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Class of localized structures in nonlinear lattices
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The existence of a new class of localized structures in nonlinear lattices is proved analytically and
it is pointed out that such excitations have been recently observed experimentally [B.Denardo et al
Phys. Rev. Lett. 68, 1730 (1992)] in the form of the so-called "noncutoff kinks. " These localized
structures appear to be due to nonlinearity-induced breaking of symmetry between two equivalent
eigenmodes of the lattice, and they probably exist in a large variety of nonlinear Chscrete systems.

One of the well-known effects of nonlinearity is to sup-
port stable propagation of localized structures in the fre-
quency and velocity domains where propagation of linear
waves is impossible. These localized structures may ap-
pear as a result of interplay between dispersion and non-
linearity. Many problems of nonlinear dynamics of spa-
tially extended systems involve continuous, so that non-
linear localized excitations are naturally described as soli-
ton solutions of difFerent kinds of partial differential equs
tions. However, models describing microscopic phenom-
ena in solid-state physics are inherently discrete, with the
lattice spacing between the atomic (or molecular) sites
being a fundamental physical parameter for the systems.
For these systems, an accurate microscopic description
involves a set of coupled ordinary difFerential equations
and nonlinear dynamics of such discrete systems is not
well understood yet. As has been shown, in the case of a
strong anharmonicity localized structure in chains with
a nonlinear interatomic interaction may exist as intrinsic
localized modes involving only a few particles. i However,
these localized modes may be also treated as a discrete
version of the (bright) envelope solitons, and they pos-
sess many properties of the proper soliton solutions of
the nonlinear Schrodinger (NLS) equation derived for a
wave envelope. 2 s Another example is kinks in the upper
cutoff mode of a nonlinear chain (in which each parti-
cle oscillates with the opposite phase with its immedi-
ate neighbors), which are approximately described by an
NLS equation (see, e.g. , Ref. 4) and correspond to exci-
tations of a dark-soliton type. Nevertheless, due to spe-
cific properties of discrete systems, one may expect ex-
istence of other types of localized structures which have
no direct analog in continuum models. In the present
paper, taking the discrete Klein-Gordon model as a par-
ticular but rather general example, I show analytically
that a new type of localized structure in nonlinear lat-
tices may exist as a result of nonlinearity-induced symme-
try breaking between two equivalent linear eigenmodes of
the chain. These localized structures may exist indepen-
dently on the type of nonlinearity (self- or defocusing)
and they are likely fundamental nonlinear excitations of
discrete systems. I point out that in the recent paper by

Denardo et als the nonlinear structures described here
have been already observed experimentally in a damped
and parametrically driven lattice of coupled pendulums
as the so-called "noncutoff kinks" and the results have
been confirmed by a simplified numerical model.

The physical idea and the properties of the solutions
obtained do not depend drastically on the type of a non-
linear chain, but, for definiteness, I consider the discrete
Klein-Gordon model as a particular but rather general
example, i.e. , a one-dimensional chain made of particles
(atoms) with unit mass, harmonically coupled with their
nearest neighbors, and subjected to a nonlinear symmet-
ric on-site potential. The same model has been analyzed
recently to modulational instabilitys and it was used in
numerical simulations to show different localized struc-
tures in a damped and parametrically driven chain of
pendulums. s Denoting by u„(t) the displacement of atom
n, its equation of motion may be written in the form

u„+K(2u„—u„+i —u„ i) + ~su„—Pu„= 0,2 — 3=

where K is the coupling constant, iso is the frequency of
small-amplitude on-site vibrations in the substrate po-
tential, and P is the anharmonicity parameter of the po-
tential. The model given by Eq. (1) may be also consid-
ered as a small-amplitude expansion of the well-known

sine-Gordon model, and numerous physical applications
of both these models have been widely discussed in the
literature (see, e.g. , Ref. 7 and references therein).

Linear oscillations of the chain (1) of the frequency ~
and wave number q are described by the dispersion law

= uo + 4Ksin2= 2 qa
2

a being the lattice spacing. As it follows from Eq. (2), the
linear spectrum has a ("natural" ) gap uo, and it is limited

by the cut-off frequency u „=uoz+4K due to discrete-
ness. The most interesting point of the discrete model

spectrum is the point q = 7r/2a, which corresponds to the
wavelength-four linear mode. In any discn. te lattice there
are two equivalent modes of such a type: at q = n/2a all

even particles are at rest and the odd ones oscillate edith
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the oPPosite Phases at the frequency wi ——uoz + 2K, or,
vice versa, all odd particles are at rest but the even ones
oscillate with the opposite phases at the same frequency.
However, in a dhatomic linear chain these modes exhibit
a ("internal" ) gap in the linear spectrum and this gap is
naturally proportional to the mass difFerence (see, e.g. ,

Ref. 8 and references therein). The physical problem I
would like to study here is: Can nonlinearity itself induce
a gap in the cw spectrum of a nonlinear chain and what
is a physical consequence of this efFect?

To answer this question I will introduce the new vari-
ables for the displacements of the atoms at different sites,
i.e., u„= v„, for n = 2k, and u„= io» for n = 2k + 1,
to present Eq. (1) for odd and even numbers separately,

v„+K(2v„—io„~i —iv„ i) + ~ov„—Pv„= 0,3= (3)

ivy~+ i ——(—1)"[W(2k + 1, t)e'~" + W'(2k + 1, t)e ' ' ],

(6)

where uzi ——uoz + 2K is the frequency of the wavelength-
four linear mode, assuming that the functions V(2k, t)
and W(2k+ 1, t) are slowly varying in space and time.
Substituting Eqs. (5) and (6) into Eq. (1) and making
the so-called "rotating-wave" approximation, i.e., keep-

ing only the terms proportional to the first harmonic, I
finally get the system of two coupled equations,

BV BW 3—aK —-PIVI'V = 0
Bt Bx 2

(7)

iu„+ K(2ur„—v„pi —v„ i) + ~o io„—pro„= 0.2 3

Looking now for solutions in the vicinity of the point

q = vr/2a, I use the following ansatz:

vga = (—1)"[V(2k,t)e' "+V'(2k, t)e ' ' ],

Appearence of the gap in the cw spectrum may be a fac-

tor of the wave localization at the frequency ui provided
the nonlinearity will be large enough. However, this kind

of localized structure has to differ drastically from the
standard localized excitations of nonlinear (continuous or
discrete) models. Indeed, both of the wavefield compo-
nents, the odd and even ones, cannot be vanishing in the
same direction because there is no gap in the linear spec-
trum and small-amplitude oscillations at that frequency
will be delocalized.

Analyzing this kind of localized structure, I look for
stationary solutions of Eqs. (7) and (8) in the form

(V, W) oc (fi, fz)e '"',

assuming, for simplicity, the function fi and fs to be real
As a matter of fact, the system (7) and (8) may have
more complicated solutions, e.g. , those with a spatially
dependent phase. Then, the stationary solutions of Eqs.
(7) and (8) are described by the system of two ordinary
difFerential equations of the first order,

dfi 3
dz

= —~iaaf&+ Afz„i

(13)

where z = x/aK and A = 3P/2. Equations (12) and (13)
describe the dynamics of a Hamiltonian system with one
degree of freedom and the conserved energy

& = —-~i~(fi + fz) + -A(fi + fz)2 2 i 4 4
2

and they may be easily integrated with the help of the
auxiliary function g = (fi/fp), for which the following
equation is valid:

BW BV 3+ aK —-PlWl'W = 0,
Bx 2

(8) =~,Az(l+g ) +4AE(l+g ).
Idge'
idz)

(i5)

where the variable x = 2ak is treated as a continuous one.
The coupled nonlinear equations (7) and (8) are derived
under the assumption of the following scale properties:
The displacements V and W are of the order of e, s being
a small parameter, the variables t and x are slow ones,
i.e., x ~ e~t, and x -+ e~x. In fact, Eqs. (7) and (8)
represent the first nontrivial step in rigorously applying
an asymptotic expansion to Eqs. (3) and (4).

Looking for the continuous-wave (cw) spectrum of this
nonlinear system, I find the result

(~i~' —~&Pvo )(~i~' —
~~PWo) = a K q', (9)

6td = lvo Wo i.
2(dy

(10)

where u' and q' are the frequency and wave number of
the odd and even cw solutions with the amplitudes Wo
and Vo, respectively. The dispersion relation (9) exhibits
a nonLinearity-induced gap in the cw spectrum and this
gap is proportional to the diff'erence in the amplitudes of
odd and even particles oscillations,

DifFerent kinds of solutions of Eq. (15) are characterized
by diferent values of the energy E. On the phase plane

(fi, fz) soliton solutions correspond to the separatrix
curves connecting a pair of the neighboring saddle points
(o, fo), (0, fo)~ (fo, 0),—or (—fo, 0), where foz = ~iA/A.
Calculating the value of E for these separatrix solutions,
p = —ursiQz/4A, it is possible to integrate Eq. (15) in
elementary functions and to find the soliton solutions

g(z) = exp(+v 2~iOz), (16)

~iOe+~z~'"'[2 cosh(~2uiAz) 6 +2]
fz =

2A cosh(2~2ui Oz)

fi = gf~ (»)
The solutions (16) and (17), but for negative 0, exist also
for defocusing nonlinearity when A ( 0.

The results (16) and (17) together with (ll) and (5)
and (6) give the shapes of the localized structures in the
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discrete nonlinear lattice. Because all combinations of
the signs are possible in Eq. (17), there are four solutions
of this type. Let us fix the sign in Eq. (16), say plus, to
analyze the structures of the odd and even particle oscil-
lations. When z —+ +oo, the function g(z) tends to +oo
and the amplitude of the even particle oscillations, fq,
goes to its limit value fp = guqA/A. In the same time
the amplitude of the odd particle oscillations vanishes
[see Fig. 1(a)]. However, when z -+ —oo, the function
g(z) tends to zero, and the asymptotic behavior of the
even and odd components is just the reverse: f& -+ 0 and
f2 ~ fp The. refore, the whole localized structure repre-
sents two kinks in the odd and even oscillating modes
which are composed to have opposite polarities, so that
both of them cannot be localized in one direction [Figs.
1(a) and 1(b)]. This result is the direct consequence of
the nonlinearity-induced gap (10) in the cw spectrum (9),
the gap disappearing in the linear limit. In some sense,
these structures can be considered as an unusual limit of
the soliton excitations in diatomic nonlinear chains.

It is important to note that the localized structures de-
scribed in this paper have been recently observed experi-
mentally as "noncutoff kinks" in a damped and paramet-
rically driven experimental lattice of coupled pendulums
and numerically in a simplified model similar to Eq. (1).s
The authors have observed also the standard cutoff kinks
described as fundamental dark solitons by an NLS equa-
tion, and domain walls which connect standing regions of
different wave numbers. A parametric drive used in the
study allows us to compensate the dissipation-induced
decay of the structures supporting steady-state regimes
which in the case of the cutoff kinks may be found an-
alytically for a simplified perturbed model. s The obser-
vations of the localized structures in an actual lattice
together with the analytical treatment showing a natural
origin of these modes in nonlinear discrete models indi-
cate that these structures are general phenomenon which
can occur in many other lattice systems (e.g. , they may
be observable in a linear array of vorticess).

At last, it is interesting to compare the localized struc-
tures described in this paper with the so-called gap soli-

tons discovered in 1987 by Chen and Mills. m As is well

known, the gap solitons may exist in nonlinear (contin-
uous) periodic media as localized excitations when the
nonlinear frequency is shifted into the gap of the linear
spectrum induced by periodicity of the system param-
eters, e.g. , by periodical change of the linear refractive
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FIG. 1. (a) The odd and even components for the soliton
solutions (16) and (17); and (b) diagrammatic representation
of the whole localized structure of the wavelength-four mode
(cf. Fig. 3 of Ref. 5).

index (see, e.g. , Ref. 11 and references therein). From
the viewpoint of the theory of gap solitons, the nonlinear
localized structures described here may be called self-
supporting gap solitons. Indeed, the linear spectrum has
no gap, but the latter may appear due to nonlinearity.
Thus, one group of the particles (e.g. , at the even sites)
of the chain creates asymptotically an effective periodic
potentiat for the other group of the particles (e.g. , at the
odd sites) „and vice versa, forming finally two parts of the
structure which is similar in parts to spatially localized
gap solitons.

In conclusion, I have shown analytically that in discrete
systems nonlinearity supports steady-state localized exci-
tations of a new kind. These localized structures appear
due to breaking of symmetry between two equivalent lin-
ear wavelength-four modes, i.e., due to a nonlinearity-
induced gap in the cw spectrum, and existence of these
localized structures does not depend on the type of non-
linearity. Due to this universality, these modes are likely
fundamental excitations of discrete systems and one may
naturally expect to find them in a variety of nonlinear
discrete models of solid state physics.
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