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Biaxial order in spin nematics
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We study a model of a spin nematic based on two spins Si =1 and S2 =1 on each site. The couplings
favor perpendicular configuration of S, to S2 and parallel alignment of the S, and the S2 spins, respec-
tively. Four phases were found, including isotropic, two uniaxial, and a biaxial phase. The phase dia-

gram is reminiscent of but different from liquid-crystal nematics.

Spin nematics are a class of quantum or classical spin
models with biquadratic couplings, and have been studied
for some time. Interest in these models has broadened
considerably because of possible connections with high-
temperature superconductivity. '

Spin nernatics may display orientational order at
suSciently low temperatures but the mutually opposite
directions are equivalent, in analogy to liquid-crystal
nematics. The usual picture of a phase diagram of a
liquid-crystal nematic contains first-order lines that
separate the isotropic phase from uniaxial nematic phases
(prolate and oblate. ) The two uniaxial phases are separat-
ed by a biaxial region in which the system is anisotropic
in all three directions. The boundary between uniaxial
phases and the biaxial phase is a second-order transition.
All four phases meet at a single point, sometimes called
the Landau point (for reviews see Refs. 5 and 6). Howev-

er, Allender and co-workers ' studied Landau type phe-
nomenological theories which for certain ranges of pa-
rameters yield phase diagrams that have shapes some-
what different from the standard picture, in particular,
there are no points where all four phases meet.

In this short paper we would like to explore the sirni-

larities and differences between liquid-crystal nematics
and spin nernatics in more detail. Uniaxial phases, usual-

ly referred to as quadrupolar orderings, were already
found by Andreev and Grishchuk and by Buzano. ' One
of our purposes has been to find a model displaying a bi-
axial phase. To this end we place two spins S, =1 and

Si =1 on each site of a lattice (the nature of the lattice is
irrelevant, since we are going to use mean-field theory).
There is a strong coupling —G&(S& Si), G& &0 between

the two spins on each site. This coupling favors a
configuration that best approximates the classical limit in
which S1 and S2 are perpendicular to each other. The
two spins form a unit, a kind of "molecule. " The mole-
cules on different sites interact via two couplings

—g, (s, SI) —g2(S2'S2), gl g2 )0,
which at su%ciently low temperatures, tend to align the

S1 spins in some direction +n and, at still lower ternpera-
tures, the S2 spins will align along some direction +m in

the plane perpendicular to +n. The couplings g, and gz
are constants and do not depend on the distance between
the sites (mean-Seld assumption. )

The Hamiltonian describing this two-spin system is

Sy 1

0

a 0
S'= 00 a

0 0 —1

We choose the basis that diagonalizes S;+Sz and S,
S=S,+S2 (for the case of 2 spin 1/2's see Refs. 11 and
12).

The spin eigenfunctions with

ISI =2 ands, .si= —,'S(S+1)—2=+1

are given by

l2, +2& =
I 1,+1;1,+1),

I2, +1&= —(Il, +1;1,0&+ I 1,o;1,+1&),
2

(6)

- (I 1, 1;1,—1&+21l, o; l, o&+ I 1, —1;1,») .
6

The next set of eigenfunctions with ISI=1 and

S, S2= —1 are energetically degenerate with the ISI =2
states

ll, +» =+ —(ll, +1;1,o& —
I 1,o; 1,+»),

2

Il, o&= 1—(I 1, 1; 1, —1 &
—

I
1 —1; 1, 1 ) ) .

2

The last spin eigenfunction, with IS I =0 and S, S2 = —2,
is frozen out and does not affect the behavior of the sys-
tem at low temperature when G3 is large in absolute

NI — y— [g,(s„s,~) +gi(s2, si~)
a, b =1

+Gi5,q(S|, S2, ) ],
where the sum is over N lattice sites, and the spin-1
operators are given by

0 1 0
S"= 1 0 1

1
(2)

0 1 0

0 —1 0
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value and negative

Io, o&= (Il, l;1,—1& —Il, o;l,o&+ll, —1;1,1&) .
3

MI =&s',sj ),
Mj=&s,'sj), (12)

To introduce the mean-field Hamiltonian we define

(10) where the averages are defined by a self-consistency con-
dition to be formulated presently. The mean-field Hamil-
tonian is now given by

HMF G)S)S)M|'+ g G2S2S]Mj +G 3(S, S2) (13)

where G1=Ng1, and G2=Ng2.
Now we close the system by defining the averages as

9

& 0 ) =—g &p IO exp( PH „—)Ip ),
p=1

(14)

where 0 is an arbitrary operator, P= 1/T is the inverse of the temperature, and the normalizing factor Z is the one-site
partition function,

Z= g &plexp( —PHMF)lp& .
p=1

(15)

By choosing the coordinate system to coincide with the proper axis of the molecules, we set the off-diagonal elements to
zero, leaving us with the six mean-field variables, M 1",M 1~, M1, M2", M~2, and M2.

We solve these equations numerically, using a self-consistent approach. First we calculate the matrix elements
&pls|sflq), &pls~|srlq), . . . , &plS2S2lq), &pl(S, S2) Iq), where p, q=l, . . . , 9, then substitute into the symmetric
Hamiltonian,

&plHMFlq &= G& g &pls'|s'j Iq &M'j'+G2 g &plsp2lq &M2+G3&pl(s|'S2) Iq &

i =Z,y, Z l =Z,g~Z

(16)

Choosing suitable initial values for our mean-field variables we compute the Hamiltonian, invoke the standard
(EISPACK) routines' ' to find the eigenvalues and eigenvectors, then compute the mean-field variables

9
M", =— g U~~ & q ISIS'j Ir & U U~„& v Iexp( —PHMF ) lw & U

pqrsuw =1
9

Mz =— g Urt & q I Szsz I
r ) U Ut

& v I exp( —PHMF ) I
w ) U

pqrsuw =1

(17)

(18)

Q,„„=&s",s", &
—

—,'&s, .s, &, (20)

where i =x,y, z, and U is the normalized matrix of eigen-
vectors of HMF. If we let Ep be the energy eigenvalue
corresponding to the pth eigenvector, then we find

9

U,„&v Iexp( PHM„)lw ) U —=5,rexp( PE~), —
u, w=1

(19)

so that the expectation values for the mean-field variables
simplifies to a rotation and a trace weighted by a
Boltzmann factor.

Ifjust one of the new expectation values differs from its
previous value by more than 10, the calculation is re-
peated, the new expectation values are substituted into
the Hamiltonian and another set of eigenvalues and
eigenvectors are calculated. This process is continued
until the mean-field variables converge to a stable solu-
tion.

After we have found the solution, we plot the following
order-parameter functions

Q,„„—&s,s, ) —
—,'&s, s, & . (21)

The Q, , Q, , Q2~, and Q2 are defined analogously.
The identity M1 +M1 +M1 =2 is used as a check on
the accuracy of the numerical calculations. In addition
the results &S&) =0 and &S2) =0, indicate that we have
quadrupolar ordering in the uniaxial and biaxial phases
and no dipolar order.

The following symmetry can be exploited. In finding
the lines of the phase diagram we can limit the values of
G2 to the region G2(G1. We find that the transition
temperatures are related for different G2's, given by the
expressions T'=(G, /G2)T when G', =G&,Gz =Gf /G2
and 63 =(G, /G2)63. When the parameters were accu-
rate to 10, our model produced a transition tempera-
ture that agreed with the predicted conjugate transition
temperature to eight decimal places.

However, for the case of large and negative G3, the
states

I
S

I

=0 are frozen out, and since the I S I

= 1 and
ISI =2 states both have equal single-site energies of —G3,
we see that G3 should not affect the transition tempera-
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ture. When 6, =7 and 63 = —10, we find that 62 = 10 is
conjugate to 62=4.9 and the transition temperatures
differ from the predicted conjugate temperatures by less
than 0.3%%uo. The agreement between conjugate tempera-
tures is even better for G, =7 and 63 = —50, comparing
62 =10 and its conjugate G2 =4.9, we see that the transi-
tion temperatures differ from the predicted conjugate
temperatures by less than 0.07%%uo. For fixed values of 6,
and G2, an 80%%uo drop in the magnitude of 63= —50
caused the transition temperatures to change by less than
1%. To estimate when 63 is "large, " we compare the
single-site energy factors that contribute to the partition
function. When 63 = —1, and taking the transition tern-

perature to be of the order of T =2, we find

. -:.%zz

C&

2.6

~2zz
'I

2.56
I

2.58

2.61

1

2.6
Temperature

2.62

G1 ——7, G2 ——6.7, G3——-50

2.64

exp(P63(~S~=1 or 2~(S, Sz) ~~S~=1 or 2))=exp(P63)

is the same order of magnitude as

exp{PG3 (0~(Si S2) ~0) }=exp(4PG3 ) .

When G3 = —10, exp(4PG3 } is over a million times small-

er than exp(PG3 ), and for G3 = —50, exp(4P63 } is small-

er than exp(P63) by 32 orders of magnitude. Therefore
we can safely ignore the effects of 63 on the transition
temperature when 63 ~ —10.

The phase diagram was computed by selecting a value
of G2 and examining the order-parameter functions
versus temperature. In order to locate the transition tem-
peratures we divide the temperature axis into decades, we
start out with some temperature and examine the ten in-

crements spaced by hT, the transition temperatures were
identified manually at a precision of hT, then the pro-
gram was run over again with the change in temperature
b T smaller by a factor of 10. First-order transitions were
fairly quick to converge, usually less than 10 iterations,
while second-order transitions took as much as 100 times
longer when b T= 10 . Since higher accuracy was not
required for our phase diagrams, smaller hT values were

used for only a select number of points.
The phase diagram shown in Fig. 1 has a first-order

FIG. 2. Order parameter functions for G t
=7,

G&=6.7, 63= —50. Solid points are the S& order parameter
functions, the open points belong to S2 order parameter, and
ET=10 near the transition point. The inset is an expanded
view of Q, and Qz».

transition from the isotropic phase to the uniaxial phase.
We find a fairly broad range of values of 62 where the
system undergoes a first-order transition from the iso-
tropic phase to the biaxial phase, the sharpness of the
transition decreases slightly as G2 moves away from 61
(Fig. 2 shows the behavior of the order parameters when

62 is near the end of the line of isotropic-to-biaxial phase
transitions).

The line of uniaxial-to-biaxial phase transitions is first
order for the observed values of Gz and for 63 in the

range —0.1~63~0. As 63 gets stronger this transition
weakens considerably, and, as shown in Fig. 3, for

6& =7 Gg =6 63 = 10, there is a second-order transi-

tion. The jump in Q2 and (b,Qz ) is shown in Fig. 4.
The square of the jump in Qz is a straight line that in-

tersects the axis at 62 =6.38; we identify this value to be
the tricritical point dividing the two types of transitions.

Phase diagram, G1=7, G3=-50
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FIG. 1. Phase diagram for G, =7, G3 = —50 displays an iso-

tropic (I) phase, alignment of only spin-1 (S& ), alignment of only

spin-2 (S&), and a biaxial phase (B). The isotropic-to-uniaxial
and isotropic-to-biaxial phase transitions are first order, while

the uniaxial-to-biaxial phase transitions are second order from
62=3 to about 62=6.1, and first order from 6.1~6& 6.7.
The inset shows the central portion of the diagram in detail.

2.45 2.5
Temperature

2.55 2.6

FIG. 3. Order parameter functions for G
&

=7,
62=6,63=—10. The solid points correspond to the S& order

parameter and the open points are the S& order parameter func-

tions; hT= 10 near the transition points. Note that when one

spin aligns, 63 induces alignment in the other spin.
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FIG. 4. The top curve is the discontinuity in Qz at the line

of uniaxial-biaxial transitions. The lower curve is the square of
the jump in Qz . The lower curve is nearly a straight line that
intersects the axis around 6.38. We take this value to be an esti-

mate for the tricritical point. The inset shows the location on
the phase diagram. The arrow points to the tricritical point.

The inset in Fig. 4 displays an expanded view of the
phase diagram, and indicates the location of the tricriti-
cal point.

Even for values of 63 as small as 63 = —0.2, where the
isotropic iSi =0 state contributes substantially to the ex-
pectation values, we observed a line of second-order
uniaxial-to-biaxial phase transitions meeting a line of
first-order uniaxial-to-biaxial phase transitions. This
seems to be a fairly robust feature of the model that is not
dependent on the suppression of the iSi =0 state.

We would like to compare the phase diagram of our
model with those for nematic liquid crystals.
The latter are obtained from mean-field theories of in-
teracting anisotropic particles (ellipsoids) or from phe-
nomenological theories of the Landau type. With the ex-
ception of Ref. 8, they are all characterized by the pres-

ence of a multicritical point at which all phases meet. In
particular all mean-field models yield diagrams of such
topology. However, Allender, Lee, and Hafiz studied a
Landau-type theory of a very general kind (11 parame-
ters) and showed that in a certain range of the parameters
the multicritical point is replaced by a curvilinear seg-
ment of first-order transitions where the isotropic and bi-
axial phases meet, just as in our model. The uniaxial-
biaxial transitions are not described in sufhcient detail in
Ref. 8, specifically, it is not clear if there exist two tricrit-
ical points dividing the uniaxial-biaxial lines as we found
in our model of a spin nematic. The theory of Allender,
Lee, and Hafiz contains a large number of parameters
and it is not unexpected that a wide variety of phase dia-
grams are consistent with it. On the other hand, our
model is very simple: it contains three coupling con-
stants, of which only two ratios matter and thus is more
reminiscent of classical infinite range interaction models.
It is perhaps surprising that we obtained a diagram that
is qualitatively different from all the other ones based on
microscopic models.

Finally, we wish to comment on the assumption of
infinite range interactions. Such an assumption has the
effect of suppressing fluctuations. The question arises, to
what extent could our conclusion change in a more realis-
tic theory, which takes fluctuations into account. We can
offer a general argument that the central portion of the
phase diagram (consisting of the first order I-B line and
first-order portions of the B-S, and B-S2 lines) will be
qualitatively unaffected by fluctuation. Since the first-
order transition takes place between two metastable
states, the fluctuations, while in general not negligible,
are nevertheless not catastrophic as is the case for the
second-order transition. This gives us reason to believe
that the first-order transitions will remain qualitatively
unchanged even when fluctuations are included.

iE. L. Nagaev, Usp. Fiz. Nsuk 138, 61 (1982) [Sov. Phys. Usp.
25, 31 (1982)].

~P. Chandra, P. Coleman, and I. Ritchey, J. Appl. Phys. 69,
4974 (1991).

V. Barzykin, L. P. Gor'kov, and A. V. Sokol, Europhys. Lett.
15, 869 (1991).

4P. G. de Gennes, The Physics of Liquid Crystals (Clarendon,
Oxford, 1974).

~Y. Galerne, Mol. Cryst. Liq. Cryst. 165, 131 (1988).
E. F. Gramsbergen, L. Longa, and W. H. de Jeu, Phys. Rep.

135, 195 (1986).
7D. W. Allender and M. A. Lee, Mol. Cryst. Liq. Cryst. 110,

331 (1984).
D. W. Allender, M. A. Lee, and N. Ha6z, Mol. Cryst. Liq.

Cryst. 124, 45 (1985).
A. F. Andreev and I. A. Grishchuk, Zh. Eksp. Teor. Fiz. 87,

467 (1984) [Sov. Phys. JETP 60, 267 (1984)].

C. Buzano, Phys. Scr. 37, 573 (1987).
iiS. Flugge, Practical Quantutn Mechanics II (Springer-&erlag,

Berlin, 1971).
J. L. Cadorin and W. Figueiredo, Phys. Status Solidi B 153,
K73 (1989).
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes in C (Cambridge University
Press, Cambridge, 1988).
B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y.
Ikebe, V. C. Klema, and C. B. Moler, Matrix Eigensystem
Routines - EISPACK Guide, 2nd ed. (Springer-Verlag, Berlin,
1976), Vol. 6.

M. J. Freiser, Mol. Cryst. Liq. Cryst. 14, 165 (1971).
R. Alben, Phys. Rev. Lett. 30, 778 (1973).
J.P. Straley, Phys. Rev. A 10, 1881 (1974).
N. Boccara, R. Mejdani, and L. De Seze, J. Phys. (Paris) 38,
149 (1977).


