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The spectral shape of the displacement correlation function of a quantum chain of atoms interacting
through a nearest-neighbor potential is approached at all temperatures and wave vectors by the evalua-

tion of the related frequency moments. The latter ones have been obtained, until the sixth one, by using

an effective potential derived by a variationa1 approach to the path-integral formulation of the quantum

statistical mechanics. This method allows us to reduce the computation of quantum averages of time-

independent functions to classical-like space integrals, so that all the tools developed for classica1 calcu-
lations can be again applied. Explicit results for the Lennard-Jones potential are presented and tested

against extensive quantum path-integral Monte Carlo simulations, where an improved Trotter extrapola-
tion procedure is also used. The good agreement between the two calculations confirms the apparent
strong simplification introduced by the variational method in the evaluation of the quantum averages
when the quantum coupling can be treated semiclassically. The reconstruction of the dynamical behav-

ior of the system through the knowledge of a sufficient number of moments appears realistic. Explicit
spectral shapes of Lennard-Jones chains are given, showing the relevance of the quantum effects.

I. INTRODUCTION

In recent years, growing interest has been devoted to
the statistical mechanics of physical systems with strong
nonlinear interactions, especially low-dimensional sys-
tems. ' This is due to the fact that powerful tools, both
analytical and numerical, have become available for their
study. From the analytical point of view it has become
possible to identify and classify dynamical systems which
are completely integrable, i.e., systems for which one can
introduce canonical action-angle variables describing
both the linear and nonlinear excitations. On the other
hand, modern computers permit the exact calculation
of the classical thermodynamic quantities of one-
dimensional systems, through the transfer-matrix
method, and the simulation of the classical thermo-
dynamic behavior of higher-dimensional systems by the
use of Monte Carlo algorithms or molecular dynamics.
Quantum Monte Carlo techniques have also been
developed, but in this case an additional "imaginary-
time" dimension must be introduced, and the computing
times strongly increase, so that numerical calculations
are possible only for quantum systems containing a very
small number of particles. The value of methods which

allow the reduction of quantum calculations to classical
ones, through the introduction of suitable effective poten-
tials, is therefore apparent.

Up to a few years ago, however, this idea could not be
usefully applied to solid-state physics. In fact, the best
known procedures to obtain effective classical potentials
were those introduced by %igner and Feynman, and
both of them possess serious shortcomings when applied
to solids. The first one is essentially based on an expan-
sion of the quantum statistical distribution function in
powers of A and 13=(,ktt T) ', and therefore becomes rap-
idly unreliable below the Debye temperature, i.e., in the
temperature region where solids reveal their peculiar
quantum character. On the other hand, Feynman's origi-
nal approach defines an effective potential for the free en-
ergy by a variational approximation of the path integral
starting from the free-particle propagator, which is
definitely not a good approximation for the bound parti-
cles in a solid.

This situation was radically changed by the recent
strong improvement of Feynman's variational method
obtained by the use of a quadratic trial action. In such a
way, the quantum behavior of the harmonic excitations
of the system and the classical behavior of the anharmon-
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ic part of the potential are fully accounted for in a self-
consistent way, so that the thermodynamic properties of
solids at high and low temperatures are exactly repro-
duced and the quantum anharmonic contributions are
also taken into account. The method has been applied to
the calculation of macroscopic thermodynamic quanti-
ties, such as the internal energy and specific heat, of
chains with both local and nonlocal nonlinear potentials,
with excellent results. ' Very recently the method has
been shown to be very useful in the case of rare-gas

11,12

The effective potential defined in the previous works
has a global character and therefore it can be used to
evaluate the above-mentioned "global" quantities, but it
is not suitable to obtain statistical averages of
configuration-dependent functions, i.e., many quantities
experimentally accessible. An example is position corre-
lation functions, as probed in neutron-scattering experi-
ments. A correct variational approximation of the
(configuration) density, able to take into account the "lo-
cal" quantum effects of the interaction, must therefore be
introduced; this was done for single-particle' and two-
body' interactions. General expressions of the position
correlation functions in terms of the effective potential
were also derived, and explicit quantum static correla-
tions of the one-dimensional sine-Gordon model have
been presented. '

Other significant correlation functions, probed by in-
elastic scattering, are the moments of the dynamic spec-
tral density. ' They involve functions of momentum and
position, so that a generalization of the formalism is re-
quired in order to be able to evaluate averages of func-
tions also depending on the momenta. In doing this, par-
ticular care has to be taken, due to the noncommutativity
of the quantum variables.

The theoretical moments can be directly compared
with the experimental data, at least for the first ones.
Their knowledge gives important insights about the be-
havior of the elementary excitations because the
knowledge of some number of moments permits the ap-
proximate reconstruction of the spectral shape, in terms
of a continued fraction expansion' and by means of
long-time approximations of the dynamic correlation
functions ' '

In this paper, we present detailed calculations of the
moments of the dynamic spectral density of a chain of
atoms interacting through a nearest-neighbor Lennard-
Jones potential. All the classical moments can be almost
entirely calculated analytically by using the extension ' of
a previous approach designed by Giirsey to evaluate
the partition function of translation invariant one-
dimensional systems. The usefulness of this classical
approach, with the introduction of an effective potential
in the quantum-mechanical calculation, is apparent.

Monte Carlo (MC) calculations of moments have also
been carried out, both in the classical and quantum cases,
in order to benchmark the effective potential method and
its emciency in reducing the computational effort. Al-
though MC simulations are restricted to finite chains, we
have checked that classical MC for a 30—40-atom chain
closely approaches the thermodynamic limit, at least at

the higher wave vectors, within numerical uncertainty.
In the last section, we present an approach for the eval-

uation of dynamical correlations. The dynamical
response function, i.e., Fourier transform of the dynami-
cal position correlation function, is calculated using the
continued fraction expansion in terms of the moments.
Even though the continued fraction can present some
problems of convergency, the more significant features
due to the quantum character of the atomic vibrations
are very well described. We want to point out that this
method, improved by the use of the effective potential, is
one of the few presently available ones for calculating
quantum dynamical correlations of strongly interacting
systems.

II. GENERAL FORMALISM
FOR QUANTUM THERMODYNAMICS

A. Density matrix and quantum averages

Let us consider a physical system with N degrees of
freedom and canonical coordinates p=—[pi, . . . , pN j and

q= [/&, . . . , gz), [g, ,p~]=il5; . Its Hamiltonian is as-

sumed to have the form

( A )—:—Tr(pA )=—f dx'd (x~xA ~x')p(x', x), (2}
Z Z

where p(x', x)=(x'~e ~ ~x) is the statistical density ma-
trix at the equilibrium temperature T=(ksP) and

(x~ A ~x') is the matrix representing A in the coordinate
representation. We shall use the short notation
p(x)=p(x, x) for the (configuration) density, in terms of
which the partition function Z and the free energy F are
defined as

Z—:e ~ =Trp= fdxp(x) .

If we consider operators A = A (q), corresponding to ob-
servables which depend on the coordinates only, we have
(x

~
A ~x') = A (x)5(x—x'), so that Eq. (2) reduces to

( A (q) ) =—1 dxp(x) A(x) .1

Z
(4)

y p 2

+ V(q),
&2m

and can be thought of as a discretized version of a field-
theory model in any dimension and with arbitrary in-
teraction, or as a general model in condensed-rnatter
physics.

Generally, an observable is represented in quantum
mechanics by a Hermitian operator (acting on the Hilbert
space of the quantum states of the system), which is ex-
pressed in terms of the fundamental canonical operators

p and q. Let A =A(p, q) be an observable. The caret
symbol over A [in contrast, e.g., with the notation V(q)j
reminds us that the functional dependence on (p, q) is
affected by the ordering due to the noncommutativity of
the canonical operators.

In the coordinate representation q, ~
x ) =x; ~

x ), the
quantum statistical average of A = A (p, q) is given by
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We shall reserve the notation A (p, q) for the p-q or-
dered form of A (i.e., the momentum operators are shift-
ed on the left of their conjugated coordinate operators).
In this wag we can associate, in a unique way, to any ob-
servable A a function A (p, q) such that

&pl A Iq& = &plq& A(p, q)

=(2m%) e '" P ~A(p q} (5)

For instance, if A =P,Q +Q P, , then A (p, q)=2P;g.
+i%5; and A (p, q)=2p;q +i%,

With this in mind, we can express the quantum
thermal average (2) of an observable A by means of the
function A (p, q), since

(x~A ~x') = J dp&x~p)&p~ A ~x'&

(p
(2M)

and inserting this result in Eq. (2), after a simple replace-
ment of the integration variables, we eventually obtain

&
A"

&
= J—dx A (ill„x ,'z)p—(—x ,'z, —x+—,'z) ~.—..z

(7)
i.e., the momentum p is replaced by the differential
operator iRB„cating on the z dependence of both A and

P
Within Feynman's path-integral formulation of quan-

tum statistical mechanics, the density matrix is ex-
pressed by the following integral:

p(x', x)—:&x'(e @ ~x)

q p
X

where the integral is over all paths q(u), u E [O,PR], hav-
ing as the initial point q(0)=x and as the final point
q(Pfi)=x'. S[q(u)] is the Euclidean action:

mPX exp — g (qi —qi, )
1=1

p P

g [ V(qi }+V(qi )}],(10)
1=1

where, according to the prescription of Eq. (8), the paths
must begin at q(0}=qo=x and end at q(PA) =qp =x'.

The integer P is usually referred to as the "Trotter
number, " and, of course, the exact result for p(x, x') is
recovered from Eq. (10) in the limit of P~ 00. Actually,
when performing numerical calculations, one is restricted
to finite P, and the P = ~ results are obtained by extrapo-
lating the numerical outcomes for increasing values of P.

Let us now derive explicit formulas in the case of
operators with a simple dependence on p, with which we
will deal in the following of this paper. From Eq. (4), if
A is independent of p, A = A (q), we have

'NP/2 '
p

g fdql A(qp)
1=1

(A(q)&=-z 2lrfl2

mp
Xexp — g (qi —qi, )2

2A' P I=)

p P——$ V(qi)p 1

and here qo —=qz. For a linear dependence on p, e.g.,
A =PJB(q), we find from Eq. (7), after an integration by
parts,

( l =0, 1, . . . , P), and the path integral is replaced by
P —1 ordinary (N-dimensional) integrals over the vari-
ables qi —=q(ui ):

r ' NP/2 p
p(x', x)=

S[q(u)]= J —q (u)+ V(q(u))
o fi 2

(9)

' NP/2

1=1

B. Basic formulas for quantum Monte Carlo

The quantum Monte Carlo (QMC) method is nowadays
standard matter, at least in its "plain" version. We
will derive some formulas here in order to show how
averages of p-dependent observables can be numerically
evaluated. Their basic QMC formulas for the density ma-
trix can be directly derived from Feynman's formula,
Eqs. (8) and (9), by discretizing the "imaginary-time" in-
terval [0,13fi] into an integer number P of equal intervals,
so that the variable u takes the discrete values ui =Pal /P

I

NP /2

1=1

„, (qi —
qp)J —2p, (qp)

mpXB (qp ) exp — g (q&
—q&, )2

1=1

p P——g V(q(), (12)
P1

where V (x)—:8V(x)/Bx . Finally, for an operator which
is quadratic in p, like A =P;PJB(q),

X (q, —qp) V (qp) VJ(qp)—

mP PXB(qp) exp. —
2 g(qI —qi, )'——g V(q()

2A' p I =)
(13)
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where VJ(x)=B„B„V(x).
l 1

In order to evaluate the above kinds of averages nu-
merically, the QMC method is implemented by means of
the so-called importance sampling" in configuration
space, using, for instance, the weil-known Metropolis al-
gorithm. We will apply this method in Sec. VI, where
the frequency moments of a nearest-neighbor interacting
chain are calculated.

III. VARIATIONAL EVALUATION
OF QUANTUM AVERAGES

A. The effective potential and the density matrix

I &r, + (S S, )—, ,
— (14)

where F is the "true" free energy of the system, Fo the
free energy associated with the trial action Sp, and ( )s.0
the functional average calculated with the path probabili-

ty distribution e '. However, Feynman's trial action is

free-particlelike, so that it cannot account for the quan-

tum harmonic interactions, and it turns out to be useful

only above the Debye temperature, where the system
behaves almost classically, reproducing the results of the
Wigner expansion up to order p fi .

In order to extend the results to very low temperatures,
it is necessary to treat the harmonic part of the Geld in a
fully quantum way. With this aim, Feynman's method
was improved by making the trial action quadratic,
and adding a proper number of variational parameters:

Sp[q(u)]= f g—
q,'(u)+w(q)

E

Let us briefly recall the variational method which leads
to the definition of a classical efFective potential for quan-
tum thermodynamics, introduced by Giachetti and one of
us, ' and, independently, by Feynman and Kleinert. It
is well known that the analytical evaluation of the path
integral (8) is possible only for very simple interaction po-
tentials V, among them those representing a set of free
particles (V constant) or a set of harmonic oscillators (V
quadratic). Usually the latter model is assumed as start-
ing point for perturbative calculations. ' Long ago
Feynman used the free-particle model as the starting
point for a variational method in order to evaluate the
partition function (3) approximately. He introduced a
"trial" action Sp [q( u ) ] containing a parameter-function
which has to be determined by minimizing with respect
to it the rhs of the so-called Feynman-3ensen inequality:

COk X CXk X
k

(17)

where g={(;},gk =g; U/, ;(x)g;, cok(x) are the N eigen-
values of the matrix p/ (x), which is diagonalized by the
orthogonal matrix U(x):

p//, (x)5„/ =g Uk;(x) p/,', (x) U/J (x),
1J

and each ak(x) is a function of p/k(x):

a/, (x)—=a[co/, (x)]

1cothf„(x)—
2m cok x X

(19)

fk(x) =
—,'pRp/k(x) . (20)

Note that the parameters ak can be interpreted as the
pure quantum fluctuation (i.e., the difFerence between the
quantum and the classical Suctuation) of the "kth normal
mode" with frequency p/k(x). The determination (17)
also gives (S Sp)s =0, so that the approximation for

F is Fo itself, and eventually this allows us to define the
"global" efFective potential

sinhf„(x)
VG(x) =w(x)+ —g ln

x
(21)

aeter of q makes the trial action nonlocal, i.e., it does not
correspond to any trial Hamiltonian: this point is very
important, since it means that we are looking for the best
candidate to approximate S [q( u ) ] within a very large
class of functionals, whose path integrals can still be
analytically evaluated, except for the integral over q,
which is left over as a configuration integral. In addition,
this choice of the trial action permits one to reproduce
exactly the action corresponding to any quadratic Hamil-
tonian. Then it is expected that systems like quantum
solids, whose low-temperature state can be modeled in
terms of quantum linear excitations, can be well de-
scribed within this framework at any temperature. The
parameter functions of Sp are the c number w (q), which
was also considered by Feynrnan, and the 1VXN sym-
metric matrix p/ (q)={co;~(q)}, whose components are
the extra parameters of the improved variational method.
They are all to be determined by minimizing the right-
hand side of the Feynman-Jensen inequality (14). The
minimization with respect to w(x) gives '

—g2 /P~ (x)
w (x)= f V(x+g)g &&2

e
[2ma/, (x)]'~

+ —. [q(u) —q] .p/ (q)-[q(u) —q]
2

(15)

which was already obtained in previous works. ' By
means of VG, the quantum free energy is expressed in
classical-like form

where —PF—PF o
—p VG(x)dxe (22)

q=q[q(u)]= f du q(u)
1 o~

o
(16)

is the "average point" of the path. The functional char-

2vrR P

The variational framework is accomplished after the
minimization of Fp with respect to p/ (x):
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me/, "(x}=f (x+g)g(} V —g /2ak(x)
e

k [2mak(x)]'

(23)

At this point, the trial action (15) is fully determined,
I

and we will use it as the best approximation for the true
action (9). Replacing S[q(u)] with So[q(u)], the path-
integral definition (8) of the density matrix can be analyti-
cally evaluated, and the result can be expressed in terms
of the effective potential as

p(X —
—,'z, X+—,'z) =

' N/2

p 1 1fdxe exp
2mB P k 2(//' k [2~ak(x)]'/' 2ak(x)

(24)

The variables with subscript k are obtained, of course, by
transformation through U(x), e.g., xk =g; Uk;(x)x;. The
parameter

Ak(x)—:—' m(ru)/k(x)cothfk(x)=yk(x)+-m
2 (25)

yk(x)—:m cok(x)ak(x) (26)

has been separated from the classical one. It follows that
the configuration density reads

' N/2

2MP
p(X}=

X fdx. '"'"'
—(Xk —xk )2/2ak (x)

[2mak(x)]'/
(27)

The following remarks can be made about the expressions
obtained above.

rules the off-diagonal behavior of p(x', x), and in the last
equality the pure quantum part of the momentum fluc-
tuations

(1} A further Gaussian-like broadening (27) is added
with respect to the definition of the effective potential,
and the width of the Gaussian depends on the integration
variables, so that the evaluation of p(x}, already difficult
when we have only one degree of freedom, ' becomes
very hard for a many-body system: for this reason we
will introduce further simplifications in Sec. III C.

(2) As already done for the effective potential (21), the
expression for p(x) can be compared with the results of
the Wigner expansion, and they agree up to terms of or-
der (/1 and P

(3}As it is implicit in the choice of the trial action, the
results (24) and (27} for the density are exact if the poten-
tial V is purely quadratic.

B. Quantum averages

The main result of the variational method described in
Sec. III A is Eq. (24}. We are now going to use it in or-
der to express quantum average values of physical ob-
servables by means of classical-like calculations.

Combining Eqs. (7) and (24), we get the variational ap-
proximation for the quantum thermal average of the
(p-q-ordered) observable A = A (p, q) as

1 m

Z 2~p

' N/2

fdX A

(ikey„X

,'z)——

—p VG(x) /(k(x}
X fdxe exp — (Xk —xk ) —

2 z„
/, [27mk(x)]' ' ak x

With a further linear variable change we can rewrite this expression as

&J&=(( a((((a„x+/ —
—,'x)exp ——(( ZA, (x(z,'

x G
L

z=0
(28)

(29)

( (x)&,—=—1 m

Z 2mb' p fdx f(x}e (30)

where we have introduced the shorthand notation
(f(x) }G for the classical-like average of a function f (x)
with the effective potential VG(x):

' N/2

k /2ak (x)

(f(g)}„=f dg f(g)g
k [2'7rak(x)]

(31)

Alternatively, this average can be defined by giving the
second moments

and the notation (f(g) }„for the (x-dependent} Gaussian
average over the variables g' defined by

(g, g }„=a,"(x)=+Uk/(x)Ukj(x}ak(x) .
k

(32)
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With these notations, the effective potential (21) can be
written in a more compact way as

1 0 V
VG(x) ={V(x+f) &„——ga;~(x) (x+g)2;. BX;BXj

sinhfk(x)
+—g ln

k(x)
(33}

( &(q) &
=

& ( & (x+g) »„

(p())(q)) =
&

(*+0) )
—i% BB

BXj x G

(34}

(3&)

As in Sec. II B, let us consider the case of some opera-
tors with a simple dependence on p. The following for-
mulas are easily obtained from Eq. (29):

ian smoothing V(x) —= {V(x+g') &„. The deviation from

the exact eigenvalues can be easily estimated to first or-
der:

5cok(x) c—ok(x) cok Q—Uk;5co;J(x)Ukj+0(e ),
(39)

(j2 p ()~ p'
5co~~j(x) —= (x)— (xo),

BX.BXj CIX.BX .

where we have introduced a label e such that 5cok(x) =
0 (e), and e is treated as a small quantity for the reasons
discussed above. We can also use a label a for the quanti-
ties like ak, which are small for low quantum coupling at
T =0 (a-fi) and decrease further for increasing temper-
ature (a-R /T). For instance, after some algebra we
find

{P;p~B(q) &

c3B= A,;J(x)(B(x+g)&„— (x+g')
4 c)x;c}x, x 6

(36)

a(cok )
—a(coI )

5a;J(x)= ++Uk; Uk; 2
kl i'j ' k I

X5co,"(x)U(,'UIJ+0(ae ), (40)

Here we have defined the symmetric matrix

A, ; (x)=+Uk;(x)Ukj(x)A, k(x) .
k

C. The low-coupling approximation (LCA)

(37)

and the analogous expression for M, ,"(x) has the very
same form [a(co)~A(co)]. In this way, we can approxi-
mate the Gaussian averages:

{f(x+g)&„=f(x)+—+5a;, (x} (x }+0(ae ) .
1 c}f
2," c}x)c)xJ.

(41)

m~k5kl +Uk' g g
(xO)Ulj

ij

(38)

Here, and in the following, the "tilde" denotes the Gauss-

For a generic f (x), the average (f(x+(') &„can be
readily evaluated by expanding f (x+g) in power series
around the point x, but the remaining average on
{ .

&G is made difficult by the implicit dependence on x
of ak(x) and Uk, (x). Indeed, the self-consistent solutions
cok(x) and U„,(x) of Eqs. (18) and (23) are to be calculat-
ed for any configuration x, and this makes things very
complicated, with the exception of the trivial case of a
harmonic system, for which Eq. (24) is, by the way, ex-
act. For this reason we introduce a "low-coupling" ap-
proximation (LCA), which consists in expanding the re-
normalization parameters ak(x) starting from the
configuration x=xo, for which VG(x) has its absolute
minimum. The idea is that, at low temperatures, due to—PVg(x?
the weight function e G appearing in Eq. (30), only
configurations close to xo contribute to the integral. On
the other hand, at higher temperatures the parameters
ak(x) rapidly decrease and become less and less depen-
dent on x, and for T~ ~ they reach the Wigner behavior
a„(x)=A' )ci/{12m). The strong advantage of the LCA is

that, for a given temperature, the secular equation (18)
has to be solved only once (i.e., for x= xo) and that, in the
usual case of a translation invariant system, the orthogo-
nal matrix U(xo) is a Fourier transformation, as long as
the reference configuration xo is translation invariant too.
If we agree to understand the fixed argument xo, i.e.,
co„—=cok(xo) and so on, the secular equation reads

When f (x} is translation invariant, this expression be-
comes much simpler since the Fourier transform of
(8 j /c)x, c}xj)(xo) is diagonal,

yU„, U„(a'j/ax, ax, }{x,) —=1'„5„, ,

and we then have

B2
+5aj(x) (xe)=gfk 5cok(x)+0(ae ) .

c}x;Bxj k 2cok Bcok

(42)

Now, the global effective potential (33} is, in turn, ap-
proximated using this equation and expanding the loga-
rithmic term around x=xo. Its final expression is

VG(x) = V(x) ——ga;J. V,.~(xo)
IJ

sinh k +0{ac ) .+—gin
1 (43)

Note that VG(x) depends on x through the first term

only, so that the derivatives of VG(x) coincide with the
derivatives of V(x).

IV. THE NEAREST-NEIGHBOR INTERACTING CHAIN

In this section we consider the particular case of a
one-dimensional lattice of N particles, which can move in
the direction of the lattice. They are subjected to a
nearest-neighbor (NN) anharmonic interaction v (x },
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where x is the NN distance, and to a global constraint of
fixed length L =Na. In addition, we assume periodic
boundary conditions. This rather simple model can be
easily generalized to higher-dimensional lattices and
more degrees of freedom per particle, i.e., to a model for
real anharmonic solids. '

The Hamiltonian for this system is Eq. (1), with the po-
tential

Eqs. (45) and (47), we find that

—ika(i —j)
N ~e

IJ

X[2(u )5„O

1)n[(~(2n)~ )+(Q Q(2n))]]

(48)

(44)

The coordinates g; are defined with respect ta some fixed
origin, and the spurious coordinate Qo again represents
the Nth particle, regarded as the backward neighbor of
the first one. This madel system has already been intro-
duced in Refs. 10 and 31, where the thermodynamic
quantities connected to the free energy were calculated.
The symbol Q will be reserved for the position quantum
operator, while we will denote the corresponding classical
variable with x;.

A. The frequency moments

In this paper we seek the moments of the spectral den-
sity

C(k ai)= —ge-ika(i j)Jdt e—ia't([u (t} u (()}]2)
IJ

(45}

In this expression the wave number k is defined within
the first Brillouin zone [ ala, n /a—], and is quantized in
the usual way; u;(t}—:Q;(t) —ia is the "displacement" of
the ith atom at time t. The angular brackets denote the
quantum average (2). We have chosen to work with the
spectral density (45) because the correlation function
which appears as an integrand exists in the thermo-
dynamic limit, while a correlation function of the form of
(u;(t)u (0)) does not. The spectral density C(k, co) re-
garded as a function of the frequency co for a given value
of k has peaks centered at the frequencies of the vibra-
tional modes of the chain corresponding to that value of
k, whose full width at half maximum is the inverse of the
lifetime of these modes.

The function C(k, co) defined by Eq. (45) has two im-
portant symmetry properties. By expressing the thermal
averages in Eq. (45) in terms of the exact eigenfunctions
and eigenvalues of the Hamiltonian &, it can be shown
that C(k, co)=C( —k, —co). In addition, the fact that
every atom in our linear chain is at a center of inversion
symmetry has the consequence that C(k, co) =C( —k, co).
Taken together, these properties imply that C(k, co) is an
even function of both k and co:

In this expression (u ) =(u, ) is the mean-square dis-

placement of the ith atom. Due to the periodicity of the
chain it is independent of the index i. The notation u

stands for

dm

dt f=0
(49)

(u; (t)uj(0)) =(u; (0)uj( —t)) . (50)

We differentiate both sides of this equation n times with
respect to t to obtain, on setting t =0, the desired result

( ~(m +n)~ ) ( 1)n( ~(m)~(n) )i j i j (51)

which is perhaps most useful in the case m =n, and tells
us that, in order to express the 2nth moment, it is
suScient to calculate the nth derivative of u;:

P2n N ~e —ika (i —j)

IJ

X [2(u')5„,
[(~(n)~(n) ) +(~(n)~(n) ) ] ] (52)

We now apply the preceding results to the calculation
of the moments I(((2„(k}]in the quantum and classical re-
gimes.

1. Quantu)n regime

In the quantum regime the time derivatives of the dis-
placement u; needed for the calculation of the moments
(52} up to the sixth one are obtained by the repeated use
of Heisenberg's equation of motion. Thus, we find that

w(])
Q; = P;

The calculation of the moments of C(k, co) thus requires
the evaluation of equal time correlation functions only.

Before turning to a discussion of how these correlation
functions are calculated in the quantum regime and in the
classical limit, we note that their calculation can often be
simplified by the use of an identity based on the stationar-
ity property

C(k, co)=C( —k, co)=C(k, —co)=C—( —k, a)) .

We define the frequency moments of C(k, co) by

P2n(k)= J dCOCO "C(k,CO),

(46)

(47)

w(2) 1 'BP

m gg.
(53)

where we have taken into account the fact that the odd
moments vanish in view of Eq. (46). When we combine The expression for the moments now become



8846 CUCCOLI, TOGNEI l'I, MARADUDIN, McGURN, AND VAIA 46

po(k) = g cos[ka (i —j)](& u &
—

& u, il~ & },
IJ

p2(k) = — g cos[ka(i —j)]— u. = — g cos[ka (i —j)] &P,P &,
4m af' 4~ 1

2 m (jg. m'

p~(k) = — g cos[ka (i —j)] 2

4m af' af'
N P7l BQ; BQ.

(54)

a2 2

a'P a'P „a'0 a'0

In writing the expression for p6(k}, we have kept all the
momentum operators to the left of all functions of the
displacements, in such a way that Eqs. (11), (12), and (13)
or (34), (35), and (36) can be used in order to evaluate the
averages by QMC or by the effective potential method
presented in Sec. III.

IMo(k) = g cos[ka (i —j)]( & u,
'

&
—

& u; a, & ),
IJ

)]22( k }= — g cos[ ka (i —j)] & p,p &
=—4m 1 4m

2 N m' '' mP'

2. Classical regime I24(k) = — g cos[ka (i —j)]
4n. 1 av av
N m2 aQ; aQ

(58)

&f(p)g(u) &
= fd p f(p—)e

Z

X f dug(u)e

with

(55)

In the classical regime the operators u={u, j and

p = {P,j turn into commuting variables u =
{u; j and

p= {p,j, respectively, and a thermodynamic average of
the form & f(p)g(u) & factors into a Gaussian average
over f (p) and the "configuration" average over g (u)

y,,(k)= — Xcos[ka(i —j)] X )
.4m 1 av av

m 2P I

label

uj Ql

In the following sections these moments will be evalu-
ated in two different ways: exactly, by an analytic
method reported in Ref. 21, where Gursey's method
for the calculation of equilibrium thermodynamic func-
tions of an anharmonic linear chain with nearest-
neighbor interactions is extended to the calculation of
correlation functions; and by the classical MC simulation
method.

Z fd e
—(1/2m)PP fdu e

—Pv(u) (56) B. The effective potential

The time derivatives of the displacement u, needed for
the calculation of the moments are obtained from the
canonical equations of motion, or, equivalently, from
Eqs. (53) by suppressing the "hats" and keeping A'=0. In
the same way, one can directly obtain the classical ex-
pressions for the first moments from Eqs. (54), taking into
account that the Gaussian averages over the momenta
can be decoupled with

For the periodic nearest-neighbor chain, the minimum
configuration xo of the effective potential (21) is,

by symmetry, the translation invariant one with

xo; —xo,. i=a. This implies that U={Uk, j is a stan-
dard (real) Fourier transform, in which the wave number
k assumes X values in the first Brillouin zone

[ m!a, n!a] —From Eq.. (32), the parameters

a,j =a;, (xo) are simply calculated as

&p;&=0, &pp, &=—5;, ,

so that we eventually get

(57)
1=—g cos[ka (i —j}]ak=—D~;

k

(59)
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Their linear combinations

ka=2(Do D—, ) =—g4 sin ak,
k

(60)

method described in Ref. 21. The method will be ap-
plied first to the bare potential, in order to obtain the
classical results, and next to the LCA effective potential
to describe the quantum behavior.

A. Classical regime

2) =2(D, D2—)
r

=—g4 sin
1 . 2 ka 2 ka
N k 2

cos
2

—1 ak,

turn out to be more useful in the following. For instance,
we have

To obtain the zeroth classical moment we must consid-
er & (u;+p —u; ) }, which is readily deduced from the
equations given in Ref. 21:

7"(so )
&(u, + —u, )2) =p —a' (66)

sp

N
V(x)= QV(x; —x;,), (61

where

Wx) = &u(x+g, —
g, , ) &

'I
= g —,v'"'(x)— (62)

P(s )= dxe e0
0

(67}

and the parameter sp is determined by the equation of
state for the chain

and the expression for the LCA effective potential Eq.
(43) becomes, in this case, 'o

1 d P(s)
P($) ds s =s&

(68)

N

V (x)= g vG(x; —x, ,),

vG(x)= g —,[v' '(x) —Iu' "(a)]2l 21

i=o" 2

(63)

(69)

Finally, by evaluating the sum over i and j appearing in
the first of the Eqs. (58), we obtain, for k%0,

9"(so }
2 1

p,o(k) = —4m. a
&(sp) 4sin (ka/2)

1 1+——gin
sinhf„

(64)
The classical second moment is independent of the in-

teraction potential and its evaluation is fully analytical.
The final result, already given in Eq. (58), is

From Eq. (38) we eventually get the self-consistently re-
normalized eigenfrequencies

r

c k~T
pz(k) = 4n— (70)

&"(a)4 . 2~k= 4 sin
m 2

(65} In the expression for the fourth moment (58) appear
the derivatives of the potential which, for a nearest-
neighbors interaction, read

V. ANALYTIC EXPRESSIONS FOR THE MOMENTS

The present section is devoted to the evaluation of mo-
ments for the NN interacting chain by means of the

I

BV =u'(x; —x;,)—u'(x;+, —x; ),
Q ~

so that we are faced with the evaluation of

(
av av =&[v'(x;+ —x;+ &)

—v'(x;+ +,—x;+ )][v'(x; —x;, )
—v'(x;+, —x;)]) .

Bu( +p Bu(.
(72)

If we introduce the symbols

'lV„= J dx e ' v'"'(x)e
P(sp) o

(73)
%V„= dx e ' v'"'(x)v' '(x)e

V(sp ) o

where v'"' denotes the nth derivative of v with respect to
its argument, we obtain

Now we can observe that, by partial integration

%'» =ks T('N2 —
sp "lV& ),

spkg T

so that Eq. (74) reduces to

(
av aV

kB ~~2(2~p P 5(p[ g ) iBQ.+ BQ.

(75)

(76)

=('N„—'N))(25p p
—

&p )
—

&p ))
BV BV

QQ-+p BQ;
(74) and the evaluation of the spatial Fourier transform finally

gives
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T

k~T . q ka
Iu4c(k) = —4m 'Nz4 sin~

m
(77) c kaT z. 4 ka

(M6 ( k) = —4m. 16'1V2 sin
m

In a similar way, starting from +8('N2z —%'z) sin
ka
2

(80)

8 V =[v"(x,—x, , )+u"(x, +,—x, )],,
BQ;BQ

(xi xi —[ Ni —l, l

II/(xi+I xi)5(+l, l (78)

we obtain for the average appearing in expression (58) for
p6(k):

8 V O'V
=(4%V22+2%V22)5 [)

( BQI+ BQI BQ;BQ(

2( 11~2/+ 11~2)5[p[ (+%25[p~ 2 .

(79)

The classical sixth moment is thus given by

B. Quantum regime

The calculation of moments in the quantum regime can
be accomplished, without going into excessively cumber-
some expressions, in the LCA approximation. In the fol-
lowing we will obtain explicit results for the first four
even moments up to terms of order e,a. Within this ap-
proximation, by using Eq. (41) and expanding the terms
with "tilde, "Eqs. (34) and (36) can be replaced by

(A(q)) (A(x)=)G+ —xa,, tx))
1 5 A

5'A+—g(5a; (x)) (x,)+O(ae )2; Bx(Bx(

and

(XI)(),Ao(q)l X.[(mk~=T(( +y,, )(A;,(x))G+(Sr, (x))gA, J(xo)]
1J V

+1 5 A;; 5 A;;
2

mki(7~ rr(I
5 5

( ) +(5+((( })G ( 0} +O(
;Il BxiBxi G clx( Bx(

(82)

To obtain the quantum moments we have to evaluate
averages of expressions which depend on the
configuration through the potential and its derivatives.
In the LCA scheme, however, as explained in Sec. III C,
we consider that the quantum e8'ects are mainly related
to the configuration of minimal potential energy, and this
allowed us to expand aP(x) around xo. In order to be
consistent, we have to apply the same approximation
everywhere in the quantum terms, so that in all of them
we will replace 5"V(x) with 8"V(xo)+58"V(x) and, by
considering 58"V(x) as O(e), we will retain only terms of
first order in c.. In some instances, as noted in Ref. 10,
the effective potential at the lowest order in a (i.e., the
use of the bare frequency) is not sufficient to obtain accu-
rate enough results, and it is important to allow for the
self-consistent renormalization of cok contained in Eq.
(38), even though it implicitly reintroduces higher-order
terms in a in the various expressions. In such oc-
currences, Eqs. (81) and (82) can still be used, if the con-
sistency between the terms containing the renormalized
frequencies and those containing the derivatives of the
potential is restored by using the substitution
a'V(x) =a'V(x, )+5a'V(x) instead of the previous one
for n =2.

By observing that all the functions fj(xe) appearing in
the expressions of the moments are translation invariant,
we are allowed to use Eq. (42), so that

g(5a;, )Gf j(xo)=gfk (5cok )G,
2cok cok

where

( u "(x))G u "(a)
5cok(x) G=4sin

2 Pl

(83)

'N, G
—v "(a)=Q)k

u "(a)
(84)

Similar conclusions are valid for terms in 5y, with a re-
placed by y.

Finally, the symbols VG, 'N„G, and 'N„G, which we
use from now on, have the same definition already given
in (67) and (73), with the substitution of u with uG only in
the exponential term.

We are now ready to evaluate the quantum moments
by applying the rules (81}and (82) to Eqs. (54}. For the
zeroth moment we have

((Q +p Q ) ) ((Q +p Q ) )6+/Uk'I Uk'j(+k'+(5+k')G)(5(, +p5j, +p+5( i5j, ' 5(, 5j, +p 5(, +p5,
k'

T

~G( 0) 2 k' ()i k' ll 2G=P —a +—g ak+
VG(so) X k, 2 5~k u"(a)

[1—cos(pk'a) ], (85)
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and the final result when k%0 is

II4p(k) = 4r—r
9'g(sp ) —a
96(sp)

r

1 aI» Ba» ')V~g —u "(a)
+ak+

4sin (ka/2) I)~» u "(a)
(86}

To evaluate the quantum second moment, we start from &P;+ P; & and apply Eq. (82). By using the relation

~Uk =m 2u»a»+~v»
~BCOk

(87)

we easily obtain

tu3~(k}= —4m.
kg T cok Oak

+Nkak+cok ak+
m 2 r}ci)»

')V26 —u "(a}

V"(a)
(88}

J

The application of Eq. (81) to the evaluation of the quantity & P;+ 0; & which appears in the fourth moment gives a
term which is equal to the classical one, but for the substitution of the classical average with the 6 average, and in addi-
tion a correction term, which, after some algebra, in the LCA approximation scheme can be written

1 8 BV BV—g (ai +5a&, ) =2)(')VI36 ')VIG')V3g )(25p 11
—

5p I
—

5p I )

ii
' ul uJ ui+p ul G

+(6D 4Dp—, 4D +I—+D 3+D +2)[[V"(a)] +28"(a)["lV26 —u "(a}]]

+ (6& 5D &
—4& 5D, & 4& 5D-

+ &5D, , & + &5D, , & )[&"( )]', (89}

where we have defined 5Dp =g» U; » U;+p»5a». By Fourier transforming the previous expression, and combining with
the results (74) and (77), we have

P(k) 2 (~IIG ~16)++(~136 ~16~36}
4m 2

m

N» Ba» ')V/6 —u "(a)
+mN» ' Q»+

~~» v "(a}
1}'"(a)+2a»[)Vzg—u "(a)) 4sin (90)

Remembering expression (64) for the LCA efFective potential vg and approximating to first order in 2), by partial in-

tegration we have

')VIG = spks T —%—'36, —

)VI Ig =ks T% 2g spks T% I g
———)VI36

2

&136 ks T&46 Spks TlV36 = 4 3362

so that, at first order in S,

(91)

(~116 ~16)++(~136 ~16~36} kB ~26+ ~46
2

(92)

The final result for the LCA quantum fourth moment is therefore

k~T
pp(i )= —4~co

m
')V26 +—v (a)IV 1

+&kak
v "(a)

cok Oak+cok 2ak +
2 ~cok

I

')V26 —u "(a) kz T ~ '}V46 —u (a)+
v "(a) m 2 u "(a)

(93)

In the calculation of the quantum sixth moment new terms having a quantum origin are present from the very begin-
ning. Indeed, Eq. (58) is replaced by (54). By applying Eq. (36), however, many terms cancel each other and the result
we get is
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I av av
3 3 4 mka T5) J +y JJ x

a'v a'v
(94)

and the last term can also be dropped in the LCA because it is of order fi -a . From Eq. (82) we can therefore con-
clude that, in LCA,

(
d 1l;+& d Q; ks T a2V a&V k& T a av av

dt dt m , au, „au, att, att, , 2 , „, att, au, , au, „ax, aa, att, ,

1 BV BVI'-. Bx~ Bx Buhu " ")
(a,(+Ra(, .))

(95)

Now we observe that the first term in the last expression parallels with the classical one, while the last term, if yjj' is
changed to aJJ, has the same form as the terms proportional to the second derivative of the potential in Eq. (89), so that
the results obtained before can be used. The evaluation of the second term is more lengthy but straightforward, so we
will omit the details of the calculation. At the end, the LCA quantum sixth moment comes out to be

PlpP(k) = —4m '
['NzG+v "(a)v (a)Z) —

—,'u"'(a) (2)—23)) cok
m

+[2(% z2G 'll 2G—)+v'"(a) (3Q—Z)]
u "(a)

cok Ba
+~kak+k 3ak+

2 ~cok

'N2G —u "(a)

v "(a)

u'r a III 2

m u "(a) u "(a) 2u "(a)

%'~G —u "(a)

u "(a)
2k~ T

+ "'( ) 32)—2)—
V"(a) t)'"(a)

m co„%'3G—v"'(a)
(96)

where we have defined the new quantities
T

2 ka ek Oak
5Xl= —g4 sin

k 2 2 a
(97)

I

of the minimum of the potential (98). In the quantum
calculation, the quantum coupling parameter

A. = [[A' v "(ro)]/(mao )]'~

ka
M) =—g4 sin

N k 2

ka
cos

cok Oak—1
2 acoi,

has been fixed to the value A. =0.23, obtained using the
characteristic interaction parameters of argon.

VI. APPLICATION TO THE LKNNARD-JONES CHAIN

In this section the formalism developed above is ap-
plied to the Lennard-Jones chain, whose interaction po-
tential has the form given in Eq. (44), with

'12 ' 6
0'

v (r) =45 (98)

In the numerical computation, appropriate units defined
as function of the constants m, 0., and e have been used.
The reduced temperature is defined as t =k~ T/e, the fre-
quency is measured in units co='(/e/mar, and the mo-
ment p2„ is given in units co o. . All the explicit results
given below have been obtained by setting the average
distance a between two NN atoms at the value
a =L /X = ro ——o &2, which corresponds to the position

A. Numerical evaluation of the moments by eftective potential

The evaluation of the classical moments reduces to the
computation of the quantities V and "V which appear in
the expressions for the moments obtained in Sec. V. Such
computation can be made in an analytic way only for
very simple interaction potentials and it has to be done
numerically for the Lennard-Jones (LJ) one. It has actu-
ally been performed by using standard double precision
FORTRAN routines, requiring a relative precision of 10
in the evaluation of the integrals (67) and (73) and in the
solution of the implicit equation (68) for so. In the quan-
tum regime we also need the renormalization parameters
X) and Xl and the corresponding corrections 52) and 52).
They have been computed in a self-consistent way by fol-
lowing the procedure used in Ref. 10. We point out that
any calculation of quantum moments by means of the



46 FREQUENCY MOMENTS AND SPECTRAL SHAPE OF QUANTUM CHAINS 8851

effective potential requires only few seconds of numerical
computation on a personal computer; that is, a time of
the same order of magnitude of that required in the clas-
sical case.

B. Evaluation of moments by Monte Carlo simulation

The evaluation of both the classical moments given by
Eqs. (58) through Eq. (55), and the quantum moments
given by Eqs. (54) through Eqs. (11)—(13) is based on
Metropolis sampling techniques. Metropolis sampling
techniques are standardly used in classical MC problems,
and it is the mapping presented in Sec. IIB of the
quantum-mechanical averages into expressions involving
classical configuration integrals which allows us to apply
these Metropolis techniques to evaluate the moments of
the quantum-mechanical spectral density. One can ap-
preciate the increased complexity in the evaluation of the
thermodynamics of our N-atom (or N-variable)
quantum-mechanical chain over that for the evaluation of
the ¹ tom classical chain by considering that the ther-
modynamic averages of the N-atom one-dimensional
quantum system are rewritten in Sec. II B as
configuration integrals for a two-dimensional system with
N XP classical variables. In the following we shall first
describe how Metropolis sampling was applied to the N-
atom classical chain and then how these sampling tech-
niques were applied to the discretized path-integral ex-
pressions for the moments of the quantum-mechanical
spectral density.

I. Classical regime

In the MC evaluation of the expressions in Eqs. (55) for
the moments of the classical spectral density of the
nearest-neighbor LJ chain, we have considered a chain
with N =40 atoms for ka =n l5, ', m, ma—nd. .
kttT/e=0 2, 0.3,0.4.. As we shall see below, there is
good agreement between these MC results for N =40 and
the exact N ~ 00 results obtained analytically in Sec. V A
for ka =—',m. and ka =m. The poorest agreement is found
for the lowest wave vector and the sixth moments, but
this is to be expected because finite-size effects become
more important in lowering the wave vector and increas-
ing the order of moments.

In the Metropolis sampling technique, we generate
1.6X10 atomic configurations which are used to com-
pute thermodynamic averages. These configurations are
generated by using a selection process in which the pro-
gram statistically generates test atomic configurations for
the system and then applies a criterion to determine
whether or not each generated configuration will be ac-
cepted or rejected. The program is set up to generate and
check one random test configuration at a time, and in our
simulations the acceptance ratio is between 40 and 60%%uo.

In the sampling process, a test configuration is generated
by (a) first taking the current ¹tom configuration of the
system and choosing an atom to move (the atom to be
moved was chosen sequentially on the chain); (b) the
chosen atom is then given a new position on the chain.
The new position of the atom is obtained by choosing a

random number between —x and X for some fixed value
of x and adding this randomly chosen number to the
original position of the atom.

The values of X is fixed during the course of the simula-
tion to obtain the 40—60%%uo acceptance of new
configurations into the set of the 1.6X10 configurations
used to compute averages. For the temperatures we con-
sider, xla =0.11, so that the atoms are effectively re-
stricted to maintain their sequential order on the chain.

During the course of the simulation, values of the first
four classical even moments were printed out after every
8 X 10 configurations. The error in the final printed out
values of the moments at the end of the program was
then estimated as the average of the absolute difference
between the last printed out moment and its previous
four or five printed out values.

2. Quantum regime

The simulation for the quantum moments, expressed
by Eqs. (11)-(13) as configuration integrals involving
classical variables Ix;(I)j, is based on a similar Metropo-
lis sampling method, but now for a system of N XP vari-
ables defined in two dimensions. For the quantum simu-
lation we have taken N=20, 40 and P=4, 8, 16, where
P = 16 is believed from previous work ' to give an accu-
rate representation of the P~ 00 limit. The total number
of configurations used in computing the final average mo-
ments at the end of the programs was 2X10, with aver-
age moments printed out every 10 configurations.

As with the classical MC discussed above, new
configurations for the Metropolis sampling of our quan-
tum path integrals are generated by moving sequentially
through the Ix;(l)J variables of the NXP lattice, and
choosing at each sampling an x, (l) to receive a random
increment. The random addition to x;(l) is taken from
the interval —x to x, with x chosen to assure a 40—60%
acceptance rate for the newly generated configurations.
In choosing new configurations x/a =0.1 and the atoms
are again not allowed to change their sequential ordering
on the chain.

Quantum simulation runs were made for the first three
even moments of the quantum spectral density at
kgT/E=O. 1,0.2, 0.3 and ka= fr/5, 'trl2, tr. As we shall
see below, good agreement of the quantum simulation
moments with those obtained by means of variational cal-
culations is observed for the highest wave vectors. For
ka =a./5, the finite-size effects prevent us from having
quantitative comparison between N =40 and 0O chains;
however, an overall agreement is obtained. As long runs
are required to assure the accuracy of the QMC results, it
is difficult to obtain numerous independent runs due to
the limitations of computer time. In light of this fact, we
have computed the errors in the final simulation values of
the quantum moments as being the deviations, found in
the last ten incremental steps of 10 configurations print-
ed out during the course of the QMC program, from the
final values given by the simulation.

Also, if P = 16 can be believed to give a good estimate
of the P~ ~ limit, following the standard procedure, we
have plotted our QMC results for the moments, obtained
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for a low Trotter number (P =4,8, 16), against 1/P, in
order to extrapolate the data to P = ao. A quadratic ex-
trapolation has been used for all data sets, but, given the
error bars, a linear extrapolation would have been equally
appropriate for some of them. In analyzing the QMC
data, we have also applied a simple expedient described
in Ref. 12. It consists of adding to the computed quanti-
ties the difference between the exact quantum value and
the finite Trotter number result for the same quantity in
the harmonic approximation. Such a device has been re-
vealed to be very efBcient in improving the convergence
of QMC data to the P = ee value at the lowest tempera-
ture, especially for the zeroth and the second moment.
An example of such procedure is reported in Fig. 1.

C. Results and discussion

The results we obtained for the frequency moments of
the spectral density (45) of a Lennard-Jones chain are
summarized in Figs. 2 —5, where the temperature depen-
dence of the first four classical and quantum even mo-
ments is shown for three different wave vectors (note
that, with our definition, all the moments are negative, so
that their absolute value is reported in the figures). For
the sixth moments, only the classical MC data are avail-
able because the evaluation of the quantum ones with a
tolerable error would require too long simulation times.
On the other hand, the QMC data are not really essential,
once the reliability of the results of the effective potential
method has been ascertained in the range where finite-
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FIG. l. Quantum Monte Carlo results for the moments (a)

po, (b) p2, and (c) p4 of the 20-atom chain, for quantum coupling
A, =0.23, at t =0.1 and for ka=m. are reported vs the inverse
Trotter number 1/P. The open circles are the raw results of the
QMC simulations, while the solid circles are the same data
corrected for the finite Trotter number effects onto the harmon-
ic contribution, as explained in the text. The lines are the fitted
parabolas.

FIG. 2. Moments (a) po, (b) p2, and (c) p4 for ka=~/5 vs the
reduced temperature t (see text). The solid line is the classical
result, the dashed line the quantum effective potential result,
while the symbols are the classical and quantum Monte Carlo
data. The quantum results refer to A, =0.23. The classical MC
data (solid circles) are those obtained for a chain of 40 atoms,
while the QMC data are the results for a chain of 20 atoms
(open circles) and 40 atoms (open squares). po is measured in

2—2 4
units of cr, p2 in units of e 9, and p4 in units of cr 9 (the pa-
rameters o. and co are defined in Sec. VI). Note that all the mo-
ments are negative.
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size effects do not play an important role. In Fig. 5 we
report the sixth moment only for ka =m, indeed the be-
havior of this quantity for the other wave vectors is very
similar.

Just by observing the figures, it appears that the classi-
cal MC data reproduce very well many analytical results
for the classical moments. Moreover, the effective poten-
tial clearly accounts for the quantum effects at low tem-
perature and, as it is implicit in the method, it correctly
approaches the classical behavior at high temperature. It
can be verified very easily that, at very low temperature,
the effective potential reproduces the results given by the
self-consistent harmonic approximation, but at inter-
mediate temperatures it also accounts for the leading
quantum effects of nonlinearity.

About the comparison between the QMC data and the
effective potential results, we can conclude that the
overall agreement is certainly very good for the zeroth
and the second moment, while for the fourth moment the
situation is a little bit less favorable, especially for the
lowest wave vector. In fact, we see that, for all three
wave vectors, the QMC values for the fourth moments
are higher than those obtained by the efFective potential,
but while the differences at the zone boundary are
minimal, they become more apparent for the smallest

wave vector. We attribute this partial disagreement be-
tween QMC and eS'ective potential results to the finite
length of the chain used in QMC simulations. Finite-size
effects indeed become more important for longer wave-
lengths; moreover we expect that they afFect more the
highest moments because, as can be seen from Eqs. (54),
(72), and (78), every elementary contribution to the mo-
ments is given by a cluster of particles which becomes
larger as the order of the moments increases.

VII. DYNAMICAL RESPONSE FUNCTION
OF A QUANTUM CHAIN

The effective potential has been defined for the evalua-
tion of static quantities. The partition function can be
directly calculated, while the static correlations have
been calculated taking into account their Gaussian quan-
tum spread. Of course, it is apparently meaningless to
try to extract dynamical information from the effective
potential by using it, for instance, as the interaction po-
tential in molecular-dynamics simulations, as was sug-
gested in Refs. 32 and 33. However, starting from the
knowledge of the frequency moments, a reconstruction of
the function C(k, co) itself can be devised.
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We start from the continued fraction expansion pro-
posed by Mori. ' The function C(k, ro), admits the fol-
lowing continued fraction representation:

FIG. 5. Classical and quantum sixth moment, p6, as a func-
tion of the reduced temperature t for ka =~. The symbols have
the same meaning as in Fig. 2.

Their evaluation, as is clear from Eqs. (100) involves sub-
tractions between terms which can be very large. There-
fore, high precision is required in the computation of the
moments p2„(k), otherwise the belief that the evaluation
of higher-order moments surely leads to an improvement
in the reconstruction of the spectral shape is illusory.
Moreover, higher-order moments require higher-order
static correlations which can be obtained with decreasing
reliability from the numerical calculations. Fina11y, the
continued fraction expansion is poorly convergent for
strongly anharmonic systems, and the choice of the ter-
mination is a source of arbitrariness in reconstructing the
spectral shape.

Among various recipes proposed in order to truncate
the continued fraction expansion, we recall here the
Gaussian termination, ' ' and the three-pole approxima-
tion. ' The latter can be easily extended to higher order
to become an n-pole approximation. Both of them can be
better introduced if we rewrite f(x) in the iterated form:

C ( k, r0) =po(k) Re 1

=go(k)F(k, co),

5,
z +

2z+
z + ~ ~ ~

Z —le

(99)

1.25

1.00

0.7 5

0.50

where we have defined the normalized function
E(k, co) =Re[/(k, iso) ], which has the same co dependence
of C(k, co), and denoted with 1( the complex function of z
within the squared brackets. The expansion coeScients
5„are related to the frequency moments by algebraic re-
lations. The explicit expressions for the first three of
them are
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Since these static quantities can be evaluated by means of
the effective potential, this scheme appears to oFer a tool
to calculate quantum-dynamical correlations.

In the harmonic approximation, 5„vanish for n ) 1.
For weakly anharmonic systems, the knowledge of the
first 5-s allows one to reproduce the spectral shape with
suScient accuracy, by introducing reasonable termina-
tion criteria for the expansion (99). This corresponds to
introduce finite lifetimes of the elementary excitations, as
done by second-order expansions of the phonon self-
energy. By making some assumptions on the physical
processes which are responsible for the determination of
the line shape, the method can also be extended to other
regimes which are not nearly harmonic.

However, some cautions are in order. First we note
that 5z, 53, . . . , 5„often are relatively small quantities.

0.20 (c)
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0.00 '

4 6
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FIG. 6. Normalized response function I'k(~) for ka =m/5 at
the temperatures (a) t =0.1, (b) t =0.3, and (c) t =0.8. The
solid line is the classical result, whi)e the dashed line is the

quantum result (the characteristic frequency co is defined in Sec.
VI).
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1 1
(z)=-

n z+5if, (z)

f„(z)= 1

z+5.+i0.+i«)

(101)

(102)

In the n-pole approximation 5„$„(z)is more simply ap-
proximated by a constant value I/v=5„$„(0), which is
determined assuming again a functional dependence like
(102) for f„or for f„z. In the first case we have

I /v=5„+m /25„+ &, while in the second I /r
=Qm.5„,/2, so that the number of parameters 5-s to be
determined is reduced by two.

In Figs. 6—S, the function F(k, co) for the Lennard-
Jones chain is shown at three different temperatures and

In the Gaussian approximation at the nth order, the ex-
pansion (99) is truncated by setting g„(z) equal to the La-
place transform of a Gaussian with variance 5„+&

..
' 1/2

z /25
Q„(z)=

25„+)

three different wave vectors; the continuous and dashed
lines refer, respectively, to the classical and quantum re-
sults. The Gaussian termination at third order has been
applied, and the parameters 5 have been deduced from
the values of the moments obtained in the previous sec-
tion, using, in the quantum regime, the results given by
the effective potential method. The modification of the
line shape due to the quantum effects is apparent. The
shift of the peak position, related to the frequency renor-
malization due to the quantum fluctuations, and the
different width of the peak are two important features. If
an n-pole approximation is used, both the classical and
quantum line shapes change a little, but the relative
changes in shape are essentially the same already ob-
tained with the Gaussian termination.

At the actual stage, there is no underlying physical
reason to rigorously justify these truncation criteria for
the Lennard-Jones chain, so that the reliability of the line
shapes obtained may be somehow questionable. Howev-
er, this problem is not peculiar of the quantum regime,
since it is already present in the study of the classical sys-
tem. The overall meaning of the present work is there-
fore clear. As a significant issue, we have shown how
quantum effects can be easily taken into account, also for
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studying dynamical properties. We have presented an
approach which reduces quantum calculations to classi-
cal ones, so that every progress in the determination of
the response function of a classical system starting from
static quantities can be usefully transferred to the quan-
tum regime.

VIII. SUMMARY AND CONCLUSIONS

We have investigated the properties of the time-
dependent displacement correlation functions of a one-
dimensional chain of atoms. This was done by (I) com-
puting the frequency moments of the spectral densities of
the tine-dependent displacement correlation functions
using analytical, numerical, and Monte Carlo simulation
techniques, and (2) using the best values of the moments
obtained in (I) to develop a continued fraction represen-
tation of the spectral densities of the time-dependent
correlation functions, based on theories of Refs. 17, 19,
20, and 34 for these representations. Both quantum and
classical models of the one-dimensional chain were stud-
ied, and comparisons of the quantum and classical mo-
ments and spectral densities were made.

We have chosen for our studies time-dependent dis-
placement correlation functions which are related to the
cross sections for the inelastic scattering of neutrons from
our vibrational systems. The spectral representations of
these correlation functions in the harmonic approxima-
tion are sums of simple poles and hence are exactly
representable in terms of continued fraction expansions
of finite length. In the presence of weak anharmonicity,
it has been our expectation that the infinite continued
fraction representations of the spectral densities of the
same correlations functions for the now fully anharmonic
system will yield accurate spectral densities for some ap-
proximate termination scheme applied to the continued
fraction. We believe that our results presented in Figs.
6—8 represent, to varying degrees, such accurate repre-
sentations by artificially terminated continued fractions
of the spectral densities of the fully anharmonic
Lennard-Jones chain as functions of temperature and
wave number. In particular, we expect that the spectral
densities in Figs. 6—8 which differ the most from the pole
structures of the spectral densities calculated in the har-
monic approximations are least likely to provide accurate
representations of the true spectral densities of the anhar-
monic system which they are intended to portray. We
feel that such representations which differ significantly
from those of the harmonic approximation are most like-

ly to depend on the termination scheme applied in devel-

oping the continued fraction representation. In Figs.
6—8, they appear to reconstruct the spectral representa-
tions of our chain of atoms best for t ~0.3 and for
ka &m..

In computing the moments of the spectral densities a
number of analytical and MC computer simulation tech-
niques were used. A comparison of the moments com-
puted by these various techniques was made to assure the
accuracy of the moments used in the continued fraction
representations whose results are presented in Figs. 6—8.
Figures 2-4 present the moments computed for the clas-

sical and quantum atomic chains. The classical moments
were obtained analytically using an extension of the
Gursey method, and were compared with the results of a
classical MC simulation for a system of 40 atoms subject
to periodic boundary conditions. The agreement between
the results of these two classical methods is good, in gen-
eral, and is best for wave vectors at the edge of the Bril-
louin zone. In the computation of the quantum mo-

ments, the effective potential method was compared to
the results from the QMC method for these same mo-

ments. For the QMC moments an illustration of the
effects of a finite P was given in Fig. 1, where a polynomi-
al fit was used to extract the P~ ac limits of these mo-

ments. In Figs. 2 —4 the corrected QMC moments and
the effective potential results for these moments were
found to agree well with one another. The poorest agree-
ment between the results from the two quantum-
mechanical approaches was found for ka =~/5 at
t =0.3. Consequently, we have used the quantum-
mechanical moments computed by means of the effective
potential method to obtain the continued fraction repre-
sentation in Figs. 6—8.

In general, we have found that both the classical and
QMC moments exhibit the greatest deviations from their
counterparts obtained by analytical means for the higher
moments, e.g. , p4, and for the moments evaluated at long
wavelengths. This is most likely due to the finite number
of atoms used in the simulation methodologies. The
higher-order moments of the spectral densities and the
moments of the spectral densities computed for long
wavelengths are dependent on the motion of more of the
atoms along the chain than are the lower-order moments
for shorter wavelengths. These finite-size effects (in the
number of atoms) are another reason we have chosen the
effective potential and extended Giirsey classical mo-
ments in developing the continued fraction results
presented in Figs. 6—8.

Looking at the results presented in Figs. 6—8 for the
classical and quantum-mechanical spectral densities at
t =0.1, 0.3, and 0.8, we see that, at low temperatures
(t ~ 0.3), the classical and quantum spectral densities are
quite different. The peak in the quantum-mechanical
spectral density occurs at higher frequencies than that in

the corresponding classical spectral density, and the
quantum peaks are generally narrower than that in the
corresponding classical system. We remember that both
quantum and classical results have been obtained taking
the same, fixed chain spacing; this explains why the shift
of the peak is towards the higher frequencies. About the
narrowing of the quantum peaks from their classical
counterparts, a possible explanation may reside in

coherent effects arising from the wave nature of quantum
particles. This coherence may correlate the motions of
the particles in the system, decreasing their collisions and
subsequently increasing the lifetimes of the quasiexcita-
tions in the system. The low-temperature motion of the
classical and quantum particles in these chains are cer-
tainly quite difFerent, as the difference in peak energy in

the classical and corresponding quantum system indicates
that different parts of the Lennard-Jones potentials must
be sampled in the two different systems.
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In conclusion, we see that the spectral densities at low
temperatures of the nonlinear chain of atoms can be well
represented by continued fraction expansions based on
the moments of the spectral density. We expect that
these methods should be even more successful when they
are applied to the low-temperature properties of higher-
dimensional systems. These systems are less susceptible
to fluctuations than are the one-dimensional systems we
have considered in this paper, and should have well-
defined quasiexcitation peaks in their spectral densities.
The extension of these methods to three-dimensional vi-
brational systems is now in progress.

ACKNOWLEDGMENTS

A.A.M. and A.R.M. would like to thank the Dipar-
timento di Fisica dell Universita di Firenze for its hospi-
tality while a major portion of their contribution to the
work was carried out. The work of A.A.M. was support-
ed in part by NSF Grant No. 89-18184. It was also sup-
ported by the University of California, Irvine, through an
allocation of computer time, and by an allocation of Cray
YMP time by the San Diego Supercomputer Center.

S. E. Trullinger et al. , Solitons (North-Holland, Amsterdam,
1986).

R. K. Bullough, Y.-z. Chen, and J. Timonen, in Nonlinear and
Turbulent Processes in Physics, edited by V. E. Zacharov, A.
G. Sitenko, N. S. Erokhin, and V. M. Chernousenko (World
Scientific, Singapore, 1990).

3E. P. Wigner, Phys. Rev. 40, 749 (1932).
R. P. Feynman, Statistical Mechanics (Benjamin, Reading, MA,

1972).
5R. Giachetti and V. Tognetti, Phys. Rev. Lett. 55, 912 (1985).
R. Giachetti and V. Tognetti, Phys. Rev. B 33, 7647 (1986).

7R. P. Feynman and H. Kleinert, Phys. Rev. A 34, 5080 (1986).
R. Giachetti, V. Tognetti, and R. Vaia, Phys. Rev. A 37, 2165

(1988).
R. Giachetti, V. Tognetti, and R. Vaia, Phys. Rev. A 38, 1521

(1988).
A. Cuccoli, V. Tognetti, and R. Vaia, Phys. Rev. B 41, 9588
(1990).

' S. Liu, G. K. Horton, and E. R. Cowley, Phys. Lett. A 152, 79
(1990).

' A. Cuccoli, A. Macchi, M. Neumann, V. Tognetti, and R.
Vaia, Phys. Rev. B 45, 2088 (1992).
H. Kleinert, Phys. Lett. A 118,267 (1986).
R. Vaia and V. Tognetti, Int. J. Mod. Phys. B 4, 2005 (1990).
A. Cuccoli, V. Tognetti, and R. Vaia, Phys. Rev. A 44, 2734
(1991).

S. W. Lovesey, Condensed Matter Physics: Dynamic Correla-
tions (Benjamin/Cummings, Reading, MA, 1986).
H. Mori, Prog. Theor. Phys. 34, 399 (1965).

S. W. Lovesey and R. A. Meserve, J. Phys. C 6, 79 (1972).
K. Tomita and H. Tomita, Prog. Theor. Phys. 45, 1407 (1971).
H. Tomita and H. Mashiyama, Prog. Theor. Phys. 48, 1133
(1972).
A. Cuccoli, V. Tognetti, and R. Vaia, Phys. Lett. A 160, 184
(1991).
F. Gursey, Proc. Cambridge Philos. Soc. 46, 182 (1950).
M. Takahashi and M. Imada, J. Phys. Soc. Jpn. 53, 963 (1984).

24M. Takahashi and M. Imada, J. Phys. Soc. Jpn. 53, 3765
(1984).

25See special issue, J. Stat. Phys. 43, 729 (1986).
R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D 10,
4144 (1974).
K. Maki and H. Takayama, Phys. Rev. B 20, 3223 (1979).
H. Leschke, in Path Summation: Achievements and Goals,
edited by S. Lundqvist et al. (World Scientific, Singapore,
1988).

29H. Janke, in Path Integrals from meV to MeV, edited by V.
Sa-Yakanit et al. (World Scientific, Singapore, 1989).
G. Nienhuis, J. Math. Phys. 11,239 (1970).
A. R. Mc Gum, P. Ryan, A. A. Maradudin, and R. F. Wallis,
Phys. Rev. B 40, 2407 (1989).
D. Thirumalai, E. J. Bruskin, and B.J. Berne, J. Chem. Phys.
79, 5063 (1983).
D. Thirumalai, R. W. Hall, and B. J. Berne, J. Chem. Phys.
81, 2523 (1984).

3~H. Mori, Frog. Theor. Phys. 33, 423 (1965).
35B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley,

London, 1976).


