VOLUME 46, NUMBER 13

Raman study of R_{2-x} Ce_x CuO₄ (R = Pr, Nd, Sm): Resonance effects

M. L. Sanjuán and M. A. Laguna

ICMA, Universidad de Zaragoza–Consejo Superior de Investigaciones Científicas, Facultad de Ciencias, 50009 Zaragoza, Spain

S. Piñol

ICMB (Consejo Superior de Investigaciones Científicas), Campus Universidad Autónoma de Barcelona,

08193 Bellaterra, Barcelona, Spain

P. Canfield and Z. Fisk

Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (Received 31 January 1992; revised manuscript received 5 June 1992)

We present resonant Raman scattering results of T'-phase cuprates R_{2-x} Ce_xCuO₄ with $R = \Pr$,Nd,Sm and x from 0 to 0.175. The two modes appearing in zz polarization show a different resonant behavior: whereas the allowed A_{1g} is nonresonant in pure compounds and decreases towards the uv in doped ones, the forbidden mode A^* resonates towards uv in Nd and Sm samples with $x \neq 0$, while for Pr compounds its evolution is similar to that of the A_{1g} . We assign the A^* mode to a locally modified A_{2u} mode, due to oxygen relaxation around Ce⁴⁺. The resonance of this mode is interpreted in terms of electronic-band-structure calculations as involving transitions from $O(1)p_z + O(2)p_z$ to empty cerium states, while the A_{1g} decrease in the blue is attributed to light absorption due to the metallic character of doped samples.

The family of $R_{2-x}Ce_xCuO_4$ compounds (R = Pr, Nd, Sm, Eu) has attracted the interest of condensed matter physicists since the discovery that, for cerium doping around x = 0.15, and after a thermal treatment in a reducing atmosphere, they show *n*-type super-conductivity.¹ All members of this family crystallize in the tetragonal structure T', which differs from the T structure of the $La_{2-x}M_xCuO_4$ family only in the position of the "out-of-plane" oxygens, O(2).¹ [We shall denote by "in-plane" oxygens or O(1) those in the CuO₂ layer.]

Four Raman-active modes are expected in the pure compounds: $A_{1g}, 2E_g, B_{1g}.^{2-4}$ Since the doping does not change the global symmetry, it is expected that the same analysis holds for the doped compounds. The A_{1g} mode arises from the z vibration of R and has a frequency of 220-230 cm⁻¹; the B_{1g} and one of the E_g modes are mainly due to O(2) and have frequencies of 300-340 and 460–500 cm⁻¹, respectively.⁵ The rare-earth E_g mode has been identified in Pr_2CuO_4 at 165 cm⁻¹ (Ref. 6) and in Nd_{1.85}Ce_{0.15}CuO₄ at 122 cm⁻¹ (Ref. 7). Our *xz* spectrum in $Nd_{1.85}Ce_{0.15}CuO_4$ shows, besides a feature at 120 cm^{-1} , another one at 172 cm^{-1} . Neither of these peaks can be unambiguously attributed to the Nd E_g mode, since recent inelastic neutron data⁸ show the presence of Nd crystal-field excitations at 123 and 167 cm^{-1} , together with modes of phononic origin between 125 and 130 cm⁻¹. Only the A_{1g} mode should be observed in zz polarization. However, a strong feature, A^* , appears in the zz spectrum of all cerium doped samples around 585 cm^{-1} , with nearly perfect A_{1g} symmetry. The appearance of the A^* mode in the zz spectrum of Pr_2CuO_4 (Ref. 6) excludes the presence of cerium as the unique explanation for the activation of the mode. A broad band composed of several peaks is also detected in that region in the spectrum of Nd₂CuO₄ for in-plane polarization and attributed to the O(1) breathing mode against Cu,⁹ which

might be activated by the presence of oxygen vacancies or due to strong electron-phonon interaction with charge-transfer excitations, as in other cuprates.¹⁰ Both A_{1g} and A^* modes show some intensity dependence on the exciting energy in all compounds.

With the aim of clarifying the origin of the A^* mode and its resonant behavior, as well as the differences in the spectra of Nd, Sm, and Pr compounds, we have studied the resonance effects on the zz spectrum as a function of cerium doping and R substitution. Previous resonance experiments in Nd_{1.85}Ce_{0.15}CuO₄ can be found in Refs. 3 and 11. References 12 and 13 of the Y-Ba-Cu-O family contain, together with experimental data, an interpretation in the frame of electronic-band-structure calculations and/or optical data, as well as a discussion in terms of electron-phonon coupling contribution to the resonant behavior. For some results in other hT_c superconductors see for instance Ref. 14.

We have measured single crystals of $R_{2-x} \operatorname{Ce}_x \operatorname{CuO}_4$ ($R = \operatorname{Pr}$, Nd, Sm; x = 0, 0.15) and ceramic samples of Nd_{2-x} Ce_x CuO₄ with x = 0.125, 0.135, and 0.175. Sample preparation techniques are given elsewhere.¹⁵ We used a Dilor XY spectrometer with intensified diode array detector. A Coherent argon laser was used for the region 2.35–2.7 eV and the R6G in a dye laser for lower energies. The laser beam is focused onto the sample through a 50X objective. The laser power was always kept at low values (a few mW on the sample) to avoid sample damage. We used CaF₂ or BaFCl as intensity standards in order to correct for instrumental efficiency and slight laser misalignments. No significant differences were found between measurements performed in reduced or unreduced samples.

In Fig. 1 we present room-temperature (RT) spectra of Nd, Sm, and Pr (x=0.15) single crystals for $\lambda=514.5$ and 488 nm, and in Fig. 2 those of Nd compounds (x=0,0.125,0.135,0.175) for $\lambda=514.5$ nm. The results

<u>46</u> 8683

FIG. 1. zz Raman spectra of $R_{1.85}$ Ce_{0.15}CuO₄ for R = Pr, (top), Nd (middle), and Sm (bottom), taken at RT with the 514.5-nm (left) and the 488-nm (right) Ar⁺-laser lines. The spectra are normalized to that of BaFCl.

are collected in Figs. 3 and 4, where we show the A_{1g} and A^* intensity dependence on exciting energy, as a function of the constituent R for x = 0 and 0.15 (Fig. 3) and as a function of cerium doping for R = Nd (Fig. 4). The frequencies obtained for x=0 and 0.15 single crystals are given in Table I. Some considerations concerning experimental measurements and data presentation must be made: (i) We plot peak height intensities, since the values obtained by peak integration gave the same curves, except for a numerical factor that might depend on the compound. As concerns cerium doping dependence in Figs. 2 and 4, the use of integrated areas would enhance the A^* increase and partially reduce (but not suppress) the apparent decrease of A_{1g} upon doping. The qualitative trends are not modified. (ii) We assumed that the refraction index, reflection coefficient, and Raman activity of the standards used is dispersionless in the energy range studied.¹⁶ We neither corrected for reflectivity nor for absorption dispersion of the sample, since the available experimental data with $\mathbf{E} \| c$ point towards fairly constant values in the 2-3 eV region.¹⁷ (iii) In ceramic samples the spectra were taken by focusing the laser through a micro-

FIG. 2. Cerium doping dependence of the $Nd_{2-x}Ce_xCuO_4$ spectrum for $\lambda = 514.5$ nm taken with incident and scattered electric field parallel to a direction close to c axis. The x=0sample is a single crystal and zz polarization is exact; all the other are ceramics. The spectra are normalized to that of CaF₂. See the text for a discussion on measurements on ceramic samples.

FIG. 3. Excitation energy dependence of the A_{1g} (top) and A^* (bottom) peak intensities of $R_{2-x}\operatorname{Ce}_x\operatorname{CuO}_4$ single crystals for $R = \Pr(\triangle)$, Nd (\bigcirc), and Sm (\square). Filled symbols are for x = 0, and hollow symbols are for x = 0.15. The Pr data in the A^* figure refer to the right vertical scale; all the others refer to the left scale.

scope onto a single crystalline grain, with $\mathbf{E}_{i} \| \mathbf{E}_{s}$. Different grains were tested until a spectrum characteristic of zz polarization was obtained. Of course, some degree of misorientation is usually present, as proved by the presence of the E_g mode in Fig. 2. In an approximative way, the degree of misorientation is estimated by comparing the relative intensities of the x = 0.175 spectrum (showing the highest misalignment) to those of an x = 0.15 single crystal. Then we find that the x = 0.175spectrum corresponds to a direction $20^{\circ}-25^{\circ}$ out of the z axis, which means that A_{1g} and A^* intensities are underestimated by 20%. Similar or smaller misorientations are present for the other ceramics. Even taking into account this correction, the integrated intensity of the A_{1g} mode decreases by $\approx 50\%$ from x = 0 to 0.175 samples. The important point is that, since A_{1g} and A^* have the

FIG. 4. Excitation energy dependence of the A_{1g} (top) and A^* (bottom) intensities of $Nd_{2-x}Ce_xCuO_4$ as a function of $x: \oplus, x=0; \Diamond, x=0.125; \triangle, x=0.135; \Box, x=0.15;$ and $\circ, x=0.175$.

TABLE I. RT frequencies (in cm⁻¹) of the A_{1g} and A^* modes of R_{2-x} Ce_xCuO₄ single crystals (R = Pr, Nd, Sm; x = 0, 0.15).

R	x	A_{1g}	B_{1g}	Eg	A*
Pr	0	228.5	303	459.5	576
Nd	0	227	329	483	
Sm	0	221.5	334.5	496.5	
Pr	0.15	228	303	460	583
Nd	0.15	229	333	475	585
Sm	0.15	225	340	485	594

same symmetry and for both modes zz activity is strongest, we can measure their resonance by selecting them from the spectra taken "in parallel."

We now comment on the results in more detail: The A^* mode presents a clear resonance towards the uv in Nd and Sm compounds, while it is enhanced towards the red in the Pr, x = 0.15 compound. Within experimental error, no resonance is observed in the A^* mode in Pr_2CuO_4 . From Fig. 4 we conclude that the energy of resonance does not depend on x, at least in the range studied. On the other hand, the A_{lg} mode shows similar dependence on exciting light for all three Nd, Sm, and Pr compounds with the same cerium content (Fig. 3). However, this evolution depends on x, as shown in Fig. 4: While its intensity is nearly constant in the pure compounds (with a smooth decrease towards the blue), it decreases and even vanishes at high energies as cerium is introduced, this trend being more pronounced for increasing values of x.

We shall first discuss which is the origin of the A^* mode, among the several plausible models. There is a common agreement about several facts: The high energy of the mode and its polarization point towards a mode involving oxygen displacement along the c axis. Thus, this mode cannot, in spite of the frequency coincidence, be explained by the breathing of O(1) in the CuO₂ plane, for the latter involves oxygen displacement in x and y directions. The LO A_{2u} phonon, though Raman forbidden, was a good candidate for the A^* mode. It could have been activated by the disorder introduced by cerium doping. However, its frequency is too low,^{18,19} and, also, it is difficult to justify the activation in the cerium-free sample Pr₂CuO₄. Finally, it has been proposed that some of the O(2) could move to a position such as the apical site in the T structure¹¹ and that this displacement would occur preferably near a Ce^{4+} , due to its smaller ionic radius (0.92 Å) compared, for instance, to that of Nd³⁺ (0.995 Å). The A^* mode would be the stretching of this apical oxygen against Cu and Ce and would have the correct polarization. The difference between the A^* frequency and that of the apical oxygen stretching in T-phase cuprates [about 400 cm^{-1} (Ref. 20)] could be due to a shorter Cu-O distance in the T' compound. However, the transition from T' to T is favored by the presence of larger ions, such as Sr^{2+} , and not of smaller ones, as Ce^{4+} . This has been convincingly established by x-ray-absorption near-edge structure (XANES) experiments in T, T', and T^* compounds,²¹ which show that small tetravalent ions,

such as Ce^{4+} , prefer the eightfold coordination typical of T' structure. We note that in T^* -NdCeSrCuO the stretching of the apical oxygen is observed at 450 cm⁻¹, with the simultaneous presence of the forbidden A^* mode.²²

We propose a model that is consistent with all present observations and may explain the resonance effects. First, we note that the similarity in the frequency of the mode in Nd, Sm, or Pr compounds implies that its configuration is the same in all three cases, in spite of the differences in resonance behavior. From Fig. 2, it is also clear that its intensity is enhanced by cerium doping.

The most important structural effect of cerium doping is associated to its charge. The presence of an extra positive charge, together with the smaller radius of Ce^{4+} , can produce an inward relaxation of the oxygens surrounding cerium, giving rise to a local distortion of the T' structure. We think that the A^* mode is the local mode that involves the z displacement of these oxygens, in a manner very similar to the A_{2u} mode that consists mainly of the antiphase vibration of O(2) and O(1). The smaller cerium-oxygen distances can explain the higher frequency of the A^* mode, compared with that of the $A_{2\mu}$ mode.¹⁹ This model explains the frequency, polarization, and cerium dependence of the mode. The problem of its appearance in Pr₂CuO₄ still remains. Here, we would like to relate this question with the absence of superconductivity in $PrBa_2Cu_3O_{6+x}$. Two possible explanations have been given (see Ref. 23 for a discussion). The first one claims a mixed-valence state (between 3 and 4) for Pr. The second one suggests that the nonsuperconductivity is due to strong hybridization of Pr 4f states, either with O 2p states or with conduction states close to E_f . Probably, the same reason that prevents superconductivity in this hole-doped material is helping it in electron-doped Pr₂CuO₄. We cannot decide from our Raman experiments which is the Pr valence. However, the presence in Pr_2CuO_4 of a small proportion of *localized* Pr^{4+} , whose charge and ionic radius are similar to that of Ce⁴⁺, might induce almost identical local distortion and mode activation as a light cerium doping does. From the relative intensities of the A^* and A_{1g} modes in Pr_2CuO_4 and $Nd_{2-x}Ce_{x}CuO_{4}$ we estimate the hypothetic Pr^{4+} concentration to be about 5%. We note that such a small concentration might be difficult to detect by other techniques but enough to activate local modes. Part of the XANES experiments of Ref. 21 were interpreted as due to the presence of localized Pr^{4+} or Tb^{4+} in T^* compounds, in concentrations of up to 20%. The presence of some Pr^{4+} ions may be related to the fact that slightly smaller x is needed to maximize T_c in $Pr_{2-x}Ce_xCuO_4$ than in Nd Ce_xCuO_4 crossing Ce_xCuO_4 $Nd_{2-x}Ce_{x}CuO_{4}$ or $Sm_{2-x}Ce_{x}CuO_{4}$.

There are basically three band-structure calculations for pure or Ce-doped Nd₂CuO₄, whose results are quite similar, except for the binding energies of O(2).²⁵⁻²⁷ Within our model, resonance of the A^* mode may arise from transitions between oxygen and empty 4f or 5dcerium states. That cerium states are involved is clear from the absence of resonance in Pr₂CuO₄. The nature of the oxygen states depends on which calculation is fol-

lowed. In Ref. 25, while nonplanar O(2) have large binding energies in T' structure, planar O(1) lie close to E_f and are shifted from empty cerium states by 2 or 3 eV. On the other hand, in Ref. 27 the p_z orbitals of the O(1)-O(2) chains couple to produce a pair of bondingantibonding states, the antibonding state being close to E_f . We suggest that this state can couple strongly to the modified A_{2u} mode (A^{*}) thus explaining the strength of the resonance and why it affects mainly the A^* mode. The question arises as to why those electronic transitions that result in such a huge resonance are not observed in the z component of the dielectric constant. This problem was also found in YBa₂Cu₃O₆,¹³ where a resonance of the zz component of the A_{1g} mode at 472 cm⁻¹ could not be explained in terms of the dielectric constant and was attributed to the large deformation potential derived from strong modulation of the O(4) $p_z + Cu(1)d_{3z^2-r^2}$ band by the motion of O(4). A similar explanation could apply to our case: Instead of Cu—O bonds, the T' structure has O(1) - O(2) chains along the c axis. The suggested initial state for the resonance, $O(1)p_z + O(2)p_z$, would be greatly affected by O(1) and O(2) motion in the A * mode, leading to a strong electron-phonon matrix element, that could overwhelm the weakness of the dipolar transition to the upper (cerium) states, which is not strong enough to be detected in the dielectric constant.

The nondependence of the resonance energy on cerium doping can also be understood from band-structure calculations: A rigid band behavior upon cerium doping seems to be justified, merely shifting the Fermi level up $(\Delta E_f \approx 0.26 \text{ eV} \text{ for } x = 0.25)$ (Ref. 25) and introducing empty cerium states in the conduction band. A possible shift of these cerium states with increasing doping, if present, would be difficult to detect, since the variation range of x is small.

Since we lack calculations for Pr compounds, it is difficult to explain the differences observed in resonance

- ¹Y. Tokura, H. Takagi, and S. Uchida, Nature (London) **337**, 345 (1989).
- ²V. G. Hadjiev et al., Solid State Commun. 71, 1093 (1989).
- ³E. T. Heyen *et al.*, in *Phonons 89*, edited by S. Hunklinger *et al.* (World Scientific, Singapore, 1990).
- ⁴V. M. Orera et al., Physica C 168, 161 (1990).
- ⁵See Table I and frequencies given by Heyen et al. in Ref. 11.
- 6S. Sugai, T. Kobayashi, and J. Akimitsu, Solid State Commun. 74, 599 (1990).
- ⁷Z. V. Popovic et al., Solid State Commun. 78, 99 (1991).
- ⁸N. Pyka et al., Europhys. Lett. 18, 711 (1992).
- ⁹S. Sugai, T. Kobayashi, and J. Akimitsu, Phys. Rev. B 40, 2686 (1989).
- ¹⁰M. Yoshida et al., Phys. Rev. B 44, 11 997 (1991).
- ¹¹E. T. Heyen et al., Phys. Rev. B 43, 2857 (1991).
- ¹²E. T. Heyen et al., Phys. Rev. Lett. 65, 3048 (1990).
- ¹³E. T. Heyen et al., Phys. Rev. B 45, 3037 (1992).
- ¹⁴V. B. Timofeev et al., Physica C 162-164, 1409 (1989); M. Boekholt et al., ibid. 181, 179 (1991).
- ¹⁵S. Piñol *et al.*, Physica C **165**, 265 (1990); S. Piñol *et al.*, in *Superconductivity ICMAS-91*, (I.I.T.T. International, Paris, 1991), pp. 41–46; S. W. Cheong, J. D. Thompson, and Z. Fisk, Physica C **158**, 109 (1989).
- ¹⁶The small dependence of the CaF₂ Raman activity measured

phenomena. However, smaller binding energies are expected in this case due to the larger distances. Since the A^* mode is nonresonant in Pr_2CuO_4 and its evolution with excitation energy in $Pr_{1.85}Ce_{0.15}CuO_4$ is completely analogous to that of the A_{1g} mode, we suggest that the enhancement of the A^* mode towards the red is not a resonant phenomenon, but for the same reason, associated with cerium doping, this causes the decrease of the A_{1g} towards the uv. From Fig. 3 we may conclude that this decrease is not an antiresonance effect between A_{1e} and A^* modes, since in Pr compounds both modes show a similar trend. The participation of the rare-earth states can also be discarded, since no resonance effects appear in pure compounds. A possible explanation for the intensity decrease for increasing excitation energy might be the screening effects arising from conduction electrons introduced by cerium doping. The enhancement of this feature with increasing doping levels is an argument in favor of the preceding explanation. The lack of systematic experimental data on the optical absorption and reflectivity of doped samples in the 2-3-eV region with $\mathbf{E} \| c$, as in our zz measurements, prevents a definite attribution of the A_{1g} decrease to light absorption or reflection.

In summary, we have studied the zz Raman spectrum of Pr, Nd, and Sm cuprates with T' structure as a function of rare-earth substitution and cerium doping. We propose a model for the activation of the forbidden mode A^* as an oxygen local mode caused by oxygen relaxation around Ce⁴⁺. From the resonance curves, we conclude that cerium states are involved in the resonance of the A^* mode, while the A_{1g} decrease towards uv is probably a consequence of the metallic character of doped samples.

We acknowledge financial support from CICYT and REE/UNESA through the program MIDAS (Contract No. 89/3797), and from EEC Contract No. SC1-0036-F.

- in J. M. Calleja, H. Vogt, and M. Cardona, Philos. Mag. A **45**, 239 (1982) can be considered within experimental error.
- ¹⁷T. Arima *et al.*, Phys. Rev. B **44**, 917 (1991); L. Degiorgi *et al.*, Physica C **161**, 239 (1989); M. K. Kelly *et al.*, Phys. Rev. B **40**, 6797 (1989); K. Hirochi *et al.*, Physica C **160**, 273 (1989).
- ¹⁸V. N. Popov and V. L. Valchinov, Physica C 172, 260 (1990).
- ¹⁹E. T. Heyen *et al.*, Solid State Commun. **74**, 1299 (1990).
- ²⁰T. Brun et al., Phys. Rev. B 35, 8837 (1987).
- ²¹Z. Tan et al., Phys. Rev. B 45, 2593 (1992); Z. Tan et al., ibid.
 44, 7008 (1991).
- ²²A. P. Litvinchuk et al., Phys. Rev. B 43, 13 060 (1991).
- ²³J. T. Markert, Y. Dalichaouch, and B. B. Maple, in *Physical Properties of High Temperature Superconductors I*, edited by D. M. Ginsberg (World Scientific, Singapore, 1989).
- ²⁴S. Piñol (unpublished). This relation cannot be definitely established, since structural considerations are also relevant in the cerium dependence of T_c .
- ²⁵Z. Szoteck, G. Y. Guo, and W. M. Temmerman, Physica C 175, 1 (1991).
- ²⁶K. Takegahara and T. Kasuya, J. Phys. Soc. Jpn. **59**, 2098 (1990).
- ²⁷S. Massidda, N. Hamada, J. Yu, and A. J. Freeman, Physica C 157, 571 (1989).