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Heavy fermions have a large number of low-lying excitations. Antiferromagnetic superexchange typi-
cally favors low-spin arrangements for the ground state. A magnetic field favors high-spin arrangements
over low-spin arrangements. The transition from a low-spin ground state to a high-spin ground state, as
a function of magnetic field, passes through a range where there is a peak in the many-body density of
states. This range qualitatively describes the metamagnetic transition.

I. INTRODUCTION

Heavy-fermion systems have been an active area of
research for both experimentalists' and theorists®* since
their discovery in the mid 1970s. Heavy-fermion systems
are characterized by huge coefficients (y) to the term
linear in T in the specific-heat, quasielastic spin excita-
tions (large magnetic susceptibility), and poor metallic
conductivity. These features may be qualitatively de-
scribed by a Fermi liquid with a very large density of
states at the Fermi level.2”* Heavy-fermion systems may
become superconductors (UPt;, UBe;; CeCu,Si,,
URu,Si,, etc.), possess long-range magnetic order (UPt;,
URu,Si,, NpBe;3, U,Zn,;, etc.), or remain paramagnetic
metals (CeRu,Si,, CeAl;, CeCug, etc.) at low tempera-
tures.

Recent experimental work has concentrated on the
properties of heavy-fermion systems in high magnetic
fields.>”® A “transition” is observed (the so-called
metamagnetic transition) at a characteristic magnetic
field B, in CeRu,Si, (B,=7.8 T), UPt; (B,=21T), and
URu,Si, (B, =36 T). The transition is characterized by a
magnetic-field dependence of the coefficient y, the elastic
coefficients, and the magnetic properties. At the critical
field B,, the coefficient ¥ has a single peak, the elastic
coefficients are softened, and the magnetic fluctuations
change character. The magnetization shows a steplike
structure as a function of magnetic-field strength. This
contribution presents a many-body theory (without the
assumptions of Fermi-liquid theory) that describes all of
the above electronic properties of heavy-fermion systems
(except superconductivity) and their field dependence.

Every heavy-fermion system is composed of ions with
localized f orbitals (lanthanides and actinides) that do
not overlap with the corresponding f orbitals on neigh-
boring ions, but do hybridize with the extended states of
the conduction-band electrons. The f electrons interact
very strongly with each other via a screened (on-site)
Coulomb interaction U that acts only between two f elec-
trons that are localized about the same lattice site.
Double-occupied f orbitals are effectively forbidden,
since the Coulomb energy is larger than any other energy
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in the problem (U > 10 eV). The physics of such an elec-
tronic system is described by the lattice (or periodic) An-
derson impurity model’

H,=3 eial,aro+eS flfio T US fifif i fis
k,o io i

+3 Vafbaroe+Viai.fio) (1)

Lk,o

in the large-U (U— o) limit.'° The parameters and
operators in Eq. (1) include the conduction-band creation
(annihilation) operators a;, (a,) for a conduction elec-
tron in an extended state with wave vector k, spin o, and
energy ¢, ; the localized electron'' creation (annihilation)
operators f ,»J:, (f;,) for localized electrons in an atomic
orbital centered at lattice site i with energy €; the on-site
Coulomb interaction U; and the hybridization integral
V.. that mixes together the localized and extended states.
The hybridization matrix elements are assumed to be of
the form

Vi =expl(iR;-k)Vg(k)/VN , 2)

with g(k), the form factor, a dimensionless function of
order 1 and N the number of lattice sites. The Fermi lev-
el Ep is defined to be the maximum energy of the filled
conduction-band states, in the limit ¥ —0, and the origin
of the energy scale is chosen at the Fermi level, Ex=0.
The conduction-band density of states per site at the Fer-
mi level is defined to be p.

Heavy-fermionic behavior may occur in the restricted
region'> of parameter space where —Vp<<ep
<< —V??<0. The localized orbitals are almost singly
occupied ((ffi1+f1fi,)=1—v; v<<1) and the con-
duction electron density of states at the Fermi level is
small. In this case, the kinetic energy of the holes that
hop within a narrow “effective” band dominates over the
magnetic spin-spin interactions and the spin-flipping
terms of the Kondo effect. The Anderson Hamiltonian
(1) may be mapped onto the large-U limit of the Hub-
bard!? Hamiltonian which, in turn, may be mapped onto
a t-J model'*

874 ©1992 The American Physical Society



46 HEAVY-FERMION SYSTEMS IN MAGNETIC FIELDS: THE... 875

Ht-J:_ z tij(l_fiT—afi—a)f;o ja'(l——ij—afj—a)
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+2J,-jS,--Sj . (3)
L]
The unrenormalized (bare) hopping matrix ¢; satisfies
Vi Vi 2 —ik-(R.—
- i — g(k) (k) ik(R,—R)
;=3 —=—= i, 4

and the antiferromagnetic superexchange is defined to be

Jj=4|t;|*/U. Tt should be noted that the canonical
transformatlon that maps the Anderson model onto the
t-J model is valid only within a narrow region of parame-
ter space (for details see Sec. II).

In Sec. II the Schrieffer-Wolff transformation!? is em-
ployed to establish the mapping of the Anderson model
onto the #-J model. In Sec. III the exact solution of the
t-J model on a finite cluster is analyzed in a magnetic field
illustrating both heavy-fermionic and metamagnetic be-

havior. A brief discussion of these results follows in Sec.
1v.

II. SCHRIEFFER-WOLFF TRANSFORMATION
AND THE ¢-J MODEL

The relationship between the lattice Anderson impuri-
ty model (1) and the ¢t-J model (3) is not widely known,
and frequently misunderstood. The equivalence may be
established by employing a Schrieffer-Wolff'? canonical
transformation to the lattice Anderson impurity model.
Since the details of this transformation are well known,?
only an outline is given here.

The Anderson Hamiltonian H , is divided into two
terms H , =H,+ Hy,, where Hy, is the last term in Eq.
(1). A canonical transformation H' =exp(S)H 4exp(—
is performed with S chosen to satisfy [H,S]=Hjy,.
One finds (to lowest order in V) that H'=H,+3[S, Hyy, ]
or

|
H'— 2 iikk’ '/ff;‘"/’f. Yrove (5a)
Ek Wik + i Fleofi o H £ —of v )V o f i (5b)
kE Wik + 5 iikk: ¢f: Vi ]'/’k'/’k (5¢)
% 2 [Kiigse [ - 0o@r— gt H.C.T (5d)
Kk,

where the spinors are defined to be
A
A

o denotes the Pauli spin matrices, and the coefficients are

akT

Y = (6)

akl

_ 1 1
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S — ] , (7a)
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The last term (5d) can always be neglected (in the large-U
limit) because it only connects configurations that have
zero electrons at site i to configurations with two elec-
trons at site 7, which are explicitly forbidden.

The canonical transformation of the lattice Anderson

impurity model is approximated well by the lowest-order
term in ¥, Eq. (5), when |V?p/e| <<1. (Higher-order
terms both renormalize the parameters J, K, and W and
introduce new interactions.) In this region of parameter
space the localized orbitals have an occupancy per site (a)
close to one (£ <0) or (b) close to zero (£>0).

(a) When the occupancy is close to one, the operator
¢ ¥y may be replaced by unity and both the term (5c)
and the diagonal (i =i’) terms in (5b) may be absorbed
into a renormalized H,. The remaining terms in Eq. (5)
describe spin scattering of the conduction electrons at the
Fermi level by the localized moments (5a), and direct
hopping terms within the (narrow) f band (5b).

(b) When the occupancy is close to zero, the operators
1/1f, Vs, 1/;f,a¢f,, and f; f may be all replaced by zero.
The only important terms remaining in Eq. (5) are the
changes in the one-particle band structure arising from
(5¢).

Only regime (a) is of interest for the current purposes.

The magnitude of each of the interaction terms in Eq.
(5) may be estimated by using the bare values of the in-
teraction parameters in (7). The magnetic interactions
(mediated through the conduction-band electrons) fall
into two categories,15 a superexchange interaction of or-
der V%/¢3 and a Ruderman- Klttel Kasuya-Yosida
(RKKY) interaction'® of order ¥*p/e?. The magnitude
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of the kinetic energy may be estimated to be also of order
V*p/e* determined by multiplying the effective hopping
integral (4) by the hole concentration (v=V?p/e).
Therefore, in the bare theory (truncating the Schrieffer-
Wolff transformation to lowest order) the magnetic in-
teractions and the hole kinetic energy are the same order
of magnitude.

The Kondo effect!” arises from a resonance of the lo-
calized electrons with the conduction electrons that
quenches the localized magnetic moments. It is a non-
perturbative effect which is small in magnitude and is not
directly present in any model (such as the ¢-J model) that
projects out the conduction-electron degrees of freedom.
The physics of the Kondo effect in the presence of a sin-
gle impurity is well known.!” The case of a lattice of im-
purities is still controversial.>~* Large-N expansions
show a quenching of magnetic moments everywhere'® but
are always in the atomic limit? and do not illustrate what
happens in the dense “impurity” limit. The Kondo effect
can be treated (in a mean-field sense) directly in the ¢-J
model by renormalizing the magnetic interactions J, en-
ergetically taking into account a partial quenching of the
local moments.

The renormalized Schrieffer-Wolff transformation of
the lattice Anderson model is then well described by a -J
model in the limit |V?p/e| <<1. When pe << —Vp <0,
the renormalized magnetic interactions J between the lo-
cal moments of the f electrons dominate. The local mo-
ments interact with each other via all forms of exchange
interactions, which determine, at low enough tempera-
tures, the long-range magnetic order. As pe increases,
two effects occur: (i) the kinetic energy of the holes in the
narrow f band become important; and (ii) a residual
Kondo effect begins to quench the local magnetic mo-
ments. In this regime,

—Vp<<egp<<—Vp?, (8)

the Anderson model is approximated well by the full #-J
model. The conduction electrons are decoupled from the
f band and act only as a buffer that determines the filling
of the f band. This picture is supported by numerical
evidence found in exact solutions'® 2! of the lattice An-
derson model on four-site clusters (see the next section).

III. HEAVY-FERMIONIC BEHAVIOR IN THE ¢-J
MODEL

A heavy-fermion system is characterized by a many-
body ground state with a very large number of low-lying
excited states that have many different spin
configurations (a partial decoupling of spatial and spin
degrees of freedom). The localized states broaden into a
strongly correlated narrow band in which all electronic
transport takes place; the conduction band is (effectively)
decoupled and acts only as a buffer that determines the
concentration of electrons in the narrow band. The for-
mation of a heavy-fermion ground state (and its low-lying
excitations) requires a fine tuning of the parameters in the
(effective) t-J model and depends strongly upon the
geometry and connectivity of the lattice.

One way to study the formation of a many-body

ground state that possesses the properties of a heavy-
fermion system (without any a priori assumptions of
Fermi-liquid behavior) is to diagonalize exactly the
many-body problem for small systems—the so-called
small-cluster approach.??> This approach to the many-
body problem begins with the periodic crystal approxi-
mation (replacing an infinite lattice by a lattice with ¥
sites and periodic boundary conditions) with a small
number of inequivalent sites. The cluster is chosen to be
small enough that the many-body Hamiltonian may be
exactly diagonalized but (hopefully) large enough that the
physics of the infinite lattice is captured. The mapping of
the Anderson model (1) onto the #-J model (3) reduces the
size of the Hilbert space by a factor of (3/ 16)", which al-
lows larger clusters to be studied. An understanding of
exactly how to extrapolate the results for a small-cluster
calculation to the thermodynamic limit (N — o0 ) has not
yet been found.

A. Mapping of the lattice Anderson model to the ¢-J model

The lattice Anderson impurity model [Eq. (1)] has been
studied'® 2! for various small clusters with at most four
sites (for a review see Ref. 23). The results for the
tetrahedral cluster®®?! (with one electron per site) illus-
trate the formation of the heavy-fermionic state and how
sensitive it is to variations in the parameters. When the
band structure g, is such that the bottom of the band is
at the T point of the face-centered-cubic Brillouin zone, a
small range of values for € is found where the ground
state is a spin singlet with (nearly degenerate) triplet and
quintet excitations. The specific heat has a huge low-
temperature peak and the magnetic susceptibility is large.
When T is the top of the conduction band, a magnetically
ordered heavy-fermionic state is sometimes observed.

B. A heavy-fermion case in a small-cluster 7-J model

The small-cluster approach has also been applied to the
t-J model.?* A very good example of a heavy-fermion
system lies in an eight-site face-centered cubic-lattice
cluster with seven electrons.?* When the hopping param-
eters and antiferromagnetic superexchange parameters
are chosen to be

t >0, i,j=first-nearest neighbors

t.;= 1t'=0.1t, i,j =second-nearest neighbors

ij
0 otherwise,

J, i,j =first-nearest neighbors
Ji= 0 otherwise,

then the many-body eigenstates possess a low-energy
manifold of 96 states (out of a total of 1024 states) that is
split off from the higher-energy excitations and which in-
cludes many different spin configurations (see Table I).
These many-body states are degenerate at J =0 but the
degeneracy is partially lifted for finite J, with low-spin
configurations favored (energetically) over high-spin
configurations.

A magnetic field (in the z direction) partially lifts the



46 HEAVY-FERMION SYSTEMS IN MAGNETIC FIELDS: THE... 877

TABLE I. Low-energy manifold of many-body eigenstates, at zero magnetic field, for the model
heavy-fermion system discussed in the text. The notation is that of Ref. 24.

Energy Total spin Degeneracy Spatial symmetry label
—6t+6t'—3J 1 14 reXx eXx,
—6t+6t'—2J 1 16 L,
—6t+6t'—3J 3 32 IrpeX,eX,
—6t+6:'—1J 3 16 L,
—6t+6t'+J 3 18 X,

degeneracy even more, since the many-body eigenstates
with z component of spin m, have an energy

E(B)=E(0)—m,guzB =E (0)—m,bJ (10)

in a magnetic field B. The symbols g, up, and b denote
the Landé g factor, Bohr magneton, and dimensionless
magnetic field, respectively. The high-spin eigenstates
are energetically favored in a strong magnetic field and
level crossings occur as a function of b.

C. The metamagnetic transition

The phenomena described above are all the necessary
ingredients for a metamagnetic transition. The heavy-
fermion system is described by a ground state with nearly
degenerate low-lying excitations of many different spin
configurations. The antiferromagnetic superexchange
pushes high-spin states up in energy with splittings on the
order of J. The magnetic field pulls down these high-spin
states (with maximal m,) and generates level crossings in
the ground state. In the region near the level crossings,
there is an increase in the density of low-lying excitations

2 —

Cv/ kg
n

FIG. 1. Calculated specific heat as a function of magnetic
field for the heavy-fermion model discussed in the text. The
temperature is fixed at T=J/kg. The horizontal axis contains
the dimensionless magnetic field and the vertical axis contains
the dimensionless specific heat C /kpz. Note the single peak in
the specific heat, characteristic of the high-temperature regime
(temperature larger than the energy-level spacings).

that produces a peak in the specific heat as a function of
b. The magnetization and spin-spin correlation func-
tions both change abruptly at the level crossings.

To illustrate the metamagnetic transition for the sim-
ple model above, the specific heat and magnetization are
calculated as a function of the magnetic field (at a fixed
low temperature). The specific heat satisfies

2
—BE
b EnE,,exp( BE,)

kg Sexp(—BE,)

> E,exp(—BE,)

| Sexp(—BE,) ’ 4y

where kg is Boltzmann’s constant, 5 is the inverse tem-
perature (B=1/kgT), and E, is the energy of the nth
many-body eigenstate in a magnetic field b (the summa-
tions are restricted to the 96 eigenstates in Table I). Simi-
larly the magnetization is expressed by

OT—T——T—T1T—T 1
o 1 2 3 4 5 6 7

b

@

FIG. 2. Calculated magnetization as a function of magnetic
field at a temperature T =J /kp. Note the smooth transition in
the magnetization, characteristic of the high-temperature re-
gime.
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FIG. 3. Calculated specific heat as a function of magnetic
field at a temperature T'=J /5ky. Note the multipeak structure
in the specific heat, characteristic of the low-temperature re-
gime (temperature smaller than the energy-level spacings).

> m,exp(—BE,)

M(b)= , 12
® >exp(—pE,) (12

where m, is the z component of spin for the nth many-
body eigenstate. The results for the specific heat and
magnetization are given in Figs. 1 and 2, respectively, at
the temperature where 8J =1 and in Figs. 3 and 4, re-
spectively, at the temperature where 5J =5.

The results for BJ =1 are representative of the high-
temperature regime [3J <2 where the temperature is
larger than the energy-level spacing. The specific heat
has a single broad peak as a function of magnetic field
with the center of the peak moving to larger values of b
and the zero-field intercept becoming smaller as the tem-
perature increases. The magnetization smoothly changes
form a value of zero to a value of $ as a function of mag-
netic field, showing little structure.

The results for BJ =35 are representative of the low-
temperature regime [3J>2 where the temperature is
smaller than the energy-level spacing. The specific heat
has a multiple-peak structure arising from each level
crossing in the ground state and the magnetization shows
steps at the various level crossings.

The results fit the experimental data®~® extremely well.
The specific-heat measurements resemble the ‘“high-
temperature” result (Fig. 1) with a single-peak structure
and the magnetization measurements resemble the “low-
temperature” result (Fig. 4) with noticeable steps. This is
to be expected since magnetization measurements take
place at a constant low temperature while specific-heat
measurements require measurements over a temperature
range. Figure 3 suggests that specific-heat measurements

34

0 T T T T
4
b

FIG. 4. Calculated magnetization as a function of magnetic
field at a temperature 7' =J /5kz. Note the steplike transitions
in the magnetization at each level crossing, characteristic of the
low-temperature regime.

may show additional structure if they can be made at
temperatures low enough to probe any features in the
many-body density of states. Note that the low-field re-
gion (b <1) is not faithfully represented by a small-
cluster calculation, since the discreteness of the energy
levels will always produce a linear magnetization.

IV. DISCUSSION

In summary, the physics of the metamagnetic transi-
tion can be described as follows: a heavy-fermion system
is composed of a ground state with nearly degenerate
low-lying  excitations of nmany different spin
configurations; the weak antiferromagnetic superex-
change interaction slightly favors low-spin arrangements
over high spins (at zero magnetic field); a magnetic field
pulls down the high-spin configurations causing (multi-
ple) level crossing(s) in the ground state and producing a
peak in the many-body density of states. The result is a
peak in the specific heat (and possibly a richer structure
at lower temperatures), steplike transitions in the magne-
tization, and abrupt changes in ground-state correlation
functions.
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