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We developed a method based on functional integration to treat the dynamics of polarons in one-
dimensional systems. We treat the acoustical and the optical case in a unified manner, showing their
differences and similarities. The mobility and the diffusion coefficients are calculated in the Markovian

approximation in the strong-coupling limit.

I. INTRODUCTION

The main task of this paper is to develop a formalism
to treat the dynamics of acoustical or optical polarons in
the strong-coupling limit. Although we are applying the
formalism to a specific problem we think that it can also
be applied to a large class of phenomena, especially prob-
lems involving quantization of zero-frequency modes in
theories which have solitons as solutions of their semi-
classical equations of motion.

When we have a particle (electron) interacting with a
given background (phonons in this case) and wish to
study its effective dynamics, it is now well known that we
must trace over the phonon coordinates and study the
time evolution of the reduced density operator of the
electronic system. However, in the specific case of
electron-phonon coupling, the “effective propagator” for
this operator is extremely cumbersome, preventing us
from getting any simple result out of this standard
analysis. Therefore, one should search for an extra step
before blindly tracing the phonon coordinates out of the
problem.

We start from a very intuitive point, treating the
electron-phonon Hamiltonian as a “semi-classical” Ham-
iltonian.! This “semiclassical” picture provides us with
solutions which are solitons, that is, solutions which do
not change their shape with time. These solitons will be
the basic entities for the future solution of the problem.
We show that the best basis in which one can expand the
field operators of the quantum Hamiltonian is obtained
from the problem of an electron trapped in a self-
consistent potential well. We will call it the “adiabatic
basis” since the strong-coupling limit is the adiabatic lim-
it (see Sec. II).

Once we have obtained the Hamiltonian in adiabatic
form, we can eliminate the electronic part perturbatively,
that is, we trace over the electron coordinates. This
treatment gives rise to an effective Hamiltonian for the
phonon system which has renormalized phonons and a
zero-frequency mode, namely, the polaron. An impor-
tant feature of this Hamiltonian is that it can be straight-
forwardly generalized for a noninteracting many-electron
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system.

Using the well-known ‘“‘collective coordinate formal-
ism,” we transform the effective Hamiltonian into a
Hamiltonian of a particle, the polaron, coupled to a new
set of phonons. It can be shown that for a small polaron
momentum the problem can be put in a very simple form.

Actually, this is a more systematic way to apply the
ideas used by Schiittler and Holstein® to a quantum dissi-
pation problem as the necessary step before the tracing
procedure. Here, we shall repeat part of their arguments
for the sake of completeness.

Finally, using the functional integral formalism, we can
show that the polaron behaves as a Brownian particle due
to the scattering of phonons. So, we have developed a
method which allows us to calculate the physical quanti-
ties of interest, such as the damping parameter (mobility)
and the diffusion coefficient without appealing to kinetic
theory.

In Sec. II we will present the model and exhibit the
adiabatic basis for the strong-coupling limit while in Sec.
III we obtain the effective Hamiltonian for the polaron
coupled to the renormalized phonons. In Sec. IV we use
the functional integral formalism in order to show how
this problem can be treated as a Brownian motion prob-
lem and in Sec. V we use the previous results to calculate
the physical quantities of interest. Section VI contains
our conclusions.

II. THE POLARON MODEL
AND THE ADIABATIC EXPANSION

Since in this paper we will treat the problem of an elec-
tron coupled to acoustical or optical lattice vibrations
(phonons) in a unified manner, we decided to develop
these two problems in parallel, in order to show their
differences and similarities.

A. Optical case

The optical polaron model is based on the Frohlich
Hamiltonian® for electrons coupled to longitudinal opti-
cal phonons. This Hamiltonian can be written in the
second quantized form, in one dimension, as
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here # and 7 are the momentum and position operator
for the phonon field and 1// and 1 the creation and de-
struction operators, respectively, for the electron field.
They obey the following commutation rules:

[9(x,8),R(x',t)]=i#d(x —x') ,
($06,0,8T(x", )} =8(x —x") ,

where [,] denotes commutation and {,} anticommutation.
All the other commutation (or anticommutation) rela-
tions are zero.

In (2.1), w, is the frequency of the phonons, v=M /a is
the lattice density, M the ion mass, a the lattice parame-
ter, m is the effective mass for the electrons in the con-
duction band, and D the coupling constant.

In order to analyze the physical content of (2.1) we will
treat the operators as ordinary functions and interpret
the electron field as the wave function for one electron in
the lattice. In other words, we would say that we are
treating the problem in the mean-field approximation
where the operators are replaced by their mean values
over configurations. It is emphasized that this is not an
exact calculation but just an artifact to obtain the best
basis in which we would expand the operators of the
Hamiltonian (2.1) in order to get the strong-coupling re-
gime. It can be easily shown that the following Lagrang-
ian can generate the Hamiltonian (2.1):

= Yy 7 tl éﬂ:
L= [dx [ > 2 +i#i ¢ Ly
# 3 D .,
-2 W ¥ D, ¢} 2.2)
where ¢ is normalized:
[ axlyix,nl?=1. 2.3)

The equations of motion for the Lagrangian (2.2) are

lﬁ_‘dL ﬁz_ng

A 2.4)

=0,
Kl B
8t2 077

Equation (2.4) is the Schrodinger equation for an electron
in a potential given by

—f;ltlr|2=0 . 2.5

V(x,t)=gn(x,t) ,

while Eq. (2.5) is an equation for an oscillator with fre-
quency o, forced by the presence of an external field,
|$|2. The picture is that of an electron which distorts the
lattice which, in its turn, produces a potential for the
electron; a self-consistent interaction.

We are interested only in stationary solutions for the
electrons, that is, solutions of the form

8859

—iEqt/h

PY(x,t)=dy(x)e (2.6)

as well as in static solutions for the lattice (adiabatic solu-
tion)

n(x,t)=n4(x) . 2.7
From (2.4)-(2.7) we get
# d?
_E;?E;? o(x) do(x)=Eydo(x) , 2.8)
D
Nolx)=— Mol $3(x) . 2.9)

We can think of (2.8) and (2.9) as follows: we put the
electron in the lattice and the latter adjusts itself to the
presence of the former. As a consequence, the electron is
trapped by the potential well formed around itself.

Substituting (2.9) in (2.8) we get

D2
=Eydg - (2.10)
Ma w% ¢0 0¢0
This is a nonlinear Schrédinger equation which can be

solved exactly. There is a localized static solution which
reads

(x —xq)
Bolx)= —Cseh szﬂ— : @.11)
where
2
———] (2.12)
and
2
E0=—% (2.13)

is the binding energy of the electron in the potential well.
Xq is an arbitrary constant which gives the center of the
packet described by (2.11).

The lattice displacements are given by (2.9)

|Eo| , | 8(x—x¢)

2

No(x)=—2a sec , (2.14)

which is symmetric around the electron position.
The potential well where the electron is trapped is
given by

g(x —xo)

V(x)=—2|E,|sech? )

(2.15)

We can identify the parameter g as the strength of the
interaction since the potential (2.15) becomes very weak
for distances greater than g ~!. Therefore, g ~! defines
the polaron length.

B. The acoustical case

For electrons interacting with acoustical phonons, the
Hamiltonian can be written as*
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w? | an ﬁZ » d% D2 2
H o= (gl 20 |20 | # 3y’ 3y _# &% s |gr_mv” | _
4 f A wiral ew 2m 3x 3x m e Wol—v) $= |Eo ) bo (2.25)
Agai h btained li Schrodi -
+D—77— ¢' y (2.16) _ Again we have obtained a nonlinear Schrodinger equa_
tion which is characteristic of a self-consistent interac

where v, is the sound velocity in the lattice and all other
definitions are maintained.

The second term in (2.16) comes from the Debye
dispersion relation for acoustical phonons

o=vlk|, (2.17)
where k is the phonon wave vector.
For (2.16) the “‘semi-classical” Lagrangian is
2 2
v Y05 | 9n
L= - ——
f dx { 2 2 | ox
*
+i# 1/,*_'£ oy* ]
at
A3yt Y _21
" 2m 9x ox ¢ ¥ 219

which produces the following set of equations of motion:

w2y B o,

5 T 2m an? 2.19)
2 2
o 2—1 D3yl _, (2.20)
ot? ¥ 9x? v 0x

These equations are interpreted in the same way as for
the optical case as a self-consistent interaction, where the
potential that the electron feels is

Vix,n=D3L
ox
Unlike (2.4) and (2.5), this system of coupled equations
admits a traveling solution. We can obtain a general
solution for (2.19) and (2.20) defining a variable
X=x —xy—vt, where x, and v are arbitrary constants.
We look for solutions of the form

¢(x,t)=¢0()()explé(mvx—E(’)t) (2.21)
and

n(x,8)=n0(x) . (2.22)
From (2.19)-(2.22),

2 g2

——2% d;" +D%;l Ej— $olx), (223

dn, D

dxo =S B (2.24)

Equation (2.23) is the Schrodinger equation in the vari-
able ¢ and (2.24) has the form of a wave equation of the
same variable. Substituting (2.24) in (2.23) we get

tion. The solution obtained if v is smaller than the veloci-
ty of the sound is

‘/—_I ’
do(x)=—~E-sech | EX |, (2.26)
2 2
where
2 -1
1 |m D v?
== -t 227
£ 4 M #v, /a v? @27
with the electron binding energy given by
2 2,12
, _ mv ‘g
Ey=———7>—. 2.28
0 2 8m ( )

The solution is unstable for v > v;.

The interpretation is almost obvious: the electron and
the lattice displacement move together with velocity v.
Observe that the wave function (2.16) and the binding en-
ergy (2.28) have exactly the same shape as in the optical
case for v =0 (the adiabatic case). We expect that the po-
tential which the electron feels must be the same. From
(2.24)

__ Fg g'x
Mol X) 2mD tanh > (2.29)
and the potential is given by
an ﬁ2g12 goX
V(x)=D——=— 2|4 2.
(x) dx am sech 5 (2.30)

Observe that, for v =0, (2.30) has the same shape of
(2.15). This exhibits something fundamental in the phys-
ics of the two problems. Observe that the parameters g
and g’ have the same form for v =0:

D 2

E

c

m

M

1
a

where E, is the characteristic energy of the phonon sys-
tem; fiw, in the optical case and fiwp in the acoustical
case, where

wp=v;/a

is the Debye frequency. So, g and g’ play the same role in
both problems and, from now on, we will call them g.
Actually, we will work only with the static case, v =0,
observing that this means that we are not taking into ac-
count the kinetic energy of the lattice in (2.18) (Born-
Oppenheimer approximation). This explains why we are
using the term “‘adiabatic.”

Here, it should be noticed that one must reconcile
g >>1 (strong coupling) with the continuum model we
have been using. It has been shown in Ref. 2 that there is
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a vast range of polaron sizes where both conditions are
met.

C. The adiabatic expansion

As we have seen, for the acoustical as well as for the
optical case, the potential well which traps the electron is
the same. As a consequence the wave functions and bind-
ing energies are also the same. As we have treated the
problem in a variational way, we expect that the wave
function, (2.11) or (2.26), is the ground-state wave func-
tion for the electron in the adiabatic limit and zero tem-
perature. Nevertheless, we expect that for finite tempera-
tures the electron can be found in some excited state of
this well due to its interaction with thermal phonons. As
the interaction is self-consistent, the potential well must
change its shape, changing the potential energy of the
electron. If the temperature is not too high, so it does
not remove the electron from the well, we might imagine
that due to virtual transitions the electron absorbs energy
from the lattice and immediately emits this energy,
remaining in the ground state.

In order to find these excited states we have to solve
the Schrodinger equation for the electron in the potential
well, (2.15) or (2.30) (put x, =0):

2 2 2
Ay - EE
2m dx 4

X 14 (x)=

2
sech?

E,¢,(x) .

(2.31)

This equation can be solved exactly’ and gives one
bound state as expected [see (2.11) and (2.26)]:

¢o(x)=—‘£25—sech %

with energy

2,2
E0=_—ﬁ_L

8m

and a set of doubly degenerate free states

k, +ig tanh(gx /2)/2
#F(x)= L T8 ,g 2.32)
VL ¢ k,+ig/2
with energy
#ik 2
Ef=—2 .
" om (2.33)
where k, is the solution of
8(k,)
K, =227 _2Cn o —0,+1,42, ... (2.34)
L L
J
H0=60+angao+ 2 Efa:an
n=1
+
v 5 [ﬁkﬁ ]
k=—o 2M
D
T %
n=0

Fok)abag—1)+ z foKala, +fH—Kalay+ 2 Fam(K)ala,,

and 8(k) is the phase shift due to the scattering of the
free states given by

kg

8(k )=arctan 1(2——g2/4-

(2.35)

Here we have imposed periodic boundary condition in
x=xL/2withL — .

The “adiabatic expansion” is made by expanding the
electron field operators in (2.1) or (2.16) in this basis,
yielding

Px,t)=do(x)ao()+ 3T ¢E(x)a, (1),

n=1

(2.36)

Px,n=¢yx)al()+ 3 oF*(x)a) (1) ,

n=1

(2.37)

where a, and a,:r are, respectively, the destruction and
creation operators for each state of (2.31). They obey the
following anticommutation rules:

{8,(0,8},(0} =8, ,
(a,(n,a, (0} ={al(),a} (n}=0

The field displacement as well as its conjugate momen-
tum density can also be expanded in this basis as

ikx
lx,t)=my(x)+ g (4= (2.38)
o k—2-w k VN’
'kx
A= 3 Pl = (2.39)

k=—o

where N =L /a is the number of ion sites and k is given
by the periodic boundary conditions

2n1m
k==,
L

As 7 and # are real, we must have
A=0- Bi=P-x,

with the usual commutation rule
[ (), Dr () 1= 00y . .

If we substitute (2.36)-(2.39) in (2.1) and (2.16), and use
the orthogonality of the adiabatic states

J dxgo(x)¢E(x)=0
[axglx)o1(x)=8,, ,

and Egs. (2.9), (2.14), and (2.31), we obtain
(i) for the optical case:

n=0,%1,%£2,....

(2.40)
(2.41)

] , (2.42)

=1
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where
2
vy ~+o #*g? _ 2
o=— [ dx n(z,(x)=?€n-=—3—|E0| , (2.43)
FOk)=—~ [ dx g3(x)e™™ (2.44)
VN ’
Folk)= —‘/—1_17 [ dx po(x)gE (e , (2.45)
f,,m(k)=#fdx SF*(x)pF (x)e ™ | (2.46)
(ii) for the acoustical case:
H,=€y+Ejalag+ S Efala,
n=1
te ﬁkﬁ— k Mvszk 2
+ + _
3 { 0
+ikDgqy |folk)Nafaq—1)+ 3 |fa(Kala, +f(—klalag+ S fum(kla)a,, ] : (2.47)
n=0 m=1
[
Notice that (2.42) and (2.47) are exact results, no approxi- o) =In,=1; n =0), j=1,2,3,... (2.50)

mations have been made so far.

Since we are interested in the strong-coupling limit, the
phonons cannot excite the electron out of the well.
Quantitatively this means that

|E,|

>1,

c
where E, is the phonon characteristic energy and |E,|
the modulus of the binding energy of the electron. The

inequality above allows us to define an expansion parame-
ter for the strong-coupling limit, a, as

c

T E,]

a <<1.

If now we scale the Hamiltonians (2.42) and (2.47) by
the characteristic phonon energy, we can easily see that
the pure electronic part is of the order of a~! while the
interaction term is of the order of a !/ and consequent-
ly much smaller than the former.%? Using this result we
will eliminate the electronic part of the Hamiltonian by a
perturbative treatment and obtain a renormalized pho-
non Hamiltonian.

Consider the pure electronic part as the nonperturbed
Hamiltonian. Its eigenstates can be written in the Fock
space as

Ingsnyy...ng ), (2.48)

where n; is the occupation number for the ground state.
We simplify the calculation assuming that there is only
one electron in the problem (see Appendix A for the case
of many electrons); that is,

0

an=1 .

j=0

(2.49)

The ground state is given by

with energy E,. This state is exactly the adiabatic state
given by (2.11) or (2.26).

We can now apply the Rayleigh-Schrédinger perturba-
tion theory to this problem. The first-order term is null
because we have just one electron. The second-order
correction is easily calculated and it gives

(i) for the optical case:

2
EP=—2 sy k24, 2.51)
a” gk
where
© fk)f¥(k")
Vo= 3, LD 2.52)
n=0 En _EO
(ii) for the acoustical case:
EP=—D>Ikk'Vo(k,k")q;q ;- - (2.53)
kk’

Therefore, we write the Hamiltonians for the renormal-
ized phonons as

to PPk M
HO'A=€+k=2.w —-Z—A;—+7k'=2_wlﬂf,zf’]%k6—k' )
(2.54)
where
|E,|
€e=€tE,=— 3 (2.55)
and
(0% =028 — 22 Vol k) 2.56)
Ma?
A 2272 2D?, ., ,
(O =02k — E KK Vol ') (2.57)
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The Hamiltonian (2.54) was already obtained® some
years ago for the acoustical case and it can be rewritten
in a different form in terms of some new operators
8%(x,t) and #(x,t) defined by [c.f., (2.38)]

_ 1 rdx
(1) ‘/ﬁf ~e~bi(x,1) (2.58)
1 s
Pelt=—= [ dxe “*5(x,1) . (2.59)
One can easily check that
[87(x,t), F(x',t)]=i#d(x —x') .
Now, using (2.58) and (2.59) in (2.54), we get
_ # vco(z) 2
Ho=e+ [dx ot oM
O s [ axF 2.60
50 [ dx'Flx,x")8(x") (2.60)
and
2wl (asg |
= T s | 901
H,=e+ [dx T | o
vv s
Y5 389 ' e/
2 dx fd Flx,x") ox’ }’
(2.61)
where
Fx F(..1
o (X)), (x")
F(x,x')=4gdo(x)do(x') 3 % (2.62)

< (ki+g?/4)

These results agree perfectly with those obtained by other
methods.>’

III. THE EFFECTIVE HAMILTONIAN

As we are interested in the excitation spectrum of the
Hamiltonians (2.60) and (2.61), we have to diagonalize
them. If we choose

89(x,0)="3 4, (t)u,(x) , 3.1)
n=0

where u, are the normalized eigenfunctions of (2.60) or
(2.61),

dx

——u (XU, (x)=38,, , (3.2)
a

they must satisfy the following integrodifferential equa-
tions:

(i) Q2u,(x)=wdu,(x)—w} [ dx'F (x,x"u,(x") (3.3)
for the optical case, while

d? du,(x')
(ii) Q2u,(x)=—0? du 2fdx ——F(x x’ )-——'—u a
X

(3.4)

for the acoustical case.

Observe that to solve (3.3) and (3.4) is equivalent in the
momentum space to diagonalize (2.56) and (2.57). These
equations often appear in works about polaron dynam-
ics>®% and we do not intend to solve them in this work.
For (3.3) there is a closed solution’ which we will use
later, while for (3.4) we will make some approximations
which are suitable for our purposes.

An interesting and important solution of those equa-
tions can be found directly. These are the zero-mode
solutions, that is, solutions with ;=0 (see Appendix B).
For the optical case we have

uoop(x)=L250g—tanh 2% lsech? [-gzi (3.5
and for the acoustical case
ufC(x)=Vv"3ag /8sech? | == (3.6)

Examining (3.5) and (3.6) and comparing with (2.14)
and (2.29), we see that, in both cases,
uo(x)=C%170(x) ) (3.7)
where C is a constant which appears due to the normali-
zation of u,. The above relation clearly expresses the
translational invariance of Hamiltonians (2.1) and (2.16).
Notice that although we have put x,=0 in (2.31), in or-
der to obtain the adiabatic basis, the center of the soliton
solutions (2.11), (2.14), (2.26), and (2.29) is arbitrary and
therefore we must have u, also expanded about this
point; that is,

U, =u,(x —xq) . (3.8)

Suppose that we move the center of the functions (2.14)
or (2.29) by an infinitesimal quantity 8x,. Then,

ug(xg)dx,
C b
where we have used (3.7). By (3.9) we conclude that the
zero-mode frequency corresponds to the translation of
the soliton, in other words, to the motion of the polaron.

Once we have the eigenfunctions of (3.3) and (3.4), we
would expect to write the Hamiltonian in the form

ﬁ2 Mnf, )
—

Nolxg+6x5) =7o(xy)+ (3.9)

2
H~—e+———+ E

) (3.10)

where we have used that Q=

At first sight (3.10) shows a free particle with momen-
tum P, and a set of decoupled harmonic oscillators.
Nevertheless, it is not possible to take it seriously be-
cause, initially, we have implicitly assumed that the lat-
tice displacement cannot be indefinitely large. From
(2.51) and (2.53) we see that the energy correction de-
pends on the lattice displacement which must be finite in
order for the perturbation theory to be valid.

Let us observe that, due to (3.9), the polaron displace-
ment is proportional to the displacement of its center,



8864

that is,
go=58x,/C . (3.11)
From (3.1), we have
5"7()‘,’):‘10“0'*‘ E qnln

n=1

or, using (3.7) and (3.11),

+2qn

n=1

on(x,t)= 8x0 (3.12)
Therefore, we can assume that x, is a true dynamic vari-
able, that is, x,=xy(¢). So, based on (3.12), we will
rewrite expansion (3.1) as

80X, )=1o[x —Ro(D)]+ 3, 4 (D, [x —Ro(1)] .

n=1

(3.13)

This procedure is known as “collective coordinate for-
malism.”'® Observe that (3.13) changes the kinetic part
of (2.60) or (2.61) because X, is also a function of time. It
is shown? that the new Hamiltonian in the presence of
the polaron position operator, X, is given by

» | p? 2
H=e+n§1 T
—1
l o] . @«
+ SMO n’m2=1Gnmanpn ’ ‘1+n§1‘snan ’
-1
WM 2
> S?[1+ z Splm (3.14)

8‘A40n=1

Here {,} denotes anticommutation and P is the momen-
tum operator associate to X:

[Ro(0),B()]=
and
(3,(),P,, ()] =i#8,,,,

with all the other commutators being zero.
In (3.14) we have

+ dmn,
= dx | — 3.15
v[ Tdx|— (3.15)
as being the classical soliton mass which becomes
E. |
m 0
M = — | ——
0 8 ﬁ@o
for the optical case, and
2
32 E,
M = =
0T 3™ fiv,g
for the acoustical case.
The new quantities
dng du,
s, =M 4dx Mo (3.16)

M, a dx dx
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and

G,,m=f£1a£um x

couple the polaron to the renormalized phonons.

In the strong-coupling limit (3.14) can be simplified.?
Due to (3.5), (3.6), (2.14), (2.29), and (3.7), we can rewrite
S, as

du,(x)

(3.17)

E
s ~M_ 1 |20

(x)
My, Vag | D '

f “—uo(

As the integral only gives a numerical factor, this yields

s~M_1 B

My Vag | D
Now, from (3.15),
EC
E,

1
~.

2
M M

_~

My, m

and

g ~—2
" (ME,)?

SO

E,

|E,

<1

PN e

and, therefore, this sum is very small in the strong-
coupling limit. Within this approximation we get

a2 2
i Pn M‘Qn 2
H=e+ =
2wt &
I z ’
+ p 3.18
oty [P~ 2 Gunlod 3.18)

The second term in (3.18) is the energy of noninteract-
ing phonons and the third term can be interpreted as the
kinetic energy of the polaron. Observe that

S Gunlimbs | (.19

n,m=1

R 1 . 1
x0=7[xo,ﬁ]=ﬁo— P—

1

and so P cannot be the polaron momentum because, since
1 a
=—[P,H]=0
ifi [ ]

it is a constant of motion. From (3.19) we interpret M %X,
as the polaron momentum and 3,,,G,,q,P, as the
momentum of the phonon field. Observe that Hamiltoni-
an (3.18) is very close to the electromagnetic Hamiltoni-
an, where the coupling between the particle and the field
are obtained via the potential vector (see Sec. IV).

If we define the destruction and creation operators

M.Qn 172

2%

Pn
MQ,

b,= q,+i , (3.20)
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MQ,
24

’ (3.21)

172
o it
" MQ,

which obviously obey

~

(B, 1=8,m

one can rewrite H as

H=c+ ﬁﬁﬂ,,(b,‘:b,,+%)+2—;lo(ﬁ—ﬁph)z . (3.22)

n=1

where
172 172
=S hod ‘ﬁ ‘Qn ‘Qm 1
= — +
Pph n,m2=12i ‘Q’m .Q" Gnmbmbn
172 172
4 § A || O
n,m=14l Q,, Q,
X G (b b, —blbY) . (3.23)

Here we have used the fact that, from (3.15), G, is an-
tisymmetric in the interchange of m and n,

Gom =G - (3.24)

Observe that the momentum of the phonon field con-
sists of two parts; a diagonal part [the first term on the
right-hand side of (3.23)] which commutes with the
phonon-number operator,

N=315',,
n=1

and, therefore, conserves the number of phonons in the
system. This term is responsible for scattering. The oth-
er term does not commute with the number operator and
is related with absorption or emission of phonons by the
polaron (Cerenkov process). We will restrict our problem
to typical polaron kinetic energies much smaller than the
phonon energies, in other words, small velocities. In this
limit the occurrence of emission or absorption of phonons
is not possible due to the simultaneous conservation of
momentum and energy. In terms of our parameters this
means that

|xol <<VE./M, . (3.25)

Only scattering, and therefore virtual transitions, will be
relevant for our problem.

With this approximation the polaron dynamics will be
described by the following effective Hamiltonian:

2

H==—1|P— S #6156, | + 3 #0,5/5, ,
2M0 nm=1 n=1

(3.26)
where
__1_(9.,,+Qm)
2i —\/Qn—ﬂ'; nm

As we will show in the next section the Hamiltonian

8nm (3.27)
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(3.26) describes the dynamics of a Brownian particle, that
is, a heavy particle in a bath of light particles which col-
lide with it.

IV. FUNCTIONAL INTEGRAL METHOD

The starting point for the calculations of the transport
properties of the polaron is the well-known Feynman-
Vernon formalism!! that the authors have recently ap-
plied'? to the Hamiltonian (3.26).

We are interested only in the quantum statistical prop-
erties of the polaron and the phonons act only as a source
of relaxation and diffusion processes. Consider the densi-
ty operator for the system polaron plus phonons, p(1).
This operator evolves in time according to

plt)=e —iﬁt/ﬁﬁ(o)eiﬁt/ﬁ ,

where H is given by (3.26) and p(0) is the density opera-
tor at ¢t =0 which we will assume to be decoupled as a
product of the polaron density operator, p5(0), and the
phonon density operator, 53 (0):

p(0)=p5(0)pg(0) ,

where the symbol S refers to the polaron (system of in-
terest) and R to the phonons (the reservoir of excitations).

Condition (4.2) means that we put the electron in the
lattice which is in thermal equilibrium at temperature T.
So, we consider the phonons as described by their equilib-
rium distribution,

4.1)

(4.2)

._BQR

pr(0)="% 4.3)

pR( ) VA , .
where

Z=trgle PRy (4.4)
with

1
= . 4.
B KT 4.5)

Here tr; denotes the trace over the phonon variables and
K is the Boltzmann constant. A g is the free-phonon
Hamiltonian which is given by the last term on the
right-hand side of (3.26).

As we said, we are interested only in the quantum dy-
namics of the system S, so, we define a reduced density
operator

ps(t)=trg[p()], (4.6)

which contains all the information about S when it is in
contact with R.
Projecting now (4.6) in the coordinate representation of
the polaron system
Rolg)=4qlg) 4.7)

and in the coherent state representation for bosons (the
phonons)
b,la,)=a,la,) , (4.8)

we have'? (see also Appendix C)
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po(x.p, )= [[dx’ [ dy'J(x,p,t;x",y",0)p,(x",5",0) .
(4.9

Here we have used (4.1), (4.2), (4.6), and the complete-
ness relation for the representations above, namely,

[dqlg){ql=1,
[ % ja)al=1,

(4.10)

(4.11)

where d?a=d (Rea)d (Ima) as usual.
J

F[x,y]=fd;gfd21€fd1v pr(B*, B')e_|“|2 1812 /2— |El2/2f D af D%ye ,
T

where B denotes the vector (8,,8,,83, . ..,By) and S; is a
complex action related to the reservoir plus interaction

S,[x,a]=fotdt' [—;—

.da* _ . da
dt' dt'

'—%(HR —xh,)] (4.15)
with
=3 #iQ,a5a, , (4.16)
n=1
S figa.ana, (4.17)

n,m=1

Here we have obtained a result which is very close to the
electromagnetic coupling where the Hamiltonian depends
on the vector potential, A, through

_eA
C

but the Lagrangian depends on
v-A .

In our case the Lagrangian formulation simplifies the
problem transforming a nonlinear problem into a linear
one. The action (4.15) is quadratic in a, so it can be
solved exactly. Observe that the Euler-Lagrange equa-
tions for (4.15) are

a,+iQ,a,—ix ¥ g..a, =0, (4.18)
m=1
an—iQuar+ix 3 g,mam =0,
=1
which must be solved subject to the boundary conditions

a,(0)=8, , (4.20)
at(t)=a? (4.21)

(4.19)

Due to (3.24) we have g,, =0, so, the modes are not
coupled among themselves. This makes (4.18) and (4.19)
easy to solve. That set of equations represents a set of
harmonic oscillators forced by the presence of the polar-
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In (4.9), J is the superpropagator of the polaron, which
can be written as

J=[Dx fy ARSI =SV e 31, 4.12)

where
Myx2(t")

Solx]= [ 'dr’ I : ’ (4.13)
is the classical action for the free particle. F is the so-
called influence functional

xa]+Sl »r] (4.14)
1
on. The result can be written as
a,(r)= "B, + 2  (T)B o l (4.22)
a,‘,‘(‘r)zem"T ate 'y 3 W, (1) 'Q’"ta,*,, ,
m=1
(4.23)
where W,,, and W,, are functionals of x (¢) which obey

the following equations:

an(T)=f0TW,(,?n)(t')dt'

+2 fOTW(g)(t W (t)dt' (4.24)
k=1
Wm()= [ W0t dr’
< 57 (ox
+3 [WRaw,, (4.25)
=1 T
where
WO (1), ) =g i (20" O (4.26)
WO (), t)=WO(x(t'),1) 4.27)

[observe that W, (t)=W,,,(0)].

Now we expand the action (4.15) around the classical
solution (4.22) and (4.23) and obtain, after some integra-
tions in (4.14),

oo

Fx,y]= I_Il(l—-l“,m[x,y]ﬁ,, )7, (4.28)
where

Cun = Wi+ Won 31+ 3 Wi, DIW,[x] (429
with

7, =(e" =)= (4.30)

Notice that (4.28) and (4.29) are exact, no approximations
have been made so far.
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We see from (4.24) and (4.25) that W,, can be ex-
pressed as a power series of the Fourier transform of the
polaron velocity, %, so, due to the small polaron velocity
condition (3.25), we expect that only few terms in (4.24)
will be sufficient for a good description of the polaron dy-
namics.

Another way to see this is to notice that (4.24) and
(4.25) are the scattering amplitudes from mode k to mode
j. The terms that appear in the sum represent the virtual
transitions between these two modes. With these two ar-
guments in mind we will make use of the Born approxi-
mation. In matrix notation,

win= [TWt)dr
0
To(0)( 41 v (0)( 41¢ [ 4.3
+[wWOun [ wOudrdr . 431

Therefore, in the approximation of small polaron velocity
|

- M
S= fotdt, _20_[x2(tl)_y2(tl)]+[x-(tl)_y(t,)]foldtul—\l(tr_tu)[x-(tu)_}_}-’(tn)]]

and

§=[ ar [ dr{Tg(r'—t"[x(t)—p(t")]

X[x(e")—y(")]} (4.35)
with
Tr()=#0(t) 3 g2.f,cos(Q,—Q,)¢t, (4.36)
n,m=1
T ()=#0(t) S g2,7,sin(Q,—Q, )t . 4.37)
n,m=1
Now, if we define the new variables R and r as
R=212, 4.38)
r=x-y, (4.39)
the equations of motion for the action in (4.34) read
R(n+2 [ dr'y(r=R(1)=0, (4.40)
#r—2 [ dt'y(r' =i =0, (4.41)
0
where
)=-L 4L 4.42)
(0= M, dt :
or, using (4.37),
y(t)= ﬁf{(:’ S g2,7,(Q,—Q, )cos(Q, —Q,, )t
n,m=1

(4.43)

is the damping function.

In terms of these newly defined variables, we can easily
see that (4.40) and (4.41) have the same form of the equa-
tions previously obtained in the case of quantum Brown-
ian motion,'* except for the fact that they now present
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the terms in (4.29) are small and we can rewrite, as a
good approximation,

n=1

F[x,y]zexp { i an [x’y]’_ln ] . (4-32)

Observe that if the interaction is turned off (I'—0) or the
temperature is zero (T"=0) the functional (4.29) is one,
and, as we would expect the polaron moves as a free par-
ticle.

Substituting the Born approximation (4.31) in (4.32)
and the latter in (4.12) we find

J=f:Dx fy)”Dyexp (%§[x,y]+%$[x,y] ] , (4.33)

where

(4.34)

memory effects. It should be emphasized that although
(4.40) and (4.41) have only indirect physical meaning,
through the study of the motion of the center of a wave
packet and the spreading of its width, y(z) really plays
the role of the damping parameter in the equation of
motion of the former (see Ref. 14 for details).

Furthermore, we shall prove that (4.43) can be written
in the form

y(6)=%(T)6(¢) , (4.44)

where 7(T) is a damping parameter which is temperature
dependent and &(¢) is the Dirac § function. The form
(4.44) is known as the Markovian approximation because
in this case the memory is purely local and does not de-
pend on the previous motion of the particle.

If we use (4.40) and (4.41) with (4.44) and expand the
phase of (4.33) around this classical solution we get the
well-known result for the quantum Brownian motion'*
where the damping parameter y (temperature indepen-
dent) is replaced by 7(7T') and the diffusive part is re-
placed by (4.35). As a consequence, the diffusion parame-
ter in momentum space will be given by

ZFR

dr?

D(t)=%

=—#06(1) z gr%mﬁn(ﬂn —Q, )

n,m=1

Xcos(Q, —Q,, )t . (4.45)

We will also prove that D (¢) has the Markovian form
D(1)=D(T)s(1) , (4.46)

where D(T) and 7(T) obey the classical fluctuation-
dissipation theorem at low temperatures. '’

In what follows we shall define a function S(w,o’)
which will, in analogy to the spectral function J(w) of
the standard model,'* allow one to replace all the summa-
tions over k by integrals over frequencies:
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S(o,0)="3 g2,8(0—0,)8e'—Q,) .

nm=1

(4.47)

Notice, however, that unlike J (®) in Ref. 14, this new
function S(w,w’) is related to the scattering of the envi-
ronmental excitations between states of frequencies » and
' (as seen from the laboratory frame). Moreover, due to
J

_#6(t) © o, N o o
y(t)= M, fo dwfo do'S(w,0 N o—o')[n(w)—n(w)]cos(o—w’)t

and

2 «©Q el
D(t)————ﬁ—z(tlfo d(ofo do'S(0—o' N o—o')[n(w)+n(e)]cos(o—aw')t .

Concluding, we have established that the Hamiltonian
(3.26) leads to a Brownian dynamics, that is, the polaron
moves as a particle in a viscous environment where its re-
laxation and diffusion are due to the scattering of pho-
nons.

V. MOBILITY AND DIFFUSION

Equations (4.43) and (4.45) show that the polaron
transport properties depend essentially on the coupling
parameter g,,. From (3.17) we see that this parameter
can be obtained if we know the eigenfunctions of (3.3)
and (3.4).

First of all we can show that (3.3) and (3.4) have solu-
tions with definite parities. This is easily seen by chang-
ing x by —x in (3.3) and (3.4) and x’ by —x' in the in-
tegral term. From (2.62) we observe that
F(—x,—x')=F(x,x') and therefore u,(x) and u,(—x)
obey the same eigenvalue equation. In other words, the
Hamiltonians commute with the parity operator and
therefore it is possible to classify their eigenfunctions as
odd or even. Now we must study the optical and the
acoustical cases separately.

A. Optical case

Turkevich and Holstein® obtained the exact solutions
for (3.3). For the odd modes the eigenfunctions are

2n +5

172
:\/ —_—
n(x) ag/2 (n+2)(n+3) J

dP,
X[l—Yz(x)]—;i,ﬁ,

n=0,2,4,6..., (5.1)
where
Y (x)=tanh % (5.2)
and P, are the Legendre polynomials.
The eigenvalues of the problem are
172
4
Q, =y |1 =—5—— (5.3)
n°+5n +4

In particular, the zero mode, n =0 and Q,=0, is given by
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(3.24) it is easy to see that

S(w,0")=S(0',0) . (4.48)
From now on we shall call S(w,®’) the “scattering func-
tion.”

Notice that we can rewrite (4.43) and (4.45) as

(4.49)
(4.50)
[
(3.5).
The even modes can be written as
e 2a+5 12
Ualx)=Vag/ (a+2)a+3) }
1—Y%(x)] d
X —[__-2—]_:17[["’*2( Y)—P,.,(—=Y)],
(5.4)
where the allowed values of a are solutions of
¢(a+3)—¢(1)=%tan 221

and ¢ is the digamma function. Its eigenvalues are given
by

172

4

a?+5a+4

We will use the convention given in Table I.

As the labels for the even solutions are not integers we
define €,=n—a as the difference between our
classification and the label. Table I shows us that the
eigenfrequencies go quickly to w, while €, goes to zero.

From (3.17) we note that G,,, only couples functions
with opposite parity. Substituting (5.1) and (5.4) in (3.17),
we get

Q,=wy |1—

_ 2g sin[m(n—m +€,)]

Gnm_ )
T m[(n—m+e€,,)—1]

(5.5

nm ?

where

TABLE 1. Conventions for classification of the eigenfunctions.

n a Q, /g €,=n—a
0 0 0
1 0.523 0.648 0.477
2 2 0.882 0
3 2.601 0.912 0.394
4 4 0.949 0
5 4.648 0.958 0.352
6 6 0.971 0
7 6.674 0.975 0.326
8 8 0.981 0
9 8.692 0.983 0.308
10 10 0.987 0
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_ [(n+2)n +3)2n +5)(m —¢,, +2)(m —¢,, +3)(2m —2¢,,+5)]' 5.6)
" [(n+m +e€,)*+10(n +m —¢,,)+24] '
for n =0,2,4,6... , m=1,3,5,7... .

Observe that (5.5)) is strongly peaked around n =m +1. Therefore, the most important contributions to summations
involving G,,,, will come from these forms (observe that €,, goes to zero as m goes to infinity):

G =K, [8(n —m —1)—8(n —m +1)]

for n even and m odd.
From (4.47) and (3.27) we get

S(w,0')=— iz C2,_[8o—0,)8(w' —Q, _)+8o—0, _)8a'—Q,)]

+Cr+1[8(0—0,)8(0' ~ 0, 1) +8(0—Q, 180’ —Q,)]}

where n is even and
Q. +9Q,.)
Com=—r——oK,,, .
VQ,Q,
Substituting (5.8) in (4.48) we find

3n-—l(ﬂn_0n—l)[n(nn)_

+C3n+1(ﬂn+l_

We will define wave vectors for each » in (5.2) in the
form

K=nw/L , (5.11)

where L is the length of quantization (L — «). Equation
(5.10) then becomes

_ #*g? 2T 2 dn
t t —_—
r(= —5—9<) = [ TdKCUK.K) K e
Q
X cos L dK t], (5.12)
where we used the limit L — 0.
It is easy to see that by (5.3)
o
FranTratI e 1
and by (5.9) and (5.6) that
252
CHK,K)= Lﬂf as L—oo .

Now, using the fact that the frequencies approach the
value w, very fast when n increases, we make the follow-
ing approximation:

dn_ _dn
a0 dQ Q=0

We shall rewrite (5.12) as

Q) (Q, 41—

(5.7
(5.8
(5.9
n(Q, _;)]cos(Q, —Q, _)t
n(Q,)]cos[(Q, ;—Q,)t]} . (5.10)
r
3
— g 2 167
y(t)= M, o(t) dQ fors I
» _ cos[(4mw t/L3)(1/K3)
x [ "dK (70 . L)
0 K
This gntegral can be easily done if we change variables,
47w
x= I 9 1 . The integral then becomes
_ ﬁ2 2 dn | |49 rw
7= 00 | =50 - Tdxcos(xr)
and finally
fig? 7 fiwy 00 Kp T foo/KpT_ 11—
= — t
y(t)= M, 3 KBT (e 1)~48(¢) ,
(5.14)
which has the form (4.44).
For low temperatures, Kz T <<#iw,, we have
. T fig? Fiwy | —fwg/KyT
Y(T)= 6 My |K,T (5.15)

so 7(T) goes to zero as T goes to zero, as expected. So,
for very low temperatures the mobility is extremely high
and the polaron moves as a free particle. This is an ex-
pected result since at T =0 there are no phonons to be
scattered.

For high temperatures, Kz T >>fiw,,

KT

o T gt
y(T)= ﬁwo

5.16
6 M. (5.16)
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and the mobility goes to zero at T— .
The diffusion parameter (4.49) can be calculated in the
same way. It gives

2
T pale™ 5 1) .

D(T)= 3 M,

(5.17)

For low temperatures this parameter is too small, go-
ing to zero as T—0. The fluctuations are once again
small due to the absence of phonons. For high tempera-

ture we see that the fluctuations also increase linearly
with T.

Observe that
DD ok, T(1—e %8 T) (5.18)
7(T)

which gives the classical result of the fluctuation-
dissipation theorem!® for the Brownian motion at low
temperatures.

B. The acoustical case

As we do not have exact solutions for (3.4) it will be
necessary to make some approximations in the present
analysis. Observe that (3.4) is a Schrodinger-like equa-
tion for a particle in a nonlocal potential

_ OF(x,x")
dx'0x

From (2.62) we observe that V(x,x’) goes to zero as x
goes to infinity. Actually, the potential is almost zero ex-
cept in the range

1 1
——<x<—.

g g

Out of this range the wave function can be well described
by

Vix,x")=

2

=+ k2u (x)=0 (5.19)
where we have used that
o=uv,|k| . (5.20)

The solutions of (5.19) must be classified as even or odd.
We choose

ug(k,x)=v2a /L cos[k|x|+85(k)], (5.21)
uy(k,x)=V2a /L sgn(x)sin[k|x|+8,(k)], (5.22)
where
1 ifx>0,
sgn(x)=1_1 ifx <0,

and 6;(k) and 6, (k) are the phase shifts for the even and
odd modes, respectively, which must appear due to the
presence of the potential.

Another possible solution of (5.19) is

u (x)=V2a/L {t(k)e* 0(x —1/g)
+le®+r(k)e **10(—x —1/g)} .
(5.23)

This expression can be interpreted as a wave incident
from the left on a potential whose ¢ (k) and r (k) are the
transmission and reflection amplitudes.

We can construct (5.23) from (5.21) and (5.22) as'®
8 i§
Eup(k,x)+ie °

u(x)=e' ug(k,x)

if

2i84(k)

t(k)=1(e"F" 4o ),

2is (k) 2i8,(k)
—e

r(k)=1(e ).

Consequently, the transmission and reflection coefficients
are given by

T(k)=|t(k)|*=cos}[8,(k)—8g(k)] ,
R (k)=|r(k)|*=sin?[8,(k)—8g (k)] ,

and T(k)+R(k)=1 as expected.

Once we have the phase shifts of the problem we can
find the transmission and reflection probabilities using
(5.24) and (5.25), or alternatively, if we have the reflection
and transmission amplitudes we can obtain the phase
shifts

(5.24)
(5.25)

_1 Im[z(k)+r(k)]
Splk)= 2arcta Re[t (k)7 (k)] (5.26)

1 Im[t(k)—r(k)]
=— —_— 5.27
Solk)=arctan | ¢l (k)—r (k)] 527
Actually, Schiittler and Holstein’> obtained these

coefficients in the limit of long and short wavelengths
after a rather intricate algebra (in the results of Ref. 5, R
and T depend on the polaron velocity which is very small
in our case and we have put it equal to zero):

(i) for k >>g,

167k e ~27k/8

k)~ : : (5.28)
g
(R)=1+ 28 (5.29)
sk
(i) for k <<g,
2
ri=—3K gk (5.30)
g g
. 2
t~1- 3K gk (5.31)
g g

These results allow one to compute the respective
phase shifts as
(i) for k >g,

~ ~8 5.32
Bp(k)=8o(k)=—2r (5.32)
(ii) for k << g,
5p(k)~— K
& (5.33)

80(k)=0 .
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So, the phase shifts are very small. We would say that
there is a propagation of sound waves through the polar-
on.

If the interaction between the electron and the lattice is
strong, the range of the potential is small. Therefore, the

2nm
k,= A
In order to classify the solutions we will use the following
convention:

n==x1,£2,+3.... (5.34)

contribution to the integral in (3.17) due to the true solu- Ugp—1(X)=ug(n,x), (5.35)
tion is almost the same as the one we would have got had -
we used the free solutions (5.21) and (5.22). Um(x)=uo(n,x), (5.36)
First, we impose periodic boundary conditions which  forrn =+1,+£2,+3... .
give the allowed values for k: Now we can evaluate (3.17). It yields
J
2k, |sin[(k,—k,,)L/2 1—cos[(k,—k,,)L /2] | .
Gop—1om=—— [k, ke ]cos[SE(k,,)—So(km)]+ Lz sin[8(k,)—8,(k,,)]
’ L k,—k, k,—k,,
(5.37)

As in the optical case we have a matrix with zeros in the diagonal and with off-diagonal terms which decrease as a func-

tion of their distance to the main diagonal.
When L — « we will have [using (5.24)]

2k sin[8z(k)—

8o(k")]

k—k'

G = A [ 8k —k"WT(k)+P

I

where P denotes the principal value. Substituting (5.38) in (4.47), transforming the summations into integrals, and using

(5.20) we get
S(@,0)=—2£ VT @80 —0)— —— -22¥D) 25 (@)~ 80(0")] . (5.39)
v ATy o' (w—
In (4.48) we will change the variables of integration and rewrite (4.47) as
ﬁ@(t) Q Q0 Q Q
+2,0—= Zl-nlo—= 40
f def QS |6+5,6— 5 |0 n |0+ | —n [6— 7 | [cos(@0) (5.40)
r
where contribute to (4.48), we get
R=0—ao, £O1="= 20211(9) (5.43)
g=2T"
2 where we have used (5.25).

Observe that we have replaced the limit on the integra-
tion by the cutoff frequency, wp.

Actually we are interested in a time scale, 7, which is
much longer than the typical phonon period or

>>0p!

With this approximation the cosine term in (5.40) oscil-
lates rapidly, giving no contribution to the integration,
except when () is close to zero. So we can approximate
(5.40) as

ﬁ1r8(t) dn
rin=">=["dof(6) |- -2 (5.41)
where
f(B)-—llmEZS 6+ 0—— (5.42)

Now, using (5.39) and noticing that the & term does not

So, we conclude that we have here a Markovian pro-
cess with the damping parameter given by

e o /KsT

(N=———
4 8TMoviKyT

f dmeR(w)( R KT

—12
(5.44)
Defining a new variable
0=guv.Kk/2
and a typical phonon temperature, T, by

T _ figyg
¢ 2Kp’

we can evaluate (5.44) which reads

: [T
Pn=—T_r|Zc

2nM, T |’ (5.45)
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where

eSx

(eSx—1)?

is exactly the result obtained by Schiittler and Holstein?
for the polaron mobility using the kinetic theory.

For small temperatures, T <<T,, we shall use the
long-wavelength reflectivity [see (5.30)] since it gives the
largest contribution to the occupation number

R()=~2i2 . (5.47)

1($)=5 [ “dix’R (x) (5.46)

Then, using (5.46) and (5.47) we can approximate (5.43)
by

T

T,

c

27#g?

(T=
T =M,

(5.48)

This result shows that the acoustical polaron, as the opti-
cal one, behaves as a free particle as T—0.

For high temperatures, T >>T,, we use the expression
for short wavelengths [see (5.28)],

R (k) ~47*kb ~2™ | (5.49)
and one has
_ 315%g2 | T
(Ty=—7T— 7| > (5.50)
v 64r*M, | T,

which means that the mobility decreases for high temper-
atures. We can calculate the diffusion coefficient (4.49) in
the same way and we get

B(r=—"8_ g 155 (5.51)
32rM, Bc ’
where
© 2
J(5)= [ “ax<RK) (5.52)
0 e K___l

and we have used the fact that the diffusion is a Markov-
ian process.

For small temperatures, T <<T,, the diffusion
coefficient is given by
= 27g*% ., T?
D(T)=~ Kg— .
(T) 16 K T (5.53)

and the fluctuations decrease very fast as the temperature
is lowered, exactly as in the optical case. So, the relation
between relaxation and diffusion is the classical one for
the Brownian motion: !>

—'i—(—D—=M0KBT (5.54)
y(T)
For high temperature, T>>T,,
_ 2
p(n=35%"g 1. (5.55)

167>

And, exactly as in the optical case, the fluctuations in-
crease linearly with temperature, this is the classical re-

sult’® which is expected to be valid in the high-
temperature limit.

VI. CONCLUSIONS

In the foregoing sections we have shown that the semi-
classical (mean-field) method enables us to visualize the
polaron physics and allows us to treat the strong-
coupling limit of an electron interacting with a lattice.
The advantage of dealing with this method is the fact
that, in terms of the coordinate and the modified pho-
nons, we reduce the problem to a new model for treating
quantum dissipation. In a sense, the nonlinear character
of the electron-phonon interaction is somehow ‘‘hidden”
in the solitonlike solution whose center is regarded as the
polaron coordinate.

Eliminating the electron operators by perturbative
techniques (that is, tracing over the electron coordinates)
and using the well-known collective coordinate formal-
ism, we get an effective Hamiltonian for the polaron in
the presence of renormalized phonons. That Hamilton-
ian, in the approximation of small polaron velocity, is re-
duced to a very simple form which takes into account
only processes which involve polaron-phonon collisions.

We developed a functional method to treat the Hamil-
tonian in the limit of .the small polaron’s velocity. Our
method showed that the polaron moves as a Brownian
particle which collides with the light particles of the envi-
ronment. This method provided us with a tool for a sys-
tematic calculation of the damping parameter (and, as a
consequence, the mobility) and the diffusion coefficient as
function of the temperature. We have also shown that in
the time scale of interest the motion is essentially
Markovian, that is, it does not have memory.

An important comment about our work is that it is ful-
ly quantized and the “semi-classical” argument is only
used as an artifact. Furthermore, it confirms some im-
portant results for the acoustical polaron obtained by
Schiittler and Holstein? using kinetic transport theory.
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APPENDIX A

In this appendix we wish to calculate the first-order
correction in energy due to a many-electron wave func-
tion in (2.42) and (2.47). In the case of many electrons
the ground state is the Fermi sphere with radius kp,
which is given by

(A1)
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where N, is the number of electrons and N the number of
sites.
The nonperturbed Hamiltonian is

Hy=Eqalao+ 3 E,a)a, (A2)
n=1
with the ground-state wave function
[¥°)=|n, =1,k <kp;n, =0,k > kg) . (A3)
The ground-state energy is
N # fitg?
E°= kpay— 28— A4
% ma — (kga) — am (A4)

where we have accounted for the spin degeneracy.
The first-order correction is given from the interaction
term in (2.42) or (2.47),

E(”=(¢0|H,|¢0)

For the optical case it reads

EV=L 51 06tk —Igg,
a %

or

E“’—};A(k’ (A5)
where

__D
A(k) N ’kFS(k)

— =T arctan | —= |k|csch 20k ” .
g 4
(A6)

For the acoustical case,

EV= zzkA(k)qk. (A7

So, at first order the ions are displaced from their equi-
librium positions by

A(—k)
Ma(l)o
in the optical case and

ikA(—k)

Mol |
2
g 218X | _ = £

[d +4 2sech [2} l]}f(x) sech 5 ]

The last term in (B7) must vanish because u,(x) is odd.
Using (BS) we get

+L
[dx 4

6sech?

&x
2

)f(x)=0 . (B8)

in the acoustical case. This causes a change in the energy
given by

A(k)A(—k)
AE=—Y—"——
% 2a’M w}
for the optical case, and
A(k)A(—k)
AE=—Y—"—"7-+—
% 2My?

for the acoustical case.
APPENDIX B

Let us first show how to obtain the zero-mode solution
for the optical case. Making Q,=0 in (3.3) we get

uo(x)= [ dx'F(x,x" Juy(x’) . (B1)
Define a function g (x,x")

= erFghxn)
g (xx )_,Z'o (k2+g2/4)

Then, from (2.31),

(B2)

_3_2_5_2 2 | 8% 5_2 ,
a2 sech 2 + 4 gl(x,x")
=—i—sech % sech —g;— +8(x,x’), (B3)

where we have used the completeness of the adiabatic
states

BolX)bo(x )+ 3 B (x)gE(x")=8(x,x") (B4)

n=0

and the explicit form for ¢y(x).
Let us rewrite (1) as

ugy(x)=g%sech f(x) (B5)
where
f(x)=fdx'g(x,x')sech -g;—’ uo(x') . (B6)
Then, from (3),
—uo(x)+-&fdx sech? 5;'— uy(x’) (B7)

The solution is easily obtained® and reads

f(x)=sech tanh _821 (B9)

&x
2
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Substituting (B9) and (BS) and normalizing it, we get

8x
2

&
) (B10)

uy(x)=V"15ag /2tanh sech?

For the acoustical case we must use (3.4) with Q,=0,
which reads

d*uy, g4 du
= ’F 7 ’ .
7 dx fdx (x,x )dx' (x") (B11)
Now, using (B2) we should define
W= [dxglx,xsech | & | 940 0y B
g% 2 |dx’
and rewrite (B11) as
d?u, d
Z 0,24 8x
) g dx sech 5 h(x) ;.
This can be easily integrated yielding
uo(x)=g2fj dx'sech —g;— h(x'), (B13)
where
u()( — ® )=0 .
Observe that A (x) also obeys Eq. (8), so
h(x)=tanh | X |sech | &% (B14)

Substituting (B14) in (B13) we get, after normalization,

uy(x)=V3ag /8sech? (B15)

8x
2
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APPENDIX C

We shall evaluate here the functional form for the su-
perpropagator, J. From (3.26) we see that the Hamilton-
ian can be put in the form

H=H; +Hyx+H,, (C1)
where
Hg=P?/2M, , (C2)

© © 2
HR: zﬁﬂnb:bn+ [ 2 ﬁgnmbllbn /2M0 ’ (C3)

n=1

n,m=1

H;=—P 2 ﬁgnmb;zbn/MO . (C4)
n,m=1
From (4.6) we get
N d’a
(xlply)=[ - [ | TI —5~ |¢xalplya)
k=1

or using the completeness relations (4.10) and (4.11) we
can, with the help of (4.2), write

ps(x.y,00= [dx’ [dy'p,(x',y",00] (x,9,t;x",y',0) ,
(C5)

where

J:fd;;vz fi:gfd;_glPR(B',ﬁ',O)K(xa‘x’B,t)
XK*(yay'B*t) (C6)

with
K (xa*x'Bt)={xale " H/"x'B) . (C7)

In order to transform (C7) into a functional integral we
must divide ¢ in (M — 1) subintervals of length € and use
(M —1) completeness relations between the (M —1) ex-
ponentials in (C7). Then

. dzanl d2(11 . .
(xale_‘g'/ﬁlx'B>=quN_1 e fd‘hf—ﬂ,—zv_ - f N (quarle® gy _apy 1) -+ (qrajle "B/ qoBy)
(C8)
where
au=x, ay=a*, q,=x', a;=B. (C9)
Now insert M completeness relations in the momentum representation
[dplp)(pl=1
in (C8) in order to obtain
M—1 d*a M ) .
K=1I \quk : ]H {fde (gyayle "% Pyay ) Pylgy_1) - - (q1a)le " HHPag) (Pilqo) -
k=1 k=1
(C10)

Now we will take the limit that M — o0, €e—0 but with # =(M — 1)e being finite.
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For small € we should expand the exponential in (C10) to first order in € and write
(qrarle = % Peay 1) ~(qi P ) ey lay — Dexp {_—;'GH(qk’Pk’al:’ak—l) ’ , (C11)
where
(grax|B|Pay ;)
P.aja;,_,)= (C12)
H(qPraia; ) (alag_;)
Using the overlapping relations
lal*> _ 18I i
= g =1 __ & 3 __P
(alB)=exp Ia 5 > [ (Pla)= Zﬂﬁem 5P
one obtains
dPM qude d ak
K= f ‘f Py 1rN exp 2 [ak._l(ak a;_l)—a,:(ak —ak_l)]
+-é—[Pk(qk—qk_l)—eH(quka;ak_l)] ] . (C13)
[
Now one has to integrate over P;. So, using (Cl) we . M2, _,
ust evaluate q M_’gyxe_’o‘ it kI=11 dgy ] , (C18)
ﬂexp[_f_e - w| } et [ g
2t i | 2M, € ’ D’a= lim Tl ,,Nk : (C19)
(C14) k=
with
where
This allows one to rewrite (14) in the standard form'’ + %( i’ —ata)— % Hyla*,a) ] . (C20)
172 ) 2
M, xp iMye (g —qx 1) (C16) Finally, using (C3) and (C15) one reaches
2rifie 24 € ) Mo
s=[ar {i(ad'—a*aHL ol
Now, substituting (C16) in (C13) and taking the limit of 0 2 il 2
M —  and €—0, we get!! w
2 2 —i 3 Qana, . (c21)
_la _ 182 =1 !

(c17

*
K=[pq [’ D'ae * * exp(Slgal},

where

Now, substituting (C21) in (C17) and (C16) we get the re-
sult (4.12).
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