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Enhancement of binding energies in linked Hubbard clusters
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We calculate the binding energy of a pair of holes doped into half-611ed Hubbard clusters which are

linked together. For some geometries, two linked clusters exhibit binding which is monotonically re-

duced by intercluster hopping, as is the case between simple negative-U centers. However, for certain of
the geometries, we And that binding in the linked clusters can be considerably enhanced over that of the

individual clusters, or, in some cases, even induced by a relatively weak linking. In these cases, the new

binding is not simply a stabilization of that for individual clusters, but instead reflects a partial sharing of
the hole pair between clusters.

INTRODUCTION

A variety of numerical calculations have recently been
performed of the ground-state binding energy of two
holes (or electrons) in finite systems in order to determine
whether Hubbard-like models might exhibit supercon-
ductivity driven by Coulomb interactions. This binding
energy, denoted here by 6, is defined by

h~(M ) = [Ett (M 2) +Ett (M—) ] 2Ett(M ——1)

= [Ett (M —2) —EN(M) ]—2[E~(M —1 }

Ett(M) ],—(1)

where E~(M) is the ground-state energy of a system of M
electrons on N sites. (When the context is clear, we will
henceforth suppress reference to N and M. ) A negative
6 or "binding, " implies that the energy of two interacting
holes is lower than that of two noninteracting holes; (i.e.,
it is energetically snore favorable to put two holes togeth-
er in a single finite system than to put a single hole in
each of two different systems. Although "binding" does
not by itself guarantee the existence of superconductivi-
ty, ' it is suggestive.

Such binding, or existence of a negative 5, has been
seen in a variety of clusters with only repulsive Coulomb
or magnetic interactions. ' Somewhat surprisingly,
binding has also been observed in relatively large one-
dimensional Hubbard rings. Recent perturbative and
numerical work has further indicated that binding may
occur in fullerene or fullerene-like Hubbard clusters, and
this binding has been suggested as a possible basis for
the observed superconductivity in doped C60 materials.

Using Lanczos techniques, we consider in this paper
the behavior of the ground-state binding energy when we
link two Hubbard clusters together, where each cluster
may individually exhibit binding. We consider this a first
step in numerically exploring general binding in linked
many-body clusters. Specifically, we study a simple such
"prototype" system, two four-site Hubbard rings with
hopping t, and on-site Coulomb interaction U coupled by

inter-ring hoppings t~. The Hamiltonian is given by

H= t g —(c c +ci~ c; )
(ij&,

t~ g—(etc +ct c, }+Ugn, tn;~,
(ij )', cr i

(2)
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FIG. 1. The four coupled cluster geometries we will explore.
A11 have intracluster hopping t =1 and on-site Coulomb repul-
sions U. Geometry one links the clusters with one hopping ma-
trix element tl, while geometry two has two diagonal links of
strength tz, geometry three has two adjacent links of strength t3,
and geometry four (cubic geometry) has four links of strength
t4.

where tJ refers to spin (f or 4}, (lj ) in the first sum
denotes neighboring sites on the same ring, and (ij )' in
the second sum denotes connected sites on diferent rings.
We will consider both rings which exhibit binding when
they are not linked and rings, which do not exhibit such
binding.

We explore four different geometries, which are shown
in Fig. 1. All are composed of two four-site Hubbard
rings, differing only in the manner in which the rings are
connected. In the first geometry, there is a single link of
strength t&. In the second geometry, the clusters are
connected by two diagonal links of strength t2. In the
third, there are two adjacent links of strength t3. Lastly,
in the fourth geometry, there are four links of strength t4,'

the resulting topology is that of a cube, or of two linked
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chains with periodic boundary conditions. We always
consider here the binding of two holes doped into a half-
filled reference state; i.e., M =8 in Eq. (1) for these eight-
site systems. We note that our results are independent of
the signs of t and ti in Eq. (2}. Lastly, we define an
"effective hopping" t' normalized by the number of links,
such that t'= t, /4 for geometry 1 (one link), t '= t2/2 and
t'= t3/2 for geometries 2 and 3 (two links), and t'=t4 for
geometry 4 (four links).

We begin in Fig. 2 (top) by showing the binding energy
versus normalized intercluster hopping t' for the

single-linked geometry. We compare the behavior for
t =1 and U=4 (open circles) with that for t=0 457. and
U =0.915 (crosses). In both cases the binding energy for
a single unlinked cluster (t'=0), which we will denote by
AQ is hQ = —0.0170. We see that the two-cluster 6's are
very close for a range of t'~ ~b,o/2~. This indicates that
t' and hQ are the only relevant energy scales in this re-
gime, with the binding energy independent of other,
higher-energy parameters. This independence does not
hold, however, for t ' )

~ ho/2 ~.

Can we easily model this behavior of the binding ener-
gy~ The simplest possible modeling of such connected
Hubbard clusters which individually exhibit pairing
would be to replace each cluster by a single "negative-U"
site with the negative-U set to AQ, giving the effective

Hamiltonian

h,s=[E(0}+E (2) ]—2E (1), giving

=—'(4t —b,o
—Qb, o+16ti ) .

The magnitude of this A,~ monotonically decreases with

t, from its t, =0 value of ~ho~ to its t, —+ ~ value of

We compare in Fig. 2 (bottom) 6 versus t'=t, /4 for
t =1 and U=4 (single-linked geometry) with the h,s of
Eq. (4). We find that there is some qualitative but little
quantitative agreement between the two models. In both,
the magnitude of the binding 5 is reduced steadily with
hybridization, but in the negative-U system binding
remains for all t' while in the linked clusters the binding
energy becomes positive. This may be due to symmetry
differences, finite size, or more general many-body
efFects. For example, the binding on four-site Hubbard
rings appears related to degeneracies at the U =0 Fermi
surface, which may be disrupted by linking the rings. In
any case, however, it is clear that some caution should be
exercised in attempting to model a repulsive-U Hubbard
cluster which exhibits binding by a simple negative-U
center.

Another possibility for understanding the binding
properties of the linked clusters is the "hole pairing"
model of Hirsch, given in its simplest general form by

H, tt=ho gn, &n;& t, g(c, cz +—H. c. ) .

For this two-site "negative-U" Hamiltonian, we define

H= t g (d;~—d, +djt d; )

&ij &, 0

—b, t g (d,t d +dt d; )(nd; +nd ). .

(),- "" (5)
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FIG. 2. Top: 6 vs t' for a single-linked cluster with t = 1 and
U=4 (circles) and t =0.457 and U=0.915 (crosses). Note close
agreement for t' ~ ~hol2~ =0.0085. Bottom: 6 vs t' for a
single-linked cluster with t=1 and U=4 (circles) compared
with two linked "negative-U" sites (solid line).

The "d" operators here refer to doped holes. In this
model, the presence of an existing hole increases the over-
lap integral of a second hole. Binding then arises from a
lowered kinetic rather than potential energy. We can test
this possibility for our model by computing the quantities
So=(0~c& ~1) and S, =(l~c, ~2), where ~m) here
denotes the ground state with a doping of m holes off
half-filling. The kinetic energy of the second doped hole
is "dynamically lowered" if the quantity 1 —~S, /So~ is
negative. We show in the top half of Fig. 3 the quanti-
ties 5 (solid line) and 1 —~S, /So~ (data points) versus t'
for t =1 and U =4, with the cubic geometry (see Fig. 1).
We see significant correlations between a "dynamically
lowered" kinetic energy and pairing in the linked clus-
ters, particularly for small t' and for t'& t. This suggests
that the Hamiltonian of Eq. (5) may be a more appropri-
ate model for our system than simple linked negative-U
centers in these regimes.

In the bottom half of Fig. 3, we now compare 6 versus
small t' for all four different geometries with, again, t = l
and U =4. We note remarkable agreement between the
single-linked and diagonal-linked geometries (squares and
triangles, upper part), and also between the adjacent-
linked and cubic systems (circles and crosses, lower part).
In all four geometries, binding initially weakens when the
t"s are first turned on,' however, in both the adjacent-
linked and cubic systems, this is followed by an enhance-
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ment in binding as t' increases further.
We see this enhancement even more clearly in Fig. 4

(top) where, with again t =1 and U=4, we show b
versus t' for both the adjacent-linked and the cubic
geometries with larger t' than in Fig. 3. 5 here reaches a
value of 5= —0. 189 when t' =0.3 for the cubic

t'

FIG. 3. Top: 5 (solid line) and 1 —~S, /So~ (crosses) vs t' for
cubic cluster with t =1 and U =4. Note same numerical scale
for both quantities. Bottom: 5 vs t' for single-linked (squares),
diagonal-linked (triangles), adjacent-linked (crosses), and cubic
(circles) clusters with t =1 and U=4.

geometry, significantly greater binding than seen in other
clusters with comparable bandwidths. We further note
the reentrant binding at t' & t for the cubic geometry, also
seen previously in Fig. 3. In Fig. 4 (bottom) we show b,

versus t' for t=1 and, now, U=8. A single four-site
cluster with t = 1 and U =8 does not itself exhibit bind-

ing; i.e., 6 &0 for the isolated cluster. Thus, the small-t'

binding observed here is induced by a weak linking of the
two clusters. We have not observed such induced bind-

ing for small t' in the single-linked and diagonal-linked
geometries, although we have observed reentrant binding
in both these geometries and induced binding for t'& t in
the single-linked system.

The adjacent-linked and cubic geometries can be
viewed as two linked two-by-two "sheets, " as seen from
Fig. 1. Although our systems are very small, the induc-
ing of binding by linking these sheets might be interpret-
ed as suggesting that superconductivity could arise from
tunneling between two-dimensional Hubbard planes
which are not themselves superconducting. ' In that
case, Figs. 1, 3, and 4 indicate that the mechanism would
involve adjacent links. Further, the results also suggest
that superconducting correlations might dominate in
chains or planes of linked clusters.

What is the nature of the binding? As a preliminary
exploration we consider the expectation value of the
charge disproportion operator hN = ( (N, N2 ) ) '—

where N =g, n,'
' denotes the total charge on cluster

m (m =1,2) when two holes are doped into a half-filled
reference state. If binding occurs in a single, unlinked
cluster, then EN=2 when t'=0; i.e., it is energetically
favorable to have both doped holes in one cluster rather
than a single hole in each cluster. If binding does not
occur in an unlinked cluster, then EN=0. In Fig. 5 we
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FIG. 4. Top: 6 vs t' with larger t' than Fig. 3 for adjacent-
linked (dotted line) and cubic (solid line) clusters, with t = 1 and
U =4. Bottom: 5, vs t' with larger t' for adjacent-linked (dotted
line) and cubic (solid line) clusters, with t = 1 and U =8.

FIG. 5. Top: Charge disproportion hN vs t' for cubic
geometry with t =1 and U =4. Bottom: Charge disproportion
h,N vs t' for cubic geometry with t = 1 and U =8.
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show hN versus t' for the cubic geometry with t = 1 and
U=4 (top) and t =1 and U=8 (bottom). In both cases,
bW rapidly changes from its t'=0 value to achieve a pla-
teau at small t', which approximately coincides with the
existence of t'(t binding. We find that this plateau cor-
responds to an almost constant admixture of two states;
the first has exactly two doped holes on one cluster, and
the second has exactly one doped hole on each cluster.
Thus, the bound pairs are now partially shared between
clusters.

In summary, we have considered the binding energy of
two holes doped into a half-filled reference state when
two Hubbard clusters are linked together. Specifically,
we investigated numerically two four-site Hubbard rings
connected in four different ways. We found that single
clusters, which themselves exhibited binding, were not
well modeled by negative-U centers when the clusters
were linked, and suggested that this might be due to sym-

metry differences or a breaking of degeneracies. The
"hole pairing" Hamiltonian of Eq. (5) appeared a better
model in certain regimes. We then showed that the bind-
ing energy could be greatly enhanced for some geometries
by linking the clusters, and that binding could even be in-
duced by linking clusters which themselves had no bind-
ing. In these cases, even for very weak linking, bound
pairs were found to have a strong intercluster as well as
intracluster component.
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