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Anomalies induced by Goldstone modes, in the phase of spontaneously broken continuous symmetry,
are studied by means of a 1/n expansion of the time-dependent n-component 4? -model of a noncon-
served order parameter. Obtaining the exact solution of the spherical model, we investigate the wave-

number and frequency-dependent transverse and longitudinal response functions. The scaling function
of the longitudinal susceptibility displays a crossover leading to divergent behavior in the hydrodynamic
limit. An important, experimentally accessible quantity is the critical attenuation of ultrasound, whose

asymptotic behavior in the critical and hydrodynamic regime is determined together with the scaling
function connecting both limits. Contrary to an earlier prediction by Zeyher, the Goldstone modes do
not alter the quadratic hydrodynamic frequency dependence of the coefficient of sound attenuation but
their unequivocal signature is a cusp singularity of the scaling function. These results are relevant for
solids with incommensurate phases.

I. INTRODUCTION

We study the inffuence of Goldstone modes on dynam-
ic susceptibilities, the energy correlation function, and
sound attenuation of systems that undergo a second-
order transition to a low-temperature phase of broken
continuous symmetry. Our investigation is based on the
time-dependent Ginzburg-Landau model of a noncon-
served order parameter with purely relaxational dynam-
ics. The leading order of a 1 ln expansion yields exact re-
sults of the spherical model.

The inffuence of Goldstone modes on critical behavior
has attracted attention for a long time. ' The interest in
this topic is stimulated by the appearance of coexistence
anomalies. At the phase transition itself, all modes of a
n-component primary order parameter are massless and
give rise to the well-known critical phenomena. Now if a
continuous symmetry of the order parameter is spontane-
ously broken on passing through the transition point, the
ffuctuation spectrum of the order parameter displays the
following distinctive feature. There is one massive longi-
tudinal mode along the direction of the order parameter,
and according to the Goldstone theorem, there are
(n —1) transverse modes without an energy gap in their
excitation spectrum. These Goldstone modes, being
massless within the whole low-temperature phase, may
lead to new kinds of anomalies, which are termed coex-
istence anomalies to stress their inherent origin.

There is a variety of systems with continuous symme-
try. Ideally, it is realized by the gauge invariance of the
Bose ffuid liquid helium-4. There the Goldstone mode is
second sound. In the case of solids that undergo a transi-
tion to a phase of structurally incommensurate lattice
modulation, the Goldstone modes are called phasons.
For all of these systems, it is of great importance to re-
veal the possible anomalies induced by the Goldstone
modes.

The proper treatment of Goldstone modes is far from

being straightforward, and several methods have been ap-
plied to handle the difficulties. Thereby, the 1/n expan-
sion' proves to be a valuable tool for several reasons—
especially in the spherical model limit (n ~ oo ). s 9 The
results obtained are explicit expressions and exact with
respect to their dependence on space dimensionality.
This facilitates the determination of possible coexistence
anomalies resulting for example in nonanalytic behavior
of scaling functions. Finally, the spherical model limit
just sets focus on the transverse Goldstone modes, in
whose peculiarities we are interested in.

Of course, it is desirable to put our theoretical con-
clusions to an experimental test. And even if the number
of order-parameter components n is infinite in the spheri-
cal model, certain features of our results remain valid for
finite n. Central to our investigation is the coeScient of
sound attenuation a(k, to, ~i~ ) for a sound wave with fre-
quency co propagating along k and r=(T T, )/T mea-—
sures the distance from the transition temperature T, .
The subsequent treatment introduces a 4 -correlation
function as key quantity, which is determined in leading
order of a 1 ln expansion and provides valuable informa-
tion.

The scaling behavior of the coeScient of sound at-
tenuation can be inferred from the imaginary part of the
4 -correlation function. We analyze its asymptotic be-
havior in the critical ( T~T, ) and hydrodynamic regime
(co «co,h, k «( '), where co,h is the characteristic
order-parameter rate and g is the correlation length. We
will show that the Goldstone modes do not alter the hy-
drodynamic co law, in contradiction to the co depen-
dence predicted by Zeyher. ' The actual coexistence
anomalies are much more subtle. The scaling function
describing the crossover from the critical to the hydro-
dynamic regime, a main result of our investigation, con-
tains a cusp singularity at small scaling variables. This
signature of the Goldstone modes, following from our
theory, should be tested by experiments. This result is in
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accord with a forthcoming general renormalization-
group theory of ultrasonic attenuation in the 4 -model. "

The real part of the @ -correlation function is related
to the energy correlation function. Again, we determine
the universal scaling function within the spherical model
and reveal a crossover in its wave-number dependence.
The explicit expressions show that in the coexistence lim-
it, the wave-number dependent corrections start with a
(kg} -power law. A (kg)' term is present in the vicinity
of the transition point itself.

For a computation of the 4 -correlation function, the
wave-number- and frequency-dependent response func-
tions of the transverse and longitudinal modes are re-
quired, where the latter one displays a well-known coex-
istence anomaly. Our calculation of the longitudinal
response function agrees with earlier findings' and, addi-
tionally, yields the pertinent scaling function.

This paper is organized as follows: In Sec. II, we
present the model free energy together with stochastic
equations of motion for the order parameter and a pho-
non variable. The perturbation theory for the transverse
and longitudinal response functions, as well as the 4-
correlation function, is elaborated in Sec. III. In leading
order of a 1/n expansion, the exact results of the spheri-
cal model are obtained. Section IV is devoted to the
universal scaling behavior of these quantities. We
characterize the asymptotic behavior in the hydrodynam-
ic and critical limit by means of critical exponents.
Moreover, the scaling functions connecting both limits
are derived. Coexistence singularities are revealed and
the consequences for the coefficient of sound attenuation
and the energy correlation function are discussed. Our
results are summarized in Sec. V. In the Appendixes, the
scaling laws for the transverse and longitudinal suscepti-
bilities, as well as for correlation functions of composite
order-parameter fields, are derived.

II. ORDER-PARAMETER MODEL
AND COUPLING TO SOUND WAVES

The model investigated is based on a n-component or-
der parameter 4 with continuous symmetry in the
order-parameter space. Thus, only O(n)-symmetric con-
tributions appear in the model free energy. The acoustic
sound waves are described by a phonon variable p(x, t }.
The presence of critical sound anomalies depends on the
coupling between these degrees of freedom. We will in-
vestigate an interaction, which is linear in the phonon
variable and bilinear in the order parameter. This kind of
coupling, relevant for a variety of systems is, of course,
nonsymmetry breaking. The statics of our model are
contained in the free energy functional

harmonic elastic energy, and the last term is the phonon
order parameter interaction with coupling strength y.
Such a Hamiltonian with n =2 can be derived from lat-
tice dynamics for normal to incommensurate phase tran-
sitions of AzBX4 compounds. '

The dynamics of our model are expressed by stochastic
equations of motion of the Langevin type, '

+rj(x, t),
J

(2.2a)

and

(r, (x, t)r ( x', t')) =2A5, ,5"(x—x')5(t —t'),

Mp=V +DMV p+R(x, t},g5%
P

(R (x, t)R(x', t') ) =2DMV 5 (x x')5(t —t')—.
(2.2b)

The nonconserved order-parameter components
41 (j= 1, . . . , n ) follow purely relaxational dynamics ac-
cording to (2.2a). The equation of motion (2.2b) for the
phonon variable contains propagation, with the bare
sound velocity I/~M, and the bare damping is D. The
stochastic forces rj and R produce a Gaussian white
noise, with vanishing mean value (rj(x, t))
=(R(x,t))=0, and the variances given in Eqs. (2.2)
obey the Einstein relations.

From these equations of motion, the critical behavior
of the sound mode can be determined. The complete
treatment, presented elsewhere, ' eliminates the phonon
variable. The final result for the coefficient of critical
sound attenuation a(k, to, iri) can be expressed by means
of a 4 -correlation function

(2.3)
2Mc il+4ny II(k, co, iri }(

Here c is the sound velocity and the 4 -correlation func-
tion explicitly reads

2nll(k, to, iri)= ——f dt e'"'—(4 (k, t)4 ( —k, 0))

(2.4)

The crucial point is that the thermal average necessary
for a computation of the 4 -correlation function requires
only the part &z, of the energy functional (2.1), which
solely depends on the order parameter. It is thus a quan-
tity of pure critical dynamics. Solely the coupling con-
stant is shifted to a new value (u ~u = u —12y ) through
elimination of the phonon variable. Equation (2.3} is
closely related to, but not identical with an earlier phe-
nomenological approach, ' which is confirmed in
significant limiting cases.

In the static limit, the 4 -correlation function of (2.4)
gives the energy correlation function C(k, iri },which in-
troduces another quantity of interest,

The Srst three terms, later referred to as &~, represent
the well-known 4 -model, the fourth term is the purely

C(k, iri)=4n lim II(k, co, iri)
60~0

= [(@'(k)@"(—k) ) —(& '(k) )'] . (2.5)
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( & (@,@)) =—f2)[4]2)[i4']A (4', 4)exp[2(4, 4)] .

(2.6)

If the order parameter is coupled to an external field h. in
the energy functional (2.1), an additional contribution
(A, ghj4J) appears in the stochastic functional. Then
from (2.6) one obtains

5(C, (x, t))
(4;(x, t)A4~(x', t')) =

5h (x', t') (2.7)

The expression on the right-hand side of (2.7) is the dy-
I

The actual computation of time-dependent expectation
values will be performed with the help of the stochastic
functional 2 of the path integral, ' ' equivalent to the
simpIified model described by &+ with coupling constant
u and a single equation of motion (2.2a). An explicit rep-
resentation is overed in the next section. Introduction of
auxiliary fields 4 (Ref. 19) reduces the nonlinearity of the
stochastic functional, which appears as weight factor of
expectation values of any combination of the fields
A(4, 4),

namic susceptibility or order-parameter response func-
tion. Generally, the relation between response and corre-
lation functions is the content of fluctuation-dissipation
theorems. ' In this way, the correlation function of (2.4)
is related to a composite field response function

Recognizing the physical meaning of the dynamic expec-
tation values of (2.7) and (2.8), we now turn to their expli-
cit computation in the phase of broken symmetry.

III. PERTURBATION THEORY
IN THE LOW-TEMPERATURE PHASE

In the low-temperature phase, the expectation value of
the order parameter is finite. Without loss of generality,
we take

(e, ) =&3/um5, „. (3.1)

We introduce new wave-number and frequency-
dependent fields

——8(t —t') (4'(k, t)4'(k', t'))
2 dt

=(@'(k,t)(CA, 4)(k', t')) . (2.8)

n.~(k, co)

&3/ 5(k)5( )+ (k )
(3.2)

where both the (n —1) transverse fields m and the longitudinal field a have zero expectation value, and
5(k)=(2m) 5 (k).

After substitution of (3.2), the dynamic functional is decomposed into a harmonic part Sh, yielding the zeroth-
order propagators of our model and the interacting part S;„,containing higher-order vertices. The following shorthand
notation will be used

d ki d k dcoi

2m'

d cop
~ f ' q "(k„~,). . .q "(k,,~, )5 g k, 5 g ~,

1=1
(3.3)

where each 4' stands for one of the fields m. , o. , 5. , or o.. The harmonic part of the dynamic functional then reads

J')„,m[[n. ],cr, [rr ],cr]=f „f QArr rr +ncaa grr [ice, +A—(r+m /2+k, )]n.

cr [in))+A—(r+3m l2+k) )]cr (3.4)

The interacting part

&3u
2;„,[Im ],cr, [rr ],cr]= —k m f f +2rr rr a+gcrvr rr +3ac'ra

6 kl, k2, k3 co] jc02jco3 a a

A, Q
Fr m + I. m oo+ o.o.m. m. +ooo.o.

kl, . . . , k4 col, . . . , a)4 a,P a a
(3.5)

contains third- and fourth-order interactions. There is a
further vertex with one longitudinal response field

S[cr]=—A,v'3/um(r+m /2) f f a( —k, —co),
k co

which we take into account in the derivation of the equa-
tion of state later on. Finally, the contribution of a func-

I

tional determinant

5 5 aJ[@,4]=fd xfdt g—
guarantees to cancel acausal terms in the perturbation
theory. To make our treatment more transparent, we
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FIG. 3. The dressed bubble representing a geometric series of
transverse order-parameter bubbles.

FIG. 1. Anharmonic vertices of the @ theory in the low-
temperature phase with at least two transverse fields.

Fig. 2 is independent of external wave number and fre-
quency. Therefore, the response function takes the form

will use a diagrammatic representation of perturbation
theory. The vertices contributing in the spherical model
limit are displayed in Fig. 1.

As a consequence of the symmetry breaking (3.1), we
have to distinguish between transverse and longitudinal
susceptibilities

( m (k, co)Fr ~(k', co') ) =gj (k, co)5 P(k+k')5(co+co'},

(3.6a}

gj (k, a)) = [A(r~+ k2) in—)]

where the self-energy

qrj+q

only contributes to the transverse mass

"= + +""
6 qrj+q

(3 9)

(3.10)

(3.11)

( cr(k, co)o (k', co') ) =gI (k, co)5(k+ k')5(co+co') . (3.6b)

The response functions, given in harmonic approximation
through Sh, , are supplemented by self-energies due to
the interactions of 2;„,

gj(k, co)=[A,(r+m /2+k } ico+X—~(k, co)] (3.7a)

gI(k, co) = [A(r+3m /2+k ) i c+0—XI(k, )co]
' . (3.7b)

The self-energies X~(k, co) and XI(k, co) are determined
perturbatively in a 1/n expansion. To decide which dia-
grams contribute, one has to take into account the n
dependence of the coupling constant u =O(l/n) and
m =O(1}. On the other hand, contraction of internal
transverse lines within diagrams yields combinatoric fac-
tors O(n). Now, one easily convinces oneself that to
leading order the diagrams of Fig. 2 appear. Thereby,
the longitudinal self-energy Xl(k, co) already requires a
geometric series of the transverse order-parameter bubble
~(k, co), shown in Fig. 3. All diagrams are of the same
order in 1/n and the analytic expression of the series
reads

Qll 1
rc

6 qr~+q2
(3.13)

Thus, the implicit propagator Eq. (3.7a} has been turned
into an implicit equation (3.11) for the transverse mass r~,
which considerably simplifies the problem. At this point,
the equation of state is required. It can be determined
from the requirement that according to definition (3.2)
the longitudinal field is purely fluctuating: (o ) =0. Be-
sides the vertex with a single longitudinal response field
S[cT] mentioned after (3.5}, again the Hartree bubble of
the transverse self-energy X~ appears in the diagrams to
leading order. This yields the equation

m
(3.12)

2 6 q r&+q

from which the following results can be obtained. (i) As a
consequence of the interaction of order-parameter fluc-
tuations, the transition temperature is shifted. This shift
is determined from the vanishing of the spontaneous
magnetization at the transition point, m (r, )=0, i.e.,

2nm(k, co)

1+(Run/3)m. (k, , co)
(3.8)

Utilizing the temperature variable ~=r —r„which is a
linear measure of the distance from the true transition
temperature, the order parameter m of (3.1) obeys

Equation (3.7a}, for the transverse response function, is
an implicit equation because the self-energy X~(k, co) al-
ready has to be calculated with the propagator g~(k, ~)
marked by a full line in Fig. 2. The Hartree bubble of

m =~2m~ ~ (3.14)

yielding the critical exponent P= 1/2 for the spherical
model. (ii) Combining Eqs. (3.11) and (3.12), the trans-
verse mass vanishes in absence of an external field

K~(k, v) =

E)((k,u)) = +

+ 0 ('in )

+O( jn)

rq=O . (3.15)

Thereby, we confirm the Goldstone theorem within the
spherical model. Next, we investigate the longitudinal
response function. The analytic expression for the longi-
tudinal self-energy shown in Fig. 2 reads

FIG. 2. Transverse and longitudinal self-energies of the
order-parameter susceptibilities in the spherical model.

q r&+q
2Run Am n(k, co} +O(1/ ) (3 16)

3 1+(Run/3)m(k, )co
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Inserting (3.16) into gl(k, co} of (3.7b) and using r~ from
(3.11) yields

1
2

gll(k, co)= A(rj, +k ) i—co+
I+(Run�

/3)lr(k, co)

(3.17)

a

II (k, 4I)

L
I

II I I I

+ J llill II I I I
balll I I

J ~ ll Ill
I I I I I ~J.

II II

Finally, if we take into account the vanishing of the
transverse mass (3.15) and switch to the more familiar
temperature variable r, the response functions (3.9) and
(3.17) read

FIG. 4. The @ -correlation function in the spherical model.
All diagrams can be summed with the dressed bubble of Fig. 3,
and the longitudinal response function g~~.

g~(k, co) = [Ak —ico] (3.18a)
composite field response function

gI(k, co) Ak —leo+
A. /2r/

1+ A,un/3 n(k, co)
(3.18b) II(k, co, r~ )= (4 (k, co)(IZI4)( —k, —co) } . (3.19)

We now turn to a computation of the 4 -correlation
function (2.4), which by means of the

fiuctu�atio-

ndissipatio-theorem (2.8), is equivalently expressed as a

In terms of transverse and longitudinal fields combined
with the n dependence of u and m, the following contri-
butions are left in leading order

II(k, co, ~r~)= [(Ir (Irlr))l, +2V3/u ((m o)( IrI)r} I
+v'3/u (m (mo))l, +—((mo)(mo)) I„]+O(1/n),6

(3.20)
( —) ( —)) (~)

where rr =( ~ ', . . . , n " '). In a diagrammatic representation, again diagrams of arbitrary loop number have to be
summed. With the help of the geometric series of transverse bubbles shown in Fig. 3 and the longitudinal response
function g~~(k, co), all diagrams for the Cl -correlation function in the spherical limit are displayed in Fig. 4. From this
representation, the analytical result immediately is obtained

3~12rl gI "
+ &Ir(kco) +O(1/

un [I+(Run/3)lr(k, co)] I+(Run/3)n(k, )co
(3.21)

This expression is of a certain generality, because g~~(k, co) and Ir(k, co} might stem from an order-parameter dynamics
difFerent from (2.2a), as long as no mode couplings are introduced additionally.

We still have to compute the transverse order-parameter bubble n(k, co) Inserting . the transverse response function
(3.18a), we are left with an integral that can be performed analytically. For space dimensions 2 & d & 4, we obtain

—e/2

f 1 A,kdxx" 1 —x—
0 Ak l co

kk 1 N

2A,

n.(k, co) = 1 2A,

"I "I A,(k +k )Ii(co+co—l) (A,kl icol)(A—,kl+icol)
' —e/2

+d I (e/2)I'(2 —e/2) Ak i co, —
2A, 2 2A,

—e/2
~/2 F 1 —e/2, e/2, 2 e/2,——1 A,k

2A, sin m.e/2 Ak LQ7

(3.22)

Here Ed=2 +'Ir /I (dl2) and as usual a=4 —d.
F(a, b, c,z) is the hypergeometric function and I (z) is the
gamma function.

IV. SCALING LAWS FOR THE COEFFICIENT
OF SOUND ATTENUATION

AND ENERGY CORRELATION FUNCTION

It will be the purpose of this section to reveal the scal-
ing properties of the results obtained in the preceding
section. For systems with continuous symmetry, we have
to distinguish between two diferent situations. In the vi-
cinity of the phase-transition point ( T~T, ), the correla-

I

tion length g of the longitudinal modes diverges. Ail n

components of the order parameter are critical modes
and lead to the well-known critical point anomalies
characterized by critical exponents, amplitude ratios, and
universal scaling functions. '

A diferent type of critical behavior is realized in the
low-temperature phase of broken continuous symmetry
along the whole coexistence curve (T & T„co~0,k ~0).
In the absence of an external field conjugate to the order-
parameter fields, there are (n —1) transverse Goldstone
modes without energy gap. As a consequence of the pres-
ence of these massless modes, we expect to observe scal-

ing behavior along the ~hole coexistence line. Our spe-
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cial interest will be directed towards the anomalies in-
duced by the Goldstone modes, either through alteration
of asymptotic behavior or through the presence of singu-
larities within the scaling functions. In this section, we
demonstrate the capability of the 1/n expansion to pro-
duce results with scaling form and to reveal critical point
anomalies as well as coexistence anomalies. In leading
order, equivalent to the spherical model, no recourse to
the renormalization-group machinery is necessary. '

It is convenient to represent our results in terms of
auxiliary functions

the transverse order-parameter bubble m (k, co } (3.22) can
be written as

A,un
~(k, co)=aR(k, co/A, ) . (4.4)

First, we examine the critical behavior of the @-
correlation function at T=T„ i.e., r=o in Eq. (3.21).
The resulting expression is indeed a homogeneous func-
tion of frequency and wave number at small values of
these arguments. An expansion with respect to frequency
yields

' e/2
R (x,y )

—=R, (x,y)+iR2(x, y) 1
(4.5)

P(Ak /co)
II(k, co, o)= 1 ——3 1 co

un a
=(x iy—)

'~ F 1 e/2, e—/2, 2 e/2, —2 ~ —e/2 1 x
X lg

(4.1}

which obviously are homogeneous:

X
R (x,y)=(y) =(x )

' R . (4.2)
X

Together with the constant

&/2a= 2e/2
sin(n e/2) 6

(4.3)
in terms of the real denominator

After extraction of an overall power of the frequency, the
function only depends on the ratio (A,k /co). In the real
part a constant appears as leading term.

Next, we investigate the 4? -corre1ation function at an
arbitrary temperature below the transition point
( T(T, ). To this end, the complete expression (3.21) is

split into real and imaginary part. For the purpose of
offering explicit expressions, we present

(4.6)
un D(k, co, ~r~)

'

co k
D(k, co, ~r~)=1+2 aR2(k, co/A)+2 [1+aR&(k,co/A, )]

A, 27 2 27
'2 '

2
'2

co k
j [1+aR,(k, co/A, )] +a Rz(k, co/A, )], (4.7a)

and the numerator

k co
N(k, co, /r/)=D(k, co, fr/) —~, +i

2
k2

[1+aR '( k, co/A, ) ] . (4.7b)

To analyze the coexistence behavior of these expres-
sions, we have to investigate the limit of small frequency
and wave number. Thereby, the infrared divergent bub-
ble n(k, co} (3.22} is of central importance and three
difFerent realizations have to be considered. (i} At k—=0,
we have n(k=o, co) ~(ico) ' resulting in a power-law
divergence at small frequency. (ii) Analogously for co=—0,
we find m(k, co=0}cc(k )

' being again divergent at
low wave number. (iii) Finally, co and k are both nonzero.
If one of the variables is sent to zero at a finite value of
the other one, no divergence occurs at all. This is only
realized if both tend to zero simultaneously. If k and co

vanish at different rate, one of cases (i) or (ii) efFectively
holds. If both vanish at finite ratio ico/(A, k }=const, the
transverse bubble

~(k co)~(ico) ' ~(k )

is likewise divergent.
First, we recognize that in the strict coexistence limit

k =co=0 the right-hand side of Eq. (4.6) remains finite

11(0,0, /rf) == 3
un

(4.8}

This is remarkable because II(k, co, ~r~ ) contains multiple
contributions of the infrared divergent bubble m.(k, co).
Nontrivial cancellations, typical for 0 ( n )-symmetric
functions, are responsible for this observation.

We now turn to the limit of small k and co. In this lim-

it, the functions (4.7) are consistently expanded
with respect to these arguments, i.e., a factor
[1+aR&(k,co/A, )] gives aR&(k, co/A, ). This expansion,
appropriate for the coexistence limit, is valid at any tem-
perature in the low-temperature phase. We now ap-
proach the transition point ( T~T, ) in the vicinity of the
coexistence line. Therefore, we set v=0 after applying
the coexistence expansion to the 4 -correlation function.
In doing so, we observe that our expressions, derived for
a proper description of the coexistence region are still
capable to produce the correct critical point behavior
(4.5) at low wave number and frequency. Based on this
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observation, it is justified to utilize the correlation length
and the order-parameter rate co,h~ ~r~'" to

parametrize the temperature dependence of our results.
The critical exponents v=1/(2 —E) and z=2 acquire
their spherical model values and we set

With the help of the scaling variables x =k g and

y =co/co, h, the scaling law of the 4 -correlation function
can be written in a compact form

(4.9)
Il(k, co, ~r~ ) = 1+, , P(kg, co/co, „)

Qn a
(4.11)

and
ZV

(4.10)

The specific-heat exponent a= —e/(2 —e) and the scal-
ing function describing the crossover from the coex-
istence to the critical point limit, at small and large scal-
ing variables, respectively, is of the form

P(x,y)=
x+—iy —[x +y ]R'(x,y)

1+2x'R, (x,y )+2yR, (x,y)+ [x'+y'] IR (x,y ) I'
(4.12)

We now discuss applications of the results (4.11) and
(4.12). First, we investigate the static energy correlation
function. At zero frequency, the imaginary part of the
@ -correlation function vanishes, Rz(x, O)=0 and
R i(x, O) =(x )

' F,(1/2) with the abbreviation

F,(z)=F(1 e/2, e/2, 2 —e/2, z). Th—e scaling law for
the energy correlation function then reads

C(k )
12

1
12rl (k ), (kk)' '

u g ~~2 ~~ I+F (I/2)(kg)2

(4.13)

The striking feature of this expression is the crossover in
its (kg) dependence. The following power laws are found
in the critical and hydrodynamic regime:

Our primary goal is the coefficient of sound attenua-
tion given in Eq. (2.3). Its frequency and temperature
dependence is dominated by the factor

a(k, co, lrl )
—=co 1m[II(k, co, lrl)] . (4.16)

The denominator of Eq. (2.3), c 1+4n y II ~, depends on
the nonuniversal coupling constant y, and obeys a simple
scaling law only if 4ny IIO- ~r dominates, which is
asymptotically the case for a positive specific-heat ex-
ponent. Because a & 0 in the spherical model, this
denominator does not alter the asymptotic power laws as
given by (4.16), which is also obvious from Eqs. (4.5) and
(4.8). Therefore, we concentrate on (4.16).

From renormalization-group theory one finds near

T„the general scaling law

(kg)' for (kg) ))1,
[C(0, lrl) —C(k, lrl)] ~ 12rl

a(k, co, ~
r

~
) =const co ~2r

~ g ( kg, co/co, „), (4.17)

(4. 14)

with the critical exponent p=a+zv. To verify the scal-
ing form (4.17) and to evaluate g(kg, co/co, h), we insert
(4.11) into (4.16),

implying a k' dependence at the critical point and a k
law in the coexistence limit. These results have been ob-
tained under the assumption of small wave number. The
complete wave-number dependent energy correlation
function at the transition point is given by

, Im[P(kg, co/co, h)]
a(k, co, r )= co 2r

The exponent p acquires its spherical limit value

(4.18)

C(k, O) = 1+ k'
u aF,(1/2)

(4.15) p=a+zv=1, (4.19)

Equation (4.15) is in accord with the first line of (4.14)
and in the homogeneous case (k=0) leads to the finite
value C(0,0)=12/u, which is the well-known spherical
model limit of the specific heat. Our result for the energy
correlation function agrees with that of Nicoll in the
limit (n ~ ao ) who, however, did not determine the scal-
ing function explicitly, nor the limiting wave number
dependence. Another study, by Lawrie, is based on
renormalization-group methods at arbitrary component
number n Applying the s.pherical model limit (n ~ ~ )

to his final result (4.36), only the constant C„=12/u
is left.

and the scaling function g is given by

g(kg, co/co, „)= ImIP(kg, co/co, „)] . (4.20)

The scaling property of g is evident, and using for exam-
ple the homogeneity property Eq. (4.2), one easily con-
vinces oneself that g(0, 0) is finite. We arrive at the im-

portant conclusion that the hydrodynamic character of
sound attenuation [a(co~0) ~co ] is not altered by the
Goldstone modes. However, the scaling function g
displays singular behavior at small scaling arguments,
which will be proofed by the following analysis.
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In ultrasonic experiments, the wave length of the
sound wave is much larger than the correlation length,
which allows one to set kg=0. Although our result
(4.18} incorporates the (kg} dependence, we may drop it
in the fo11owing for the sake of transparency. At vanish-
ing wave number (4.1) reduces to

R (O,y) =y ' exp i
4

(4.21)

=1—sin (co/co, h)' ' for (co/co, h) 0 .

(4.23)

As shown in Fig. 5, this coexistence singularity is fairly
pronounced for d =3(@=1). This anomaly is the unique
signature of the Goldstone modes revealed by means of
the 1/n expansion for the first time. Instead of the hy-
drodynamic co-square law and the cusp singularity,
Zeyher' predicted a co power law. The error in
Zehyer's work can be traced back to a violation of causal-
ity requirements in dynamic perturbation theory.

We complete our discussion of sound attenuation with
a closer look at the critical regime ( T~ T, ). In this limit

1.0

and the scaling function reads

g(0»co/co, h)

1+sin(me/4)(co/co, h)'

1+2sin(me/4)(co/co, h)' ' +(co/co, h)

(4.22)

It is obvious that this function is finite at vanishing fre-
quency, however, it has a cusp singularity

g (0» H /&ch }

the scaling function behaves as

g(0, co/co, h) ~ sin (co/co, h)
OTAL'

according to (4.22), where the power is just the spherical
model value of —1 —cr/zv. Accordingly we introduce an
alternative scaling function,

G(kg, co/co, „)=(co/co, h)'+ '"'g(kg, co/co, h),

in terms of which the scaling law (4.17) reads

cz(kco»~r»~) ~co' ~'"'G(kg, co/co, „) .

(4.24)

(4.25)

The scaling function 6 is finite in the critical limit
( T~T, ), hence, the attenuation has a finite,
temperature-independent value on approaching the tran-
sition point. The frequency dependence is now described
by the universal law in (4.25). Critical sound attenuation
at the transition point is due to order-parameter fluctua-
tions. It is absent in the mean-field Landau-Khalatnikov
theory, where fluctuations are totally neglected.

The scaling function G(0,co/co, h) is shown in Fig. 6 for
space dimension d =3. For 2 & d & 3, this function is
monotonically increasing with the scaling argument. For
3 & d &4, G(0, co/co, „)has a rnaxirnum at a finite value of
the scaling variable. In real systems, with a finite number
of order-parameter components (n =2,3), there is a max-
imum of the attenuation for T (T, even for d =3. This
is also revealed in a general renormalization-group
theory. " Nevertheless, it is gratifying that within the
spherical model limit the asymptotics in the critical and
hydrodynamic limit are properly described by universal
critical exponents. Moreover, the scaling functions con-
necting both limits can be calculated even in the low-
temperature phase.

We close this section by mentioning that the same pro-
cedure can be applied to the transverse and longitudinal
response functions [Eqs. (3.18a) and (3.18b)]. The deriva-
tion and discussion of their scaling behavior are deferred
to Appendix A.
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FIG. 5. Scaling function g(o, co/co, h) in d =3 dimensions, ex-
hibiting the Goldstone mode cusp singularity at small frequen-
cy.

FIG. 6. The scaling function G(o, co/co, h) in d=3 dimen-

sions.
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V. DISCUSSION

In this work, we have derived the dynamic susceptibili-
ties, the energy correlation function, and the coefficient of
sound attenuation in the spherical model limit. Special
emphasis has been put on their scaling properties. There-
by, valuable insight into the peculiar nature of the mass-
less Goldstone modes could be obtained. Besides the
asymptotic behavior in the critical and hydrodynamic re-
gimes described by universal critical exponents, the scal-
ing functions connecting these limits have been obtained
and coexistence anomalies were found. In the case of
sound attenuation, our investigation revealed that the
coefficient of sound attenuation follows the hydrodynam-
ic co dependence but has a subtle cusplike coexistence
anomaly.

In experiments below incommensurate phase transi-
tions, one actually finds for longitudinal acoustic modes
at small frequency the hydrodynamic co law. In view of
the [co ~ =co (1/co'~ )] prediction by Zeyher, experimen-
tal investigators have been led to introduce a phason
mass in order to eliminate the 1/co' divergence of the
Onsager coefficient. While it is conceivable that pinning
effects lead to a phason mass, certainly acoustic attenua-
tion does not require the introduction of such a mass.
The complete theory based either on the proper 1/n ex-
pansion of this paper or a forthcoming renormalization-
group analysis" gives co with cusp corrections. The cou-
pling yp4 assumed in Eq. (2.1) is appropriate for in-
commensurate solids as K2Se04 and Rb2ZnC14 for longi-
tudinal acoustic phonons propagating along high-
symmetry directions perpendicular to the incommensu-
rate modulation axis. For other directions and for trans-
verse phonons there is also a coupling to the bilinear field

4&4z. However for incommensurate transitions the per-
tinent coupling coefficient g, 2 is proportional to the wave
number. This leads to an extra factor of co in the at-
tenuation, which compensates the Goldstone anomaly of
the 4&42-correlation function H' ' given in Appendix B
together with other correlation functions of bilinear
fields. We note that the extra wave number dependence
of g]z insures that elimination of the acoustic phonons
leads to a static free-energy functional, the relevant terms
of which remain rotationally invariant.
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APPENDIX A: SCALING FORM
OF ORDER-PARAMETER RESPONSE FUNCTIONS

The scaling law of the transverse and longitudinal
response function is commonly represented in the form

a

gj
i~i

k co ir i
)= Gi ii(kg' ct)/ct) h) (Al)

Here, g is the exponent describing the decay of the static
correlation function at T, . Exactly at the critical point
(~v~=0) both response functions [(3.18a) and (3.18b)]
coincide because the symmetry is not yet broken:

—1

1 — . (A2)
A,k

1
g (k, ,o)=g~~(k, ,o)=

This is a homogeneous function of wave number and fre-

quency implying the spherical model value of the ex-

ponent g=0.
In the coexistence limit, the longitudinal response

function (3.18b) yields at small wave number and frequen-

cy,

g~~(k O, co 0, ~~~ ) = Ak i co+—
un' k, co

(A3)

If we now apply the critical point limit ( ~r ~
~0) in the vi-

cinity of the coexistence line, we recover the previously
determined expression (A2). Based on this observation,
the scaling functions are derived from (3.18a) and (A3)

In systems with a finite number n of order-parameter
components, of course, critical exponents will change and
the shape of the scaling functions might differ quantita-
tively from their (n = oo )-limit. The qualitative behavior
of the transverse Goldstone modes, especially with

respect to the ensuing coexistence anomalies, is not ex-

pected to change.

Gi(kg, co/co, „)= 1—led/CO h

(kg)
(A4a)

1 CO /COch (kg) +'+"[1—(ice/cod, )/(kg') ]'~
G(((kg, co/co, „)= 1 — +

(kg) F(1 e/2, e/2, 2—e/2, ,' f (kg—) /[(k—g)2 iso/co, „]—] )
(A4b)

The transverse scaling function (A4a) of the Goldstone modes maintains its form for all values of the scaling variables

and has a pole at

(kg) =iso/co, h . (A5)

(A6)

The longitudinal function (A4b) displays a crossover behavior from the critical regime to the hydrodynamic regime

[kg] for k »g
G(( fkg, ar/co, „~(kg) ] ~
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TABLE I. Elements of the scaling laws for II".

a; P(')(x,y) lim ImP "(O,y)/y ~
y~P

—2/(2 —e)a
un

un

2/(2 —e)a
un

a+a
2

a

—(x —iy )

1+(x —iy )R(x,y )

1

1+(x —iy )R(x,y )

R(x,y)
1+(x —iy )R(x,y)

y

—e/2

—1 —e/2

2/(2 —e)a
un

2/(2 —e)3

u

R(x,y)

1

x ly

—1 —e/2

y

Combining (Al) and (A6), we retrieve the well-known coexistence singularity of the longitudinal response function

g~~
~ k '. The absence of such a divergence in case of the 4 -correlation function again illustrates the special coex-

istence behavior of O(n )-symmetric functions.

APPENDIX B: ANISOTROPIC CONTRIBUTIONS TO SOUND ATTENUATION

For a multicomponent order parameter, besides the 4 -correlation function, also correlation functions of anisotropic
bilinear operators exist. These can be classified by group theory leading to irreducible functions of well defined scaling
behavior. There are response functions built from the O(n —I) scalar 4 —(n/n —1)vr and from composite operators
of two transverse fields m, n.

z or the longitudinal field times a transverse field 4„n, namely

11"'(k,~, lrl)=— e'(k, ~) e4-
2n

n
~Dr (

—k, —ru)),
n —1

(Bla}

()"'(k, ru, (rl)= 4' — " w' (k, ro) 44 — "
wF ( —k, —ru)),

2n n —1 n —1

II' '(k, co, lrl)=A, ((,n' )(k, co)(n, n )( —k, —co)),

(Blb)

(Blc)

II (k, co, lrl)= —([(& 3/ um +cT)n'](k, co)[n' cr+(+3/ um+cr W']( —k, —co)) .
n

(Bld)

In the spherical model, the scaling laws for these func-
tions read

II"(k,~, l~l)= fi;, , +A;12rl 'I'"'(kg, ~/~.h), (B2)
un "

with amplitudes A;, temperature exponents a;, and scal-
ing functions P"(x,y ) for i =1, . . . , 5 given in Table I.
We include the 4 -correlation function, denoted as

II'"(k, co, l~l }. Hereby, a=a+2((t) —1)=e/(2 —e) is re-
lated to the crossover exponent P. The last column of
Table I displays more pronounced coexistence singulari-
ties for i =2, . . . , 5 than the cusp singularity of the 4-
correlation function. For incommensurate transitions,
the elastic deformations can couple to 4&42, however,
the coupling coefficient is proportional to the wave num-
ber, which gives an additional factor of co in the attenua-
tion, which compensates the Goldstone anomaly of II' '.
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