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Spin-wave theory is used to study the effects of interlayer coupling on the properties of layered

1

Heisenberg ferromagnets with §=;. The asymptotic expressions of magnetization and specific heat

with temperature and interlayer coupling strength (J,) are given in two low-temperature regimes dis-
tinguished by a characteristic temperature Ty =2J, /kp. It is shown that the interlayer coupling, though
very small, is essential if long-range order at nonzero temperature is to exist.

Much interest in the study of magnetic materials has
focused on the properties of layered magnetic systems. !
The recent discovery of copper oxide high-T, supercon-
ductors with quasi-two-dimensional magnetic properties
in their parent materials—which is a case in point—
greatly stimulates further studies in this field. Because it
has been rigorously proved by Mermin and Wagner? that
there can be no long-range order at any nonzero tempera-
ture for two-dimensional isotropic systems, while on the
other hand, layered materials with extremely weak inter-
layer coupling are found to exhibit long-range order at
finite nonzero temperatures,>* interlayer coupling must
play an important role in the stabilization of three-
dimensional order in layered magnetic systems.

For layered antiferromagnets, the dependences of sub-
lattice magnetization® and specific heat® on the interlayer
coupling strength have been found for low temperatures;
the Néel temperature is zero in the two-dimensional case
(J,=0).” For layered ferromagnets, the dependence of
the Curie temperature on the interlayer coupling strength
is similar to that of the Néel temperature;® Colpa’s nu-
merical work® shows the effect of interlayer coupling
strength on the specific heat to some extent, but his
analytical expression is not entirely satisfactory for
describing the effect. Because the relationship between
magnetization and interlayer coupling strength at low
temperatures merits further studies, we consider in detail
the effects of the interlayer coupling strength on the mag-
netization and specific heat in layered ferromagnets with
S =%, using numerical and analytical methods. For sim-
plicity we start with a simple-cubic-lattice Heisenberg
model with layer and interlayer lattice parameters, re-
spectively, @ and ¢. The model Hamiltonian is

H=— 2 Jljsl.sj ) (1)
ij)
where the summation is taken over all nearest-neighbor
sites (i,j ). We also define J;; for convenience:
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J if sites i and j
are in the same layer ,
Ji= 17, if sites i and j

are in two nearest-neighbor layers .

After performing the Holstein-Primakoff transforma-
tion on S; and §; and introducing the spin-wave opera-
tors a,:r and a;, we may rewrite Eq. (1) in harmonic-
oscillator form

_ (2+8)NJ

H= >

+ 3 #wala; , 3)
k

where N is the total number of the lattice sites, 6=J, /J,

and fiw, is given by the dispersion relation

fiw, =2J [2+8—cos(k,a)—cos(k,a)—8cos(k,c)] . (4)

Thus, we can calculate such physical quantities of system
as the magnetization, internal energy, and specific heat,
and so on.

The magnetization per site m (the unit is taken to be

gup) is given by
m=S—- [expBhiw,)—1]""
N k

—1— S exp[—202+8)nBI1Io(2nI) Lo(26nBT) ,

n=1
(5)

where B=1/kyT and I is the zeroth-order Bessel func-
tion of imaginary argument. In deriving Eq. (5), we first
expanded the Bose distribution function in powers of the
exponential, replaced the summation over k by an in-
tegral over k, and performed the integral.

Similarly, by use of the definition E ={H ) /N, we may
obtain the internal energy per site,

X {204(28nBI) [ Iy(2nBJ)—1,(2nBJ)]+81(2nBI)[1(26nBJ)—1,(26nBJ)]} , (6)
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where I, is the first-order Bessel function of imaginary
argument. From C,, =dE /3T and Eq. (6), we obtain the
specific heat per site,

C, /ky= % S (Bfior, Vexp(Bhw, [exp(Bhiw, ) —1]72 .
k

@)

We calculate numerically the magnetization and
specific heat per site for various temperatures and inter-
layer coupling strengths based on Egs. (5) and (7). The
results are plotted in Figs. 1 and 2, respectively. It is
shown that the Curie temperature (the intercept of a
curve with the abscissa axis in Fig. 1) approaches zero at
a very slow rate as the interlayer coupling strength
J,=38J approaches zero. Although the Curie tempera-
ture that we obtained is very rough because of the simple
method that we used, its functional dependence on 9 is in
agreement with that expressed asymptotically for small
values of 8.8 As to the specific-heat curves in Fig. 2, they
asymptotically approach closely the curve corresponding
to the two-dimensional case (8 =0) for small 6.

Now we investigate the behavior of the magnetization
and specific heat at low temperatures, using an analytical
method. The low-temperature regime, which is defined
by 2B8J>>1 (or T <<T;=2J/kp), may be divided into
two parts according to the values of J,: the first part is
T <<Ty=T,; the second is Ty <<T <<T,;. Here T, is
defined as Ty, =2J, /kp.

(a) For the first low-temperature regime T <<T, =T},
which corresponds to the three-dimensional case, we ob-
tain, employing asymptotic expressions of Bessel func-
tions from Eq. (5),
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FIG. 1. Temperature dependence of the magnetization per
site for several values of the interlayer coupling strength:
8=1.0 (curve A4), §=0.5 (curve B), §=0.1 (curve C), §=0.01
(curve D), =0.001 (curve E), and §=0.00001 (curve F).
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where § is the Riemann zeta function. The leading term
due to thermal spin-wave excitation is just the well-
known T°/2? law of Bloch describing the deviation from
the maximum value at 7=0. Similarly, from Eq. (6), we
obtain

E/2J=__m
4
I I I o
202m)*? | T, T,
5 5(26+1) 7 T
x —_— —_— —_— —_— .. .
S1217 2 42 T, + ]
9)
The specific heat per site is found to be
c e 15 [T ][ ]”
"B 42 | Ty || T
sl a@s+n (1)), ..
Xl |72 42 T, | T ’

(10)

of which the leading term in T3/2 also reflects the three-
dimensional magnetic character of the system. One finds
readily that, for 8§ equal to 1, the magnetization, internal
energy, and specific heat per site are just those given by
the long-wavelength approximation for the simple cubic
lattice. The temperature regime reflecting the three-
dimensional character of the system becomes smaller
with decreasing interlayer coupling strength, as can be
seen from the definition of T, and the asymptotic condi-
tions; when interlayer coupling strength drops below a
certain value, the regime approaches zero and the system
actually exhibits quasi-two-dimensional, rather than
three-dimensional properties. So the above given expres-
sions are not appropriate for discussions of the quasi-
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FIG. 2. Temperature dependence of the specific heat per site
for several values of the interlayer coupling strength: §=1.0
(curve 4), 8=0.5 (curve B), §=0.1 (curve C), §=0.01 (curve
D), and 6=0.0 (curve E).
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two-dimensional case. The second low-temperature re-
gime is precisely this case.

(b) For the second low-temperature case,
To<<T <<T,, which describes the quasi-two-
dimensional case, we first transform I,(26nfJ) and
I1,(26npJ) into integrals respectively in Eqs. (5) and (6).
Employing asymptotic conditions and summation over n,
we find, after a lengthy integration,

1 1 T 2T
T2 T, T, an
and
2+8 |, §2) | T 5 T
E/J=—"""2+ — |-+ 12
/ 4 2r | T, 2 T, (12)

The specific heat is found to be

__ 8 T
R e (13)

With these expressions, we can discuss the quasi-two-
dimensional case. From Eq. (11), we find that the second
term diverges logarithmically as T, (or J,) tends to zero.
As a result, in the two-dimensional case there is no long-
range order above zero temperature. In other words, in

order to get ferromagnetic ordering at finite, nonzero
temperatures, J, must be nonzero. The argument is very
similar to that for quasi-two-dimensional antiferromag-
nets.” Because the first term in Eq. (13) is much smaller
than the second term, the specific-heat curves for small
values of § are very close to that of the two-dimensional
case (6=0), which is a straight line. For §=0, we have

kpT
c, /k3=§%lz0.262 2 (14)

T, J

which is just the result of the long-wavelength approxi-
mation for two-dimensional ferromagnets.

In summary, at low temperatures (T <<2J /kp), as the
interlayer coupling strength tends to zero, the correction
due to thermal spin-wave excitation to the magnetization
diverges logarithmically at finite, nonzero temperatures.
For weak interlayer coupling (0<J, <<J), the tempera-
ture dependences of the magnetization and specific heat
initially show three-dimensional behaviors as the temper-
ature increases from T=0 (0=T <<2J,/kg), but then
show quasi two-dimensional behaviors as the temperature
moves into the second regime (2J, /kg <<T <<2J /kp).
As the interlayer coupling strength J, approaches J
(J, ~J), only three-dimensional behaviors are retained.
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