x',y', 0)J(x,y, t;x', y', 0),

h (x) =tanh sech
2 2

(B14)
with

XK'(yay'p" t) (C6)

Substituting (B14) in (B13)we get, after normalization, rc(xa'x'pt)=&xale '~""Ix'p& . (Cj)

uo(x) =v'3ag/Ssech'
2

(B15)

In order to transform (C7) into a functional integral we
must divide t in (M —1) subintervals of length e and use
(M —1) completeness relations between the (M —1) ex-
ponentials in (C7). Then

2 2

&xale ' ""lx'p&= fdq~ &. fdq~ f " ' . f ~'&qlastle' ""IqM ]aM && &q]a&le '"""Iqopo&,

where

9M =X +M = qo=x', ao=p .

(CS)

(C9)

Now insert M completeness relations in the momentum representation

f dele &&Pl=I

in (CS) in order to obtain

M —1 d cxK= g ' fdqk
k=1 7T

M

g . fdPk '(q„a„le IP„aN, )(PNIq„, ) ' (q, a, le I , Pp)a(P~Iq &o.

. k=1

(C10)

Now we will take the limit that M ~~, e~0 but with t =(M —1)e being finite.
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For small e we should expand the exponential in (C10) to first order in e and write

&qkakle ' ""IPkak t&=&qklPk&&aklak ~&exp —'s—H(qk Pk ak, ak t) (Cl 1)

where

& qkak I~IPkak —] &

H(qk kakak —1)
~ alak —1~

Using the overlapping relations

(aIP) =exp a' P— —,(PIq) = exp — Pq-IPI'
2 2 ' 2M fi

(C12)

one obtains

dPM st-~ dqkdPk d'a„
P' 2 k —1 k k —1 k k ak —1

k=1 . ~ . k=1

+ IPk(qk qk —1) &H(Pk—qkakak i)) (C13)

dPk t E' Pk

2mB fi 2M0
Ph+-k

(C14)

where

Now one has to integrate over Pk So, us. ing (Cl) we
must evaluate Dq = lim

M-+ co, e—+0

M0

2mifie

M —1 d~a
k

D a= lim
M "k=1 .

with

' M/2
M —1

gdqk '

k=1
(C18)

(C19)

gnm an am
nrm =1

This allows one to rewrite (14) in the standard form'

(C15) S = t' q+ a', a

+—(aa —a a) H(a, a—)—l

2 R (C20)

1/2
0

2tri fir

'I

(qk
—qk, )

exp h+
I J

(C16}

I
I' Iel'

&=I"Dq f D2ae expIS[q, a]I,
where

(C17)

Now, substituting (C16} in (C13) and taking the limit of
M —+ ~ and a~0, we get"

Finally, using (C3) and (C15) one reaches

~ 2
MoqS = dt' ' —(aa —a'a)+- +Moqh

0 2 2

n+n&n '.
n, m =1

(C21)

Now, substituting (C21) in (C17) and (C16) we get the re-
sult (4.12).

A. S. Davidov, Phys. Rep. 190, 191 (1990), and references
therein.

H. B. Schiittler and T. Holstein, Ann. Phys. (NY) 166, 93
(1986).

H. Frohlich, Proc. R. Soc. 223, 296 (1954).
4C. Kittel, Quantum Theory ofSolids (Wiley, New York, 1963}.
5P. M. Morse and H. Feshbach, Methods of Theoretical Physics

(McGraw-Hi11, New York, 1953).
P. B.Shaw and E. W. Young, Phys. Rev. B 24, 714 (1981).

7T. Holstein, Mol. Cryst. Liq. Cryst. 77, 235 (1981).

T. D. Holstein and L. A. Turkevich, Phys. Rev. B 38, 1901
(1988).

9L. A. Turkevich and T. D. Holstein, Phys. Rev. B 35, 7474
(1987).

t R. Rajaraman, Solitons and Instantons: An Introduction to
Solitons and Instantons in Quantum Field Theory (North-
Holland, Amsterdam, 1982).
R. P. Feynman and F. L. Vernon, Ann. Phys. (NY) 24, 118
(1963).
A. H. Castro Neto and A. O. Caldeira, Phys. Rev. Lett. 67,



8876 A. H. CASTRO NETO AND A. O. CALDEIRA 46

1960 (1991).
' A. H. Castro Neto and A. O. Caldeira, Phys. Rev. A 42, 6884

(1990)~

A. O. Caldeira and A. J. Leggett, Physica A 121, 587 (1983).
R. Kubo, Rep. Prog. Phys. XXIX, 253 (1966).

~6H. J. Lipkin, Quantum Mechanics: ¹toApproaches to Select
ed Topics (North-Holland, Amsterdam, 1973).

~7R. P. Feynman and A. R. Hibbs, Quantum Mechanics and

Path Integrals (McGraw-Hill, New York, 1965).


