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The spin correlation functions as well as the string correlation functions introduced by den Nijs and

Rommelse in the S =1 XXZ chain have been calculated by using the quantum transfer-matrix method.
The temperatuare variation of the correlation lengths and the susceptibilities has been examined and

found to differ according to the phase to which the ground state belongs. The excitation gap is estimated

from the temperature dependence of these quantities.

I. INTRODUCTION

Haldane predicted in 1983 that the antiferromagnetic
Heisenberg chain (AFHC) with integer spins has quite
different properties from those of the AFHC with half-
odd-integer spins. According to his theory, the spin
correlations in the ground state decay with a finite corre-
lation length and a finite energy is necessary to excite the
system from the ground state in the integer-spin AFHC.
Many numerical works as well as theoretical investiga-
tions have been performed to check his prediction.
After some initial confusion, a general consensus seems to
have developed that the predicted ground state (Haldane
state} is realized in the S= I AFHC. A physical picture
of this state has been given by AfHeck et al. , who con-
structed the exact ground state of an antiferromagnetic
(AF) spin model that contains biquadratic interactions in
addition to the usual Heisenberg interaction. They
showed rigorously that its ground state —the valence-
bond solid (VBS}state —has the properties of the ground
state predicted by Haldane. The VBS state is now con-
sidered to be a prototype of the Haldane state in the usu-
al AFHC. den Nijs and Rommelse found that the VBS
state has a hidden nonlocal order parameter and called it
the string-order parameter. They argued that the ex-
istence of the string order characterizes the Haldane
state. Recently, Kennedy and Tasaki clarified that a full

Zz X Zz symmetry breaking characterizes the S= 1 Hal-
dane state, which manifests itself in the existence of the
long-range string order in all of three spin directions.
This was shown to be the case by diagonalizing the
finite-size systems.

Most of the numerical works on this problem have
concentrated on the study of the ground-state properties
of the S =1 system. So far, little effort has been devoted
to the nature of excitations and finite-temperature prop-
erties. Kubo and Takada calculated the spin correlations
of the S=1 XXZ chain by making use of the quantum
transfer-matrix (QTM) method. They discussed the crit-
ical properties at T=O by using the QTM with Trotter
size up to 6. Finite-temperature correlations were ob-
tained, but not reported in detail. Narayanan and Singh
studied the internal energy and specific heat by diagonal-
izing finite-size systems. They also obtained a correla-

tion length estimated from the cluster expansion. Their
correlation length, however, is not that of the spin corre-
lations as we discuss in Sec. IV.

Recently, several materials with Ni + ions such as
NENP were discovered and their thermodynamic proper-
ties were studied. ' Experiments showed that they realize
the Haldane state. So it is worthwhile to examine the
finite-temperature properties of the S = 1 AF chains and
compare results with experimental ones.

In this paper we investigate the spin correlations in the
S=1 XXZ model at finite temperatures. Though the
XXZ model is not directly comparable with real materi-
als, it is interesting to examine how finite-temperature
properties differ according to the type of the ground state
of the system. The QTM with a Trotter size up to 7 is
employed. The usual spin correlations, canonical correla-
tions, and string correlations are examined. From an
analysis of the correlation functions, we observe that the
temperature dependence of the physical quantities varies
with the anisotropy parameter, depending on the type of
the realized ground state.

In Sec. II we present the model and associated
definitions. The QTM method is briefiy explained. In
Sec. III numerical results and their analyses are present-
ed. A summary and discussion are given in Sec. IV.

II. MODEL AND THE METHOD

We investigate the S=1 XXZ chain with 2L+1 sites
described by the Hamiltonian

H= g (S;"S;"+,+Sf'+, +b,S S +, ),
i= —L

where 5 is the anisotropy parameter of the exchange in-

teractions. We study the spin-correlation functions of the
system in the limit of infinite L. They are defined as

and

g (r ) =I dx (So (Px )S„), (3)
0

where ( ) denotes a thermal average in the infinite

system and A(r)=—e' Ae ' . The former correlation
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function is the customary one, and the latter is called a
canonical-correlation function, or Duhamel two-point
function, and is related to the susceptibility y (q ) by

oo

X (q)= —P y e' g (r),
2

which is normalized to be P ' at a high temperature and
P=T '. We also study the string-correlation function
introduced by den Nijs and Rommelse, which is given by

r —1

h'(r)= —(seexp irrz s s;j .
i=1

It is believed that the S=1 XXZ chain has four different
ground-state phases, depending on the value of 6: the fer-
romagnetic Ising phase at b, & —1; the XY (or planar)
phase at —1 & 5 & 5,; the Haldane phase at 6, & 6 & hz,
and the Neel (or antiferromagnetic Ising) phase at 52 & b, .
We do not discuss the ferromagnetic Ising phase in this
paper. In the XYphase the excitation spectrum is gapless
and it is expected that all correlation functions are criti-
cal; i.e., they show a power-law decay behavior.

In the Haldane phase, f (r ) and g'(r) show exponen-
tial decay, while h (r) is supposed to approach a finite
value as r ~ Oc for each a. In the Neel phase, all corre-
lation functions for a=z oscillate with finite amplitudes
as r ~ 00, while those for a=x or y show exponential de-
cay. The location of the boundary 61 between the XY
and Haldane phases is still not known accurately. It is
quite difFicult to determine 6, precisely by numerical
methods since the phase transition is of Kosterlitz-
Thouless type. " On the other hand 62 is known to be
about 1.2.

At finite temperatures all correlation functions decay
with finite correlation length regardless of the character
of the ground state. We study in the following the tern-
perature dependence of the correlation length and exam-
ine how it varies according to the change of the ground
state. We also examine the temperature dependence of
the susceptibilities.

To obtain thermal averages, we approximate the densi-
ty matrix as

pH, —IBH
&

/n —PH2 /n, ne =—je e (6)

A„(T}=A(T)+ g a&n (7)

We do not extrapolate the approximants of the correla-
tion functions themselves, but those of the correlation
length defined by

~
C(r ) ~

—Coq3(r lg)e

where C(r) represents one of the correlation functions
and q)(x) is normalized as lim„„q)(x)=1. In the XY
phase the approximants of the factor Co are also extrapo-
lated to yield the correlation index. A detailed explana-
tion of the QTM method can be seen in Ref. 15. In this
work extrapolations using the sets of approximants
(4,5,6), (5,6,7), (3,4,5,6), and (4,5,6,7) are practiced. Ap-
proximants of the correlation length of h'(r) for b, =l
and the results of the extrapolations from different sets of
approximants are shown in Table I. The results of

where H, (H2} is the part of the Hamiltonian (1) whose
summation runs over only odd (even) i's Let us call the
average of an observable A in this approximation as the
nth approximant of A (T) and denote it as A„(T). The
convergence of the approximant has been verified, ' and
the leading correction is known to be of order n

An approximant is expressed in terms of a transfer ma-
trix, i.e., QTM, whose dimension is 9 . By using some
symmetries, one can reduce the size of the matrix. In this
work we have used a matrix with (9"+ I )/2 dimensions.
The matrix multiplication has been done by using a HI-
TACHI S820 supercomputer. Correlation functions are
conveniently calculated by the QTM method as such
large systems can be considered to be practically infinite.
On the other hand, the Trotter size n is rather restricted
because of the rapid increase of the matrix size. The ex-
trapolation, however, to infinite n from several approxi-
mants with rather modest n's is quite effective, as was
shown in Ref. 15, and so we can obtain very good esti-
mates of thermal averages at fairly low temperatures. An
exact A ( T) is estimated from m approximants by fitting
them to the formula

m —1

TABLE I. Correlation length of the string-correlation function h'(r) for b, = 1. g„'s (n =3, 4, 5, 6, and 7) are the approximants
with n Trotter slicings, and g(„„,s are the extrapolated values from the approximants with n „n2, . . . Trotter slicings. The max-

imum sizes of the calculated systems are also tabulated.

System size

g4

ks

k

0.5

32
0.931 519(1)
0.931 216(1)
0.931 074(1)
0.930 996(1)
0.930 948(1)

1.0

64
1.968 06(1)
1.964 57(1)
1.962 86(1)
1.961 90(1)
1.961 32(1)

2.0

72
5.636 55(2)
5.617 85(2)
5.606 54(2)
5.599 52(1)
5.594 97(2)

3.2

104
12.8597(6)
13.0474(7)
13.1498(9)
13.2061(9)
13.2394(8)

4.0

128
19.1623(9)
19.8998(10)
20.4136(9)
20.7350(10)
20.9403(8)

5.0

176
28.5264(6)
30.3917(8)
32.1755(9)
33.4662(14)
34.3614(9)

6.4

240
45.1050(17)
47.9830(21)
53.0988(16)
57.7743(33)
61.4974(64)

k(4, 5, 6)

k(5, 6, 7)

k(3, 4.5, 6)

4(4, 5, 6, 7)

0.930 816(2)
0.930 811(2)
0.930 816(2)
0.930 809(3)

1.959 64(1)
1.959 71(1)
1.959 62(1)
1.959 74(1)

5.581 27(2)
5.581 12(2)
5.580 93(2)
5.581 05(3)

13.3358(1)
13.3291(1)
13.3291(1)
13.3258(2)

21.5762(1)
21.5540(1)
21.5694(1)
21.5432(2)

37.2419(1)
37.2996(2)
37.3943(2)
37.3276(3)

73.3659(2)

75.3566(5)
75.1193(3)
76.3218(8)
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different extrapolations agree quite well at higher temper-
atures. For lower temperatures they show some disagree-
ment. This difference is still rather small at P=6.4,
where the difference between the approximants is appre-.
ciable.

We show the mean of two extrapolations from (5,6,7}
and (4,5,6,7) as the estimated value at n = ao in the fol-
lowing and take half the difference between them as a
measure of the error of the estimation, although it is usu-

ally too small to be noticeable in the figures. We have
made this choice in order to take advantage of the largest
Trotter size. Although the errors may be underestimat-
ed, we believe that it would not appreciably affect the
final results since the difference between results of
different extrapolations are still small even at the lowest
temperatures examined. We also list the maximum size
of the calculated system in Table I. In fact, we have em-

ployed a system with 2M+r —1 sites to calculate the
correlations at distance r. The same size M of the mar-
gins at both sides of the measured sites is used for
different r's at a fixed temperature. In the case of Table I,
M is one-quarter of the maximum size. As can be seen
from the table, M is always larger than g„(n =3, 4, 5, 6,
and 7) except for P=6.4, where M is slightly smaller than

We have checked in several cases that if M is nearly
equal to or larger than the correlation length, the calcu-
lated correlation functions do not depend on M up to six
digits. So we conclude that our data do not show appre-
ciable finite-size effects even at the lowest temperatures
examined.

III. NUMERICAL RESULTS

The calculation was done at four values of 6, i.e.,
5=0, 1, 1.1, and 1.4. These values were chosen as to
represent the XF phase (b, =O), Haldane phase (b, = 1 and
1.1), and Neel phase (b, = 1.4), respectively. We have cal-
culated f"(r) and g'(r) for 1.0&P&10.0 at 5=0 and
1.0&P&8.0 at 6=1, 1.1, and 1.4. For h "(r) the region
is 0. 1&P 5.0 for b, =l, 1.1, and 1.4. For f'(r) and
h'(r), 0.4 P 10.0 for b, =O, 0.4 P 6.4 for b, = 1,
0. 1&P&4.0 for 6=1.1 and 0.2&P&2.5 for b, =1.4.
We have not calculated h "(r ) for 6=0 and g'(r ) for any
A. We describe the results in the following.

0.3-
+

OJ
I

1.4

0.2-

0.1

0.1 0.2 0.3 0.4

FIG. 1. Squared reciprocal of the correlation length of g "(r )

is depicted as functions of squared temperature for b, =0 (cir-
cles), 1 (squares), 1.1 (crosses), and 1.4 (diamonds). Curves show
the least-squares fit of seven data values (0.1~ T&0.4) by a
quadratic function of T for 6=0, the seven-point linear fit
(0. 156~ T ~ 0.417) for 5= 1 and the eight-point linear fit
(0.2~ T~1.0) for 6=1.1

100

higher temperatures. We obtain g„(0)=6.48(4) from a
quadratic fit of seven data at P=2.4—6.4. Data at lower
temperatures, however, deviate upward from this fit, as
can be seen from Fig. 1. It may be more reasonable to as-
sume an exponential dependence on the temperature if
the excitation gap exists. We obtain g„(0)=6. 1 by fitting
three data for P & 5.6 to the expression
g„(T) =(„(0)+CT 'e, where we have attached
T ' prefactor to fit the data well, taking the constant of
the exponent to be 0.40, which is obtained from the uni-
form susceptibility. At present stage we cannot deter-
mine g„(0) quite accurately from this calculation. The
value 6.5 might be considered as an upper bound. Earlier
results 5.5 (Ref. 16}and 6.25 (Ref. 17) obtained by Monte
Carlo (MC) simulations are comparable with the present
result. We estimate g„(0)=4.65(2) for b = 1.1 and
1.77(5) for b, =1.4, respectively, from quadratic fits of

(T) in terms of T . As can be seen from Fig. 1,

A. Correlation functions

The squared inverse correlation length, [g„(T)], of

g "(r ) is plotted as a function of T in Fig. 1. The figure
clearly shows that the g„(T) approaches a finite value as

T~O for 6=1, 1.1, and 1.4, while at 6=0 it apparently
vanishes at T=O. At 6=0 we obtain, for example,

(0)=(1.4+2.8}X10 from a quadratic fit of six data
at P=3.2 —10.0. Extrapolations from different sets of
data give („(0)of order of 10, although the absolute
value depends on the data we choose. As the error due to
extrapolations are hard to estimate accurately and the ob-
tained g„'(0) is so small, we find the result to be con-
sistent with the expectation that g'„(0)= oo.

At b, = 1, g„(T) shows a linear behavior against T at

10

0.1

FIG. 2. Log-log plot of g„vs T for b, =O. The line shows a
least-squares fit of five data values (0. 1 ~ T ~ 0.25).
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0.8 as are shown in Fig. 4. We estimate A =1.61(5) and

Eo =0.56(1) from three data values for P & 1.6.

I

N

0.6-
B. String-corre1ation functions

0.4-

1.4

02- ~
' +

I

0.5 1.5

FIG. 3. Inverse correlation length g,
' off'(r ) vs T.

—Eo /T
g, (T)=—e (9)

(T) shows an interesting temperature dependence at
6=1.4. There occurs a broad minimum at T-0.3, and

(T} increases with decreasing T at lower tempera-
tures.

As a check of the linearity of the data at 5=0, we
show in'„(T) plotted against lnT in Fig. 2. We estimate
v= 1.02 from data for P) 4, which is consistent with the
expectation that v=1 throughout the XYphase.

The inverse of the correlation length g, (T) of f'(r) is
shown in Fig. 3 for 6=1, 1.1, and 1.4. At 6=1.1,
g, '(T) apparently approaches a small but finite value
with decreasing temperature and g, (0) is estimated as
17.7(9) from a four-point quadratic fit. It is difficult to
obtain a more accurate estimate from our data for
b = 1.1. At b, = l.4, g, '( T) decrease quite rapidly at low
temperatures and seems to vanish at T=O. The calcula-
tion was done only down to T=0.4 in this case as the
correlation length of g'(r ) grows very fast and is estimat-
ed to be 16.3 at T=0.4. Data for T ~ I apparently obey
the expression

In Fig. 5 we show g„(T) obtained from h'(r) T. he
linear fit with T of seven data values of g,, '(T) at b, =O
from P=2. 5 to 10.0 leads to g,, '( T =0)
= —2.5(7)X10 . The result seems to be consistent
with the divergence of g„(T) at T=0 as being propor-
tional to T

For b, =1, 1.1, and 1.4, g„ increases quite rapidly with
decreasing temperature. If we plot lnTg„against T ' as
is shown in Fig. 6, we clearly see a linear behavior for
5=1 and 1.1 at low temperatures. So g„seems to obey
the same temperature dependence as Eq. (9) in the Hal-
dane phase. We estimate A =1.46(1) and En =0.326(1)
from data for P~2. 5 at 6=1 and Eo=0.481(3) from
data for P~2.0 at 6=1.1.

Also, at b, = l.4 a rapid increase of g„with decreasing
temperature is observed. It is as large as 45 at P=2.5
and always larger than g„which seems consistent with
the rigorous relation h (r)~ ~g (r}~, which holds for
6~0. As the plot of 1n(T'~ g„) against T ' shows
linear behavior, as is shown in Fig. 7, we suppose that g„
obeys

Eo /T
SZ (10)

with B=0.854(3) and Eo= 1.41(1).
In Fig. 8 we show g,„obtained from h "(r) at b =1.1

and 1.4. It is clearly seen that g,„diverges at T=O for
6=1.1, while at 6=1.4 it approaches a finite value,
which is estimated as 5.9(2). We fitted data at 5=1.1 to
Eq. (9) and obtained Eo =0.210(5) from three data values
for P=3.2—5.0. If we choose the power of the prefactor
as a fitting parameter, we obtain —1.2 to —1.3 rather
than —1 for lower-temperature data. We need further
examination at lower temperatures to obtain accurate
values of Eo and the temperature dependence of the pre-
factor.

0 I I I
I

I
I I I

100. I I I I I I I I

J

N 10-

N
N

+

+ ~

t.o

~ 6=0.O

0 $
I I I I I ~ I

10

FIG. 4. Logarithmic plot of Tg, vs T ' for 6=1.4. The line
shows a least-squares fit of three data values (1.6 ~ T ' ~ 2.5).

FIG. 5. Log-log plot of the correlation length g„of h'(r)
against T
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100

10

I I I I I I I I I I I I I I I I

0 2.5 5 7.5

100 I I I
I

I I I

N
V)

FIG. 6. Logarithmic plot of g„vs T ' for 5=1, 1.1, and 1.4.
Lines show least-squares fits of nine data values
(1.0 & T ' & 6.4) for 5= 1 and seven data values
(1.0& T ' &4.0) for 5=1.1, respectively.

C. Susceptibilities

The staggered susceptibility in the x direction,
y„(m., T), is depicted as a function of temperature in Fig.
9. At b, =O, y„(m., T} diverges at T=O while it ap-
proaches a finite value for 5=1, 1.1 and 1.4. The figure
shows an approximately linear behavior of in'„(~, T) at
6=0 in terms of logT. Though data show slight curva-
ture the index r is estimated to be 1.80(1) from five data
for /=4. 0-10.0. At b, =l y„(a,O) is estimated to be
26.7(1) by fitting data to the expression g„(m, T)—kp/T
=g„(m, O) —Ce ' where we have assumed EII=0.40
which has been obtained from the analysis of y, . We just
assumed above expression since we have not enough data
at low temperatures to deduce a precise temperature
dependence. The result is close to the earlier result 27.6
obtained by cluster diagonalization. ' We roughly esti-
mate y„(m., O) as 16.4 and 2.8 for b, = l. 1 and 1.4, respec-
tively. At b, =1.4, g, (n, T} shows a nonmonotonous
temperature dependence.

The uniform susceptibility in the z direction, y, (0, T),
is shown in Fig. 10. At b, =O, g, (0, T) has a broad peak
at T-0.7 and approaches a finite value with decreasing
temperature. The value at T=O is estimated to be
0.61(1). At b, = 1, 1.1, and 1.4, g, (0, T) decreases rapidly
at low temperatures, indicating the existence of a finite
excitation gap. At b, = 1, y, (0, T) apparently obeys the
expression

10-

1 P

I'
10 2.5

I I I I I I I

5

FIG. 7. Logarithmic plot of T'~'(„vs T '. The line shows a
least-squares fit of five data values (1.0 & T ' & 2. 5) for 5= 1.4.

y, (O, T)=DT 'E

with c, = —,
' as is shown in Fig. 11. From five data values

for P=2. 5 —6.4, we estimate D =0.30(1) and
Eo=0.40(1). The obtained value of EII is very close to
the earlier results of the excitation gap. ' ' Data at
6=1.1 are also plotted in Fig. 11. As is seen from the
figure, they are not fitted well by a straight line. If we fit
three data values for P=2. 5 —4.0 to Eq. (11) with 8= —,',
we obtain EO=0.57(l). We obtain a rather small value
as 0.14—0.19 if we estimate e from data for P= l.25 —4.0.

At 5=1.4 y, (O, T) apparently obeys Eq. (11) with
c.= 1, as is also shown in Fig. 11. We estimate
D=0.78(1) and EO=1.56(1).

I I I I I I I

20-
100:

1.4
10:

+

++ y+

2 4T~ I

0.1

I I I I I I I I

FIG. 8. Correlation length g,„of h "(r) vs T ' for b, = l. 1

and 1.4.
FIG. 9. Log-log plot of the staggered susceptibility in the S

direction, y ( ~, T ) vs T.
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FIG. 10. Uniform susceptibility in the S direction, y, (0, T)
vs T.

0.9 —g N

CU

0.1

0.1

0.02
0.02

6
T1

FIG. 11. Logarithmic plot of T' y, (O, T) vs T ' for 6=1
and 1.1. 1n[Ty, (O, T)] is also depicted for b, =1.4. Lines are
least-squares fits of five data values (2.5~ T '~6.4) for 5=1
and that of five data values (1.0~ T ' ~2.5) for 5=1.4 respec-
tively.

0.9

0.8

O 0.7

0.6

0.5

0.4

0.3 10

FIG. 12. Log-log plot of Co defined in Eq. (8) vs T ' for
g (r) and h'(r) at 6=0. Lines show least-squares fits of three
data values (4.0 ~ T ' ~ 6.4).

D. Correlation index

If we assume the scaling property at the ground state,
Co defined in Eq. (8) diverges as Co —T ""at low tem-
peratures. The logarithms of Co obtained from g "(r) and
h'(r ) at b, =0 are plotted against lnp in Fig. 12. The data
show approximately linear behavior, although one can
observe a slight curvature. The slope first increases with
temperature and then decreases at p~8. We estimate
r1„=0.22(1} for the S" correlation and rI„=0.87(1) for
the string correlation from data between p=4. 0 and 6.4.

IV. SUMMARY AND DISCUSSION

We have studied the temperature dependence of the
correlation length of the spin-correlation functions as
well as that of the susceptibilities in the S=1 XXZ chain.
These quantities have been calculated by extrapolating
approximants with rather a modest number of Trotter
slicings (up to 7}. We have analyzed the result based on
the extrapolations from two sets of approximants (5,6,7)
and (4,5,6,7}. Although the difference between the result
of these extrapolations is less than 4% even at the lowest
temperature examined, one cannot exclude the possibility
that our results at lowest temperatures may involve er-
rors larger than estimated values. The errors, therefore,
quoted in this work should not be interpreted as the ex-
pected standard deviation.

The results for 6=0 are consistent with the ground
state in the XY phase with gapless excitations. The criti-
cal index g, for S correlations is estimated to be 0.22,
which is close to but smaller than —,', the critical value at

At 5=6
&

the correlation length might show a
logarithmic dependence on the temperature due to the
existence of marginal operators. We have not found
any evidence of such behavior. Our result, therefore, is
consistent with that b

&
)0. This contradicts a recent re-

sult by cluster diagonalization. ' It might be possible,
however, that our data are still at not low enough tem-
peratures to observe the possible logarithmic corrections.
So it should be quite interesting and desirable to examine
the system at much lower temperatures by improving the
method.

The results at 6=1 are consistent with the fact that
the ground state is in the Haldane phase with a finite ex-
citation gap. The gap is evaluated from the temperature
dependence of several quantities. The result of the uni-
form susceptibility leads to the gap of 0.40. On the other
hand, the temperature dependence of the string correla-
tion gives a gap energy of 0.33. The former value agrees
with earlier calculations very well. In general, it is possi-
ble that the low-temperature behaviors of two different
quantities are governed by different kinds of excitations
with different energy gaps. Excitations such as the AF
domain wall may be a candidate which destroys the
string order, but does not contribute to the magnetiza-
tion. We, however, cannot exclude the possibility that
the difference obtained here is an artifact due to the lack
of data at low enough temperatures. The temperature
dependence of the prefactor of the exponential term
might be affected by the temperature region employed.
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The prefactor should be related to the dispersion relation
of the elementary excitations, which should be expressed
as

s(k ) =E—o+ aok (12)

in terms of the wave vector k of the excitation in the
long-wavelength limit. Equation(11) for y'(0, T) with
c=—, is consistent with this dispersion. We have not ex-
amined whether Eq. (10) for the string correlation is con-
sistent with the dispersion (12). The energy region of the
elementary excitation described by Eq. (12) might be nar-
row compared with the temperature studied. Then the
temperature dependence of the prefactor may not show a

simple power law in this temperature region. It will be
affected by the dispersion at larger wave vectors where
the dispersion may be quasilinear, as is seen from the re-
sult of the MC simulation by Takahashi. So it seems
necessary to study still lower temperatures to see whether
the present results represent correctly the low-
temperature limit.

Results for 5= 1.1 are also consistent with the
Haldane-phase ground state. Especially, the present re-
sults show clearly that the ground state has the string or-
der in all spin directions. The result on the excitation
gap is also quite interesting. We estimate Eo as 0.48 and
0.57 from the temperature dependence of g„(T) and
y'(O, T), respectively. They are both larger than those
for b, = 1. On the other hand, Eo estimated from g,„(T)
is 0.21 and smaller than that for 6=1. As has been dis-
cussed above, Eo obtained from y'(0, T) and g,„may in-

volve considerable errors. The difference between them,
however, seems to be too large to regard it as an artifact.
So we may conclude that the lowest excitations do not
contribute to g„(T) and y'(O, T) for 1&5&62. On the
other hand, we need further study to conclude whether
the Eo's obtained from g„(T) and y'(0, g really differ or
not.

At 6=1.4 the result is consistent with the fact that the
ground state is in the Neel phase. Usual spin correlations
as well as the string correlations have long-range order in
the S' direction at T=O. There is no long-range string
order in the S direction. An analysis of the correlation
lengths g, ( T) and g„(T) gives different values of excita-
tion gap as 0.56 and 1.41, respectively. The temperature
dependence of the prefactor is also different. The temper-
ature dependence of y, (0, T) gives a gap of 1.56, which is
close to that obtained by g„(T). As we have studied the
rather high-temperature region for 5= 1.4, these results
may change if we could study lower temperatures. We
have no explanation for these results.

A nonmonotonic temperature dependence of g„(T) and

y„(n, T) is observed at b, = 1.4. This feature may be con-
sidered to be common in the Neel phase. The reasoning
is as follows. The spin correlations at higher ternpera-
tures wi11 not exhibit strong anisotropy and therefore in-

crease with decreasing temperature in all spin directions.
On the other hand, the ground state has long-range anti-
ferrornagnetic order in the S' direction and is strongly
anisotropic in nature. S correlations there are weak,
and the correlation length wil be shorter than that in the

TABLE ii. Excitation gaps estimated from various quantities
are tabulated for 6= 1, 1.1, and 1.4. The reciprocals of y„(~,0),
g„(0),g, (0), and g (0) are also tabulated.

Eo from y, (0)
Eo from j„lT)
Eo from g, ( T)
Eo from g, (T)
[X.(&0)] '

[g„(O)]
[g, (O)]
[g (O)]

1.0

0.40
0.33
0.33

0.036
0.15
0.15

0.57
0.48
0.21

0.061
0.22
0.056

14

1.56
1.41

0.56
0.36
0.56

0.17
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excited states. At very low temperatures the correlation
length will decrease with decreasing temperature as a re-
sult of increasing the statistical weight of the ground
state. As a result of these two effects there is a nonmono-
tonic temperature dependence of the S' correlations. A
similar effect was reported in Monte Carlo simulations of
the S=

—,
' XXZ chain.

Summarizing our results, we show estimates of the ex-
citation gap as well as the inverse of correlation lengths
and y'(m, O) in Table II. Though we have results at only
three values of 5, they suggest that the excitation gaps es-
timated from g„(T) and y, (O, T) increase monotonically
with 5 across the phase-transition point 52. On the other
hand, the excitation gap estimated from g,„(T)decreases
with h. We expect that it vanishes at h=h2. Also, we

expect that the gap estimated from g, (T) vanishes at
b, =b,2. A monotonic increase of g„'(0) and y„(n., O)

with 6 is also seen from the table. A monotonic increase
of g„'(0) has been reported earlier. At b, =hz, g,„'(0)
and g, '(0) are expected to vanish. From these results we

see that there are two different kinds of excitations which
are determining the temperature dependence of correla-
tion functions. We need further study to determine the
character of these excitations.

We want to comment here on the correlation length
obtained by Narayanan and Singh for 6= 1. If we com-
pare their result and ours for 0. 16(T (0.2, we observe
that theirs is much smaller than ours. For example, at
T=0.2, we read fr'om their Fig. 6 that the value is —1.3,
while ours is 5.17. So we eonelude that their correlation
length is not that of the spin correlations.

In summary, we have obtained a temperature depen-
dence of the correlation functions consistent with the ex-

pected ground state for each anisotropy parameter. To
obtain a more precise picture of the excitations, we must

go beyond the present results and explore their behavior
at lower temperatures. We need some further improve-
ments of the method to accomplish this task.
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