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Determination of currents in flat superconductors
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Explicit expressions are given for the current I(y, z) in a flat superconductor when the magnetic
field H (y, z) perpendicular to its surface is measured, e.g. , by the Faraday effect in a thin europium
selenide layer evaporated on the specimen surface. The analytical results for a long flat strip are
particularly instructive, showing what type of singularities occur in the current and field. The
general solution for the current in flat conductors of arbitrary shape is given in form of an integral
over H (y, z) times an integral kernel that follows from an iteration.

The discovery of high-T, superconductors has revived
the interest in experimental methods that measure the
critical current density J, above which the Abrikosov vor-
tices depin from material inhomogeneities and dissipation
starts to occur. The persistent currents, which cause the
magnetization in superconductors, depend on the applied
magnetic field H and temperature T, and due to flux-
line pinning also on the magnetic history and shape of
the specimen. This shape dependence of the magnetic
behavior is particularly complicated because of the non-
linearity and irreversibility of the magnetization, and in
HTSC also because of their pronounced anisotropy and
layered structure.

For long specimens in parallel field, i.e., when de-
magnetization efFects may be disregarded, the nonlin-
earity of the magnetic response is well described by the
Bean modeli s with appropriate critical current density
J,(B,T). In this simple geometry, the flux lines are
(macroscopically) parallel and the local current density
J is determined by the gradient of the flux density (or
induction) B, J = (BH/BB)~V'B~ where B = ~B~ and
H(B) is the reversible magnetic field. If H, is not too
small, Ho, )) H, i, the reversible magnetization is neg-
ligibly small; then B —lsoH and BH/BB 1/po. In
many experiments, however, flat superconductors in the
perpendicular or inclined field are used, e.g. , thin films or
disks. In this geometry demagnetization efFects are cru-
cial, and the current density is caused by the curvature
of the flux lines if the thickness d of the specimen is much
smaller than its width uI.4 s This may be seen by writing

poJ = V x B = VB x B+B7' x B with B = B/B Here.
the first term originates from the gradient of B and is
approximately proportional to 1/iv, and the second term
comes from the curvature of the field lines and is ap-
proximately proportional to 1/d. Recently, the currents
inside a superconducting disk in the Bean critical state
have been computed by various groups.

A useful tool to investigate the spatial distribution
of the current density J in Hat superconductors are
experiments using the Faraday effect in a thin layer
of europium selenide evaporated onto the specimen
surface. Such experiments measure the magnetic field
component H~(y, z) perpendicular to the specimen sur-
face, which rotates the polarization angle of the reflected
light. They allow time and space resolved observation of
the surface field and thus of the circulating currents.

In this paper I show how the current density integrated
over the specimen thickness

d/2

I(y, z) =

1 I(u) du
H y

27I ~ 'g —u
(2)

J(z, y, z) dx (1)—d/2

can be calculated from the measured perpendicular sur-
face field component H, (y, z). The solution will be given
in terms of an integral over H~ times an integral ker-
nel which inverts the Biot-Savart law. In the case of a
long strip this kernel is given explicitly by an analytical
function, and for flat specimens of arbitrary shape (cir-
cle, square, rectangle, etc. ) the kernel follows from an
iteration procedure which converges rapidly.

The presented results are very general. In princi-
ple, the thickness d(y, z) may vary provided each sur-
face x(y, z) is "flat," i.e. , its squared slope (cia/By)2 +
(Bz/Bz)~ && 1. The magnetostatic problem to be solved
here is not specific for superconductors but describes the
current-field relationship in any flat conductor. However,
the general integral kernel will be obtained by consider-
ing the special problem of a flat superconductor in the
ideal Meissner state, or equivalently, the hydrodynamic
problem of laminar flow around a flat obstacle.

The detailed distribution of the current density over
the specimen thickness is irrelevant here. If d is smaller
than the penetration depth A, then J -const over the
thickness. For d » A, J will flow in two surface layers of
thickness A if there are no flux lines or if the flux lines are
pinned in straight positions (e.g. , after field cooling). If
the flux lines have constant curvature the current density
will be constant over the thickness, J(2:,y, z) = I(y, z)/d;
this situation results when the pinning force is homoge-
neous or when the flux lines move and experience a con-
stant viscous drag.

First, I consider a long flat strip with thickness d =
2e « width iv = 2a « length, and with cross section
~x~ & e, ~y~ & a. The current I(y) flowing along this
strip (along z) causes a magnetic field outside the strip
which is obtained by linear superposition of the fields of
straight wires carrying currents I(y)dy. The field around
each wire is circular with strength I(y)dy/2nrwhere ris.
the distance from this wire. For the field at the specimen
surface x = +e this gives the applied field plus
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Hy(y) = 2iI(y) sgnx

(sgnx = x/~x~, ~y~ ( oo). This means that on the con-
sidered length scale & d the parallel field component H„
is completely determined by the closest current path (lo-
cal relationship), but the perpendicular component Hz
is generated by all current paths (nonlocal relationship).
Equations (2) and (3) apply also away from the speci-
men for ~y~ & a in the plane x = 0; note that I(y) = 0
for ~y~ & a. For numerical purposes one may replace in
the integral (2) the diverging function 1/y by y/(ys+ cz)
with s (( a.

If H„ is measured, one immediately knows the current
I(y) = 2H„(y). If H, is measured, the linear relationship
(2) has to be inverted to obtain I and H„. This means
one has to find the current distribution which at the spec-
imen surface generates a perpendicular field H, which
vanishes everywhere except at a given position y = u.
This problem is identical to finding the shielding cur-
rents which are caused in an ideal superconducting strip
by two magnetic poles of linear shape and opposite sign
at the position y = u on its two surfaces, Fig. 1. The
resulting field lines coincide with the stream lines of the
laminar flow around a strip driven by a fan positioned
in a slit at y = u. This two-dimensional problem of the
theory of potentials can be solved by the method of com-
plex functions. is One finds for ~y~ & a

I(y) = — * du.
2 ' H (u) as —u2

vr a u —y a~ —y
(4)

In particular for Hz(y)=const= —H, one obtains the cur-
rent which shields an applied perpendicular constant field

H~, or which flows in a normal conducting strip immedi-
ately after H, is applied, i.e., before H~ difFuses into the
conductor

I(y) = 2yH. /( '- y')'". (5)

Inserting (4) and (5) back into (2) and putting a = 1 one

obtains useful relationships valid for all ~y~ & 1, ~u~ & 1:

dv 1 —us i/2

, (v —y)(v —u) 1 —v2
= x6(y —u), (6)

f (1 u2) 1l2
dQ = fig)

Q
—Q

f u du

-i (u —y)(1 —u')'~'

The magnetic field caused in the Bean critical state in
a strip with partial penetration of the current, I(y) =
J,dsgny for 0 & p ( ~y~ ( a and I(y) = 0 for ~y~ ( p,
Fig. 2, follows from (1) (x = 0, ~y~ ( oo)

J,d az —yz
H, (y) = '

ln
271 Q

—p

For full penetration (p = 0) H (y) Cx 1n~a /y2 —l~. A
current I(y) = y would yield H (y) = n i(y Arth y —1).

From the above results one recognizes the following
general features, which apply on the surface of flat con-
ductors of any shape: (a) HII H~

II
alw—ays equals z I. (b)

If I is finite at the specimen edge then H~ has a logarith-
mic singularity at this edge and H~ —H ~ changes sign
at some distance from the edge. (c) Hz has a symmetric
logarithmic singularity where I exhibits an abrupt jump.
(d) I and HII

—K~
II

have 1/~y singularities where H~
exhibits a jump, and at the edges if there K~ g H~ ~.

If an applied perpendicular field H ~ is switched on
or suddenly changes at t = 0, then at the very first mo-
ment I is infinite at the edges of a flat specimen, and the
total Hj is zero inside, and oo just outside, the edge. At
t ) 0, magnetic flux starts to penetrate, either by linear
diffusion if the specimen is a normal conductor or if the
flux lines in the superconductor move viscously in the
flux flow or thermally assisted flux-flow states, s or non-
linearly if flux pinning is dominant. As a consequence,
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FIG. l. Right: the current density I,(y) which generates

s perpendicular surface field H (y) = 6(y —u) in an ideally
shielding superconducting strip of half-width a = 1 for u =
0.3, cf. the integrsnd of Eq. (4). Left, top: the magnetic
field lines around this strip. Left, bottom: stream lines of
surface current I(y, z) [lines g(y, z) =const with g from (16)j
for f(y, z) = 6(y —y')6(z —«z') snd for f(y, z) =const (f =
H is the perpendicular field caused at the surface by the
currents) .

FIG. 2. Left: shielding current I,(y) (5) snd perpendic-
ular magnetic field H (y) + H at the surface of sn ideally
shielding infinite superconducting strip. Half-width a = 1,
shielded field H = 1. The dotted lines indicate the situation
where part of the field has penetrated diRusively. Right: the
perpendicular field component H (y) (9) generated by s con-
stant current density ~I, (y) ~

= J,d = 1 which hss penetrated
half-wsy into s superconducting strip (a = 1, p = 2).
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the current density I becomes finite everywhere, and the
perpendicular field generated by this current changes sign
close to the edge. This means an overshooting H~ & 0
inside the edge. Outside the edge, such logarithmic over-
shooting always occurs if I g 0 at the edge.

Next I consider the current I(y, z) and surface field
H(ke, y, z) of a flat conductor of arbitrary shape, with
area A and extension » thickness d = 2e. The current
density J causes a magnetization M with J = curlM.
Integrated over the thickness d this gives I(y, z)
curl[g(y, z)x] with g(y, z) = xf M(x, y, z)dx, cf. (1).
The field component parallel to the specimen surface is

H„= z I, sgnx, H, = —
z I„sgnx,1 (10)

o»(((x, y, z) = —zVg(y, z)sgnx for ]x~ = c ~ 0.
Since outside the specimen curlH = 0, one may write
H(x, y, z) = 'VP(x,—y, z). Writing r = (O, y, z) and
s = (0, u, v) one obtains for the scalar potential

f(y, z) inserted, starting with g = 0. This iteration may
be stabilized by replacing its original form g„+i = F(g„)
by g„+i = pF(g„) + (1 —p)g„with p ( 1. Substitu-
tions like y(y) = sin(7ry/2a) are useful since at the edges
g (x (a —~y~)i) z oc 1 —

~g~, etc. In general, g(y, z) van-
ishes along the edges since C(y, z) = oo there. The cur-
rent flows along the lines g(y, z) = const since I = [')7g~.

f g(y, z) dy dz is the total magnetic moment which deter-
mines the torque and force on the specimen.

If one has to evaluate a set of experimental data H, =
f, (y, z) with i = 1, 2, ... , corresponding, e.g. , to different
times, one can speed up the determination of g, (y, z) if
one calculates first an integral kernel K by iteration of
(16) with f(y, z) = 6(y y')b(z —z') inse—rted. This yields
K(y, z; y', z') = g(y, z) and finally

g, (r) = K(r;r') f, (r') d r'

x g(s) dzs dzs

[x +(r —s) ]s)' 4x'

For the perpendicular surface field this gives

H, (+e, r) = Bp(x, r)/—Bx

f(r)
=f(y z)

2ez —(r —s) z dzs
(s)

g [e + (r —s) ] ~ 4m
' (12) U = po H~(r) K(r; r') H~(r') d r d r' (18)

from which I;(y, z) is obtained. It should be remarked
that in general it is not allowed to take the derivative
under the integral sign since K(r;r') may have poles,
cf. Eqs. (6)—(8). The integrand of (16) is, however, well

behaved at the point r = s.
The kernel K(r; r') is required in the theory of super-

conducting vibrating reeds, i4 's cf. Eq. (1) of Ref. 15.
The magnetic energy (stray field energy) U of the cur-
rents I(y, z) in a Hat conductor is

d s1
C(r) =—

4~ ~-~ lr —sl' (14)

The integration in (14) is over the infinite area outside
the specimen. For a rectangular specimen with ]y~ & a
and ~z~ & b, C(y, z) has four terms

1
C(y z) = —) [(a —py) '+(b —Vz) ']' '

4m
(15)

with p, q = kl. For the long strip above (b &) a, b )) z),
(15) gives C(y, z) = C(y) = (a/2n. )/(az —yz) i) z, and (5)
gives g(y) = 2H (a —yz) )z. From (13) one gets

1 ( g(s) —g(r) d2s )
C (16)

The integral equation (16) is the central result of
this paper. The current I(y, z) = curl[g(y, z)x]
(0; Bg/Bz; Bg/By) which causes a—given perpendicular
field H = f(y, z) is obtained by iterating Eq. (16) with

Equation (12) may be transcribed into a form which al-
lows us to determine g(y, z) for a given f(y, z). Using
the representations for the two-dimensional delta func-
tion (e/2vr)/(e +r ) ~ = 6z(r) = (3e /2z')/(e +r ) ~

(e ~ +0) one may write (12) as

8 — r d 8
&(~) = g(~)~(') —f

Equation (18) gives also the magnetic energy of an arbi-
trarily curved flat superconductor with d )& A in the ideal
Meissner state if H, (r) = H P(r) is inserted where P is
the (small) local tilt angle with respect to the applied lon-
gitudinal magnetic field H, . In general, Eq. (18) applies
to flat type-II superconductors if their reversible magne-
tization is small and P(y, z) is the tilt angle of the flux
lines at the surface with respect to H, . If the flux lines
are strongly pinned and sufficiently long, then P is the
tilt angle of the specimen. i4 For Hat, long, narrow strips
or reeds, (18) may be simplified since now the kernel de-
pends on z and z' only, K(z;z') = f K(y, z;y', z') dydy',
cf. Fig. 5 of Ref. 17. From (5) one can show that for a
long strip one has jK(y, z;y', z') dy'dz' = (az —yz)i)'z.

As stated above, the infinities of the current I (x 1/v 6

at the edges require that K (x v 6 at all edges (6 is the
distance from the edge). Finite thickness d = 2e smears
the singularities, 1/I (x K oc (6'2 + ez) i)'z at the edges.

In conclusion, it was shown how the currents I(y, z)
in a thin Bat conductor or superconductor of arbitrary
shape can be calculated from the perpendicular field com-
ponent H~(y, z) = f(y, z) measured at the surface, e.g. ,

by the Faraday eKect. For a long strip the result is
Eq. (4); else, Eq. (16) has to be solved by iteration. The
resulting magnetization (or dipolar density) g(y, z) yields
the currents by taking derivatives, and the magnetic field
H = —7'P outside the specimen by integration accord-
ing to (11). The general integral kernel K which follows

by iterating (16) with f(y, z) = b(y —y')6(z —z') in-
serted, yields also the magnetic energy. With f(y, z) =
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H—~ =const inserted Eq. (16) applies to ideal screening.
The resulting g(y, z) then yields the surface screening
currents of a flat ideal superconductor in a perpendicular
field H, or of a superconductor tilted in a longitudinal
field. The presented method allovrs also the exact calcu-
lation of Gnite-size corrections to the resonance frequency
of vibrating thin superconductors, which were estimated
in Refs. 15 and 17 for long narrow reeds. Equation (16)
applies to flat conductors of arbitrary shape. The above
equations will also be useful for treating the dynamics of

linear and nonlinear flux penetrations into flat supercon-
ductors put into an oblique magnetic Beld; this topic has
recently become of new interest after the observation of
double peaks in the temperature dependent dissipation
of vibrating superconductors. ~s
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