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Estimate of Hubbard U for C6o by use of optical absorption
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We consider the optical absorption of C6o within a simple tight-binding model. To obtain a reasonable
agreement with experiment a sizable Hubbard U must be included. We estimate U to be in the range
from one-half to the full "bandwidth" where the bandwidth is roughly 13 eV. In our picture the two
lowest-energy large-absorption peaks are due to single-particle transitions: H„goes to Tig and Hg goes
to Ti„, respectively. The weak absorption from 3.0 to 1.9 eV is attributed to the dipole-forbidden transi-
tion: H„goes to Ti„"split" by electron-electron repulsion.

Recently, a number of authors have proposed simple
tight-binding models to explain the low-energy electronic
excitations of C60 and doped C60.

' The question we
wish to address in this paper is, do such models really
work? For example, can a tight-binding model explain
the low-energy part of the optical absorption of C60? Our
main conclusion is that such models cannot work without
including a sizable Hubbard U. With the inclusion of
such a Hubbard interaction term our results indicate the
optical absorption can be understood fairly well by a sim-
ple model.

The model we consider is the Su-Schrieffer-Heeger
(SSH) model of conducting polymers applied to C6o.

'

That is, we consider the Hamiltonian

H= —,'kg(l, "—a}'()"
+ g [ t+a(l;——a)](c;,c,+c.,c,, )

(tj),~

+ Ugn;tn;g

+kinetic energy of the lattice .

Here l," is the length of the bond connecting the ith and
jth sites, (nearest neighbors only} k is the "spring" con-
stant, t is the hopping matrix element, a is the unrenor-
malized carbon-carbon bond length, the c's and c~'s are
fermion annihilation and creation operators and a is the
electron-phonon coupling constant. To model direct
electron-electron interaction an on-site Hubbard repul-
sion has been included. We use the parameter values

0 0 $a =7.0 eV/A, t = 1.35 eV, k =53 eV/A . These parame-
ter values work well for polyacetylene. There is nothing
fundamental about these parameter values but we do ex-
pect the "true" parameters (which may well be sample
dependent} to be in at least an order of magnitude agree-
ment. The parameter U will be fitted in comparison to
the optical absorption. For simplicity, we have only con-
sidered on-site repulsion. To a certain extent, we believe
longer-range interactions will merely "renormalize" t and
U.

We will treat the above Hamiltonian in the adiabatic
approximation (consequently the kinetic term for the lat-
tice does not enter}. Such an approximation appears to
be quite good (at least for some properties) for models of
conducting polymers and hence we adopt such an ap-
proximation here. Our model considers only a single C60
molecule (i.e., we neglect intermolecular hopping). For
conducting polymers such single-molecule models have
been used successfully in calculating the optical absorp-
tion in the solid phase. For C60, the optical absorption of
C60 films and C60 in solution is rather similar. Therefore,
it seems experiment justifies considering only a single C60
molecule when we compute the optical absorption even
for C60 films.

In calculating the optical absorption we invoke the
Franck-Condon principle, we determine the bond lengths
by minimizing the ground-state energy, and assume these
bond lengths stay the same even for the excited states.
For an excited state the lattice will eventually relax to
form polarons ' we assume here there is insufhcient
time for this to occur since the electrons are moving
much faster than nuclear degrees of freedom.

We initially consider the optical absorption for the case
of no direct electron-electron interaction ( U =0).
Minimizing the ground-state energy we find two distinct
bond lengths. The bond separating a hexagon and a pen-
tagon is shrunk about 0.12 A while the bond separating
two hexagons shrinks about 0.18 A.. Consequently the
bond length difference is about 0.06 A in reasonable
agreement with experiment. Throughout our calculation
we neglect the effect of electron-electron interaction on
the bond lengths. This neglect causes an error of order
higher than U in the ground-state energy.

In the dipole approximation the optical density is given
by CEs&rt„& where C is an energy-independent con-
stant, E„ is the energy between the initial and final states
and

&r „& =&flXli& + &f1 Yli& +&f IZING &

X=QXi; r Y=gY;, Z=gZ;,
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FIG. 1. Single-particle energy levels participating in the
low-energy dipole-allowed transitions. The vertical arrows indi-
cate the allowed transitions with the energy of the transition (in
eV) written to the left of the arrow.

where (X;, Y~, Z;) is the coordinate of the ith electron.
Since the final states are degenerate we include another
summation over the final degenerate states.

The only parity-allowed transitions (less than 5 eV for
the noninteracting model with the chosen parameter
values) are promoting an electron from one of the degen-
erate single-particle levels 26—30 (of symmetry H„}to the
T& levels 34—36, 21—25 (Hg) goes to 31—33 (T&„),
17—20 (G ) goes to 31—33 (T»), and 26—30 (H„) goes to
37—41 (Hg) Ref. (8} (see Fig. 1}. The energy of the
respective transitions are approximately 2.8, 3.0, 3.2, and
4.4 eV. A straightforward calculation yields the oscilla-
tor strengths (E„(rr„) ) for the various transitions. (See
Fig. 2) The strength of the transition at 3.2 is zero al-
though this transition is dipole allowed). Obviously there
is a poor agreement between theory and experi-
ment. ' " For example the theoretical transition lowest
in energy (2.8 eV} has a substantial oscillator strength.
The strength of the lowest observed transition (at 3.0 eV)
is very small (on the scale of Fig. 2, roughly 0.03).
Within the context of the SSH model, Harigaya' has
done a similar calculation and obtained equivalent re-
sults. First-principles methods suffer from similar prob-
lems (see Fig. 3 of Ref. 13). We have investigated the
efFect of changing parameter values (t, k, a }on the energy
of the excited states and find that this does not really im-
prove matters much. In particular whatever parameter
values are chosen it seems difBcult to get a nearly 1-eV
energy difference between the lowest two dipole active ex-
cited states, the experimental peaks with energy 3.7 and
4.7 eV. Noting this disagreement within the context of a
more microscopic model Bertsch et al. ' proposed the
source of this disagreement is due to the neglect of
Coulomb repulsion (for a quantum-chemical calculation
see Ref. 15). Although we believe these authors are
essentially correct, we differ somewhat in the interpreta-
tion of our calculation (see below).

Although on the surface the noninteracting result
looks very different from the experimental result, the
difference is not really that great. That is, the experimen-
tal peaks at 3.7, 4.7, and 5.7 eV correspond to nonin-
teracting peaks at 2.8, 3.0, and 4.4 eV. The direct
electron-electron repulsion causes the noninteracting
peaks to shift in energy. That is, we identify the experi-
mental transition at 3.7 eV with the H„ to T1g transition
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FIG. 2. Optical density vs excitation energy. The top figure
is a calculation for U =0. The largest absorption has been nor-
malized to unity. The bottom figure is the experimental result
taken from the solution data of Ref. 6. We have plotted the
maximum of the absorption bump and the largest absorption
has been normalized to unity.

and the 4.7-eV transition with H~ goes to T1„. Experi-
mentally the peak at 3.0 eV corresponds most likely to a
dipole-forbidden transition in the noninteracting case
having energy 2.2 eV. To substantiate these statements
we now qonsider the effects of electron-electron interac-
tion.

We initially consider the conceptually simplest scheme,
straightforward second-order perturbation theory in U.
This scheme has been successfully applied to the optical
properties of conducting polymers. Therefore, we apply
perturbation theory to the levels having unperturbed en-
ergy 2.8, 3.0, 3.2, and 4.4 eV relative to the ground state.
Technically, there is a complication in that each of these
levels is "moderately" degenerate, 2.8 is 30-fold degen-
erate, 3 0 is 30 fold degenerate, 3 2 is 24 fold
degenerate, and 4.4 is 50-fold degenerate. It should be
possible to find the "good" (stable to perturbation) linear
combinations by using group theory. ' However, we
have found it simpler to brute force diagonalize the secu-
lar matrix (i.e., do straightforward second-order pertur-
bation theory' }. Actually, the stable linear combination
is resolved by using first-order perturbation theory for all
levels other than the level at 4.4 eV.

Since the "good" linear combinations are related to the
original states by a unitary transformation the sum of the
squared dipole matrix elements for the eigenfunctions of
the secular matrix is the same as the sum of the square di-
pole matrix elements of the original states. The only pos-
sible redistribution is among the degenerate states. Con-
sequently, even in the presence of a small U 3.2 eV
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remains dipole inactive. In each of the other levels (2.8,
3.0, 4.4) three degenerate spin-0 states are dipole active.
Each of these three degenerate states has the same
squared dipole matrix element with the ground state (—,

' of
the total noninteracting weight for that level).

This threefold degeneracy is easy to understand, name-
ly as noted by a number of authors the icosahedral sym-
metry of the C60 molecule is "close" to full rotational
symmetry, i.e., there is conservation of angular momen-
tum. We therefore interpret the threefold degeneracy as
an L =1 state. Since the ground state has L =0, S =0
this assignment is consistent with the normal selection
rules. It is also interesting to note that within each of the
formerly degenerate subspaces half the states have spin 0
and the other half have spin 1 with the spin-1 states gen-
erally lower in energy.

For small values of U (where our treatment is valid, the
difficulty being in knowing what is small) the relevant en-
ergy levels are not shifted much relative to the ground
state. For example, for U =1 eV the three relevant ener-
gy levels are shifted less than 0.03 eV. It appears that to
have the possibility of agreement with experiment consid-
erably larger values of U are necessary.

We therefore adopt the following perturbative scheme.
Let P„P2, P3, and P4 be the projection operator into
subspaces of states having unperturbed energy E, =2.8,
Ez=3.0, E,=3.2, and E4=4.4. We choose the unper-
turbed Hamiltonian Ho =Ho —g;(E; E, )P; an—d the
perturbation as HI =HI +g; (E, E, )P, U—nder . this
perturbation the 134 states having energy E&, E2, E3,
and E4 are degenerate and we consequently use second-
order degenerate perturbation theory with respect to HI.
All other states with "Ho" energy less than 5.0 eV have
the same parity as the ground state and consequently do
not mix with the low-lying dipole-allowed excited states.
We expect this perturbation theory to be good for the
low-lying excitations if U is of order half the bandwidth'
(the "bandwidth" being approximately 13 eV with our
parameters; by bandwidth we mean the difference in ener-

gy of the single-particle state highest in energy from the
single-particle state lowest in energy).

We initially consider our results for U=5 eV. The
states with unperturbed energy 2.8, 3.0, and 4.4 are shift-
ed (relative to the ground state} to 3.0, 3.3, and 5.3. That
is, of the 134 states we consider only nine are dipole ac-
tive. Of these nine, there are three sets of three degen-
erate states at 3.0, 3.3„and 5.3 (i.e., as for the U =1 case
this degeneracy is not lifted}. This pattern of degeneracy
and dipole activity persists even to U = 15 (which is not
surprising since it is essentially the conservation of orbit-
al angular momentum}. The general trend here agrees
with experiment; the levels are shifted upward in energy
with a growing space between the two lowest levels. For
the squared dipole matrix element we find 1.0, 4.5, and
2.2 (in arbitrary units, only ratios are meaningful). This
is in general agreement with experiment since weight is
shifted from the lowest-energy peak to the peak second
lowest in energy (of course the experimental results are
broadened, we compare the maximum of the experimen-
tal "bump" to theory). Even for this value of U we do

not believe the calculation of the highest-energy peak
(which is shifted to 5.3 eV, recall our "cutoff" is 5.0} is re-
liable. Clearly this peak will interact strongly with
higher-energy levels not included in the initial diagonali-
zation. Recall that the energies we calculate will be more
accurate than properties that depend on wave functions.
That is, energies are accurate to second order in Hl while
the wave functions are only the correct zero-order wave
function with respect to the perturbation Hl.

We next consider U=10 eV. Here the three lowest
levels are shifted to 3.3, 3.9, and 7.3 with squared dipole
matrix elements 1.4 and 4.0, and 2.3. Undoubtedly the
results for the highest level are unreliable. We still, how-
ever, believe the results for the lowest-lying levels to be
reasonably trustworthy. The general tendency of these
two levels with respect to experiment is correct, an
overall shift plus more level splitting. To check the relia-
bility of the calculation we have considered a different
perturbative scheme, namely we allow "interaction" of
the two lowest levels only. Using this scheme we find
again the two lowest levels are shifted to 3.3 and 3.9 with
squared dipole matrix element 1.5 and 4.4, respectively,
in good agreement with the previous calculational
scheme. If we do straightforward degenerate perturba-
tion theory (no "interaction") for U=10 we find these
levels are shifted to 3.0 and 3.6 eV. We therefore are
hesitant to call this splitting level repulsion.

Finally we consider U =15 eV. Here the value of U is
sufficiently large (of order the bandwidth} that our calcu-
lation (even for the two lowest states} is without theoreti-
cal justification. We nevertheless report our results for
the two lowest levels; the lowest level is shifted 0.92 to 3.7
and the second lowest level is shifted to 4.7. This is in
good (perhaps fortuitous} agreement with experiment. In
essence, by fitting one parameter U we can predict two
bits of experimental information. We find the squared di-
pole matrix elements to be 2 and 3.3, not ridiculous in
comparison to experiment.

The lowest-energy transition in our model (H„goes to
T,„) is of course dipole forbidden. For U =0 this transi-
tion is 30-fold degenerate with an energy of 2.2 eV. Al-
though it is beyond the scope of this work to calculate
transitions into this level, it is nonetheless interesting to
examine how this level is effected by electron-electron in-
teraction. Since this level is relatively isolated from other
even-parity states (the "closest" being an excited state
having energy 3.6 eV} it seems reasonable to merely apply
second-order degenerate perturbation to the 30 degen-
erate states. Doing this, for U =10 we find the 30 states
"span" the region from 2.0 to 2.9 eV with spin 0 and spin
1 interspersed in this energy region (1—6, ll —15, 27 —30
having spin 1 and the rest with spin 0). These results are
not in obvious disagreement with the experimental opti-
cal absorption. '

What conclusions can we draw from these calcula-
tions? A firm conclusion is that there is a "sizable" Hub-

bard U very likely greater than half the bandwidth and

probably in the range from half to the full bandwidth.
We put sizable in quotation marks since in conducting
polymers U is of this order relative to the bandwidth yet
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still a good deal of the qualitative physics can be extract-
ed from the noninteracting ( U =0) limit. Using the nota-
tion of Ref. 5 the values of Ult we obtain are in the range
3 & Ult &7 (note that the t of Ref. 5 "contains" our a
multiplied by the bond length).

There are two possibilities for improving these calcula-
tions. First of all one could work to higher order and at-
tempt some sort of extrapolation procedure in U. This
appears to be difficult since the present second-order cal-
culation took about 40 h on a Digital Equipment Cor-
poration VAX 6420 computer with the computation time
being spent mainly on the second-order matrix elements.
The other improvement would be to include more states
in the diagonalization (increase the energy cutoff). Since
our matrices are of order 100 it is possible to increase the
size of the diagonalization substantially, say 10000, as-

suming matrix elements can be rapidly computed. This
should be possible with sufficient supercomputer time and

should certainly improve the 4.4-eV state. Since U is fair-

ly large, it is tempting to consider a strong-coupling ap-
proach (a Heisenberg model). From our experience such
an approach is meaningful only for larger U's (say, much
larger than the bandwidth). We still therefore prefer the
itinerant approach taken here. In conclusion, our calcu-
lations indicate that a simple model can explain the low-

energy optical absorption of C60.
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