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%e examine aspects of the dispersion relation of spin waves in ultrathin ferromagnetic films. %'hen

the easy axis is normal to the surfaces, and an external field is applied parallel to the surface, we find the

state of uniform magnetization to be unstab1e, for magnetic fields in the near vicinity of that for which

the magnetization just becomes parallel to the surface. %e present results of a study of the temperature

variation of the spin-wave dispersion relation, as a consequence of interactions between spin waves.

From the structure of the result, we comment on the nature of the spin reorientation transition observed

by Pappas, Kamper, and Hopster. It is noted that an earlier study of temperature-dependent renorma1-

ization of thin film parameters reported by Pescia and Pokrovsky overestimates the magnitude of the

temperature corrections.

I. INTRODUCTION

Currently, there is great interest in the magnetic prop-
erties of ultrathin ferromagnetic films grown on various
nonmagnetic substrates. These films are one or, perhaps,
very few atomic layers in thickness and thus provide a
realization of truly-two-dimensional (2D) magnetic
matter. Ultrathin films on Fe on Ag(100) (Ref. 1),
Cu(100) (Ref. 2), and W(110) (Ref. 3) have been the sub-
ject of considerable activity.

If such films are truly two dimensional and if one as-
sumes that they belong to the same universality class as
the two-dimensional Heisenberg ferromagnet, then long-
range magnetic order should be absent. In fact, such
films exhibit long-range order. There is, in these materi-
als, very strong uniaxial anisotropy normal to the surface.
This anisotropy, counteracted by the influence of magnet-
ic dipole couplings, may lead to an easy axis normal to
the surface. The uniaxial anisotropy then leads to the
long-range order in this instance. The anisotropy con-
stant may be such that the axis normal to the surface is a
hard axis; the magnetization then lies in the plane. Yafet,
Kwo, and Gyorgy argue that in this case the presence
of long-ranged dipolar couplings suppresses long-
wavelength spin fluctuations sufficiently that long-range
order is stabilized.

Pappas, Kamper, and Hopster observe that, for an ul-

trathin film magnetized normal to the surface at low tern-

peratures, the magnetization evolves into a state parallel
to the surface at high temperatures. The experiments are
carried out in zero external field. We refer to this
phenomenon as spontaneous spin rotation. The purpose
of this paper is to explore aspects of this phenomenon of
spontaneous spin rotation and also to describe an insta-
bility of the state of uniform magnetization that can be
induced by applying a magnetic field parallel to the sur-
face. The origin of this instability is in the magnetic di-
pole interaction between moments. Its long-ranged char-
acter is essential; there is thus a relation between the in-

stability discussed here and the domain structure dis-
cussed earlier by Yafet and Gyorgy and subsequently ob-

served by Allenspach, Stampanoni, and Bischoff
Let T2 be the ordering temperature of the film, and

suppose T « T2. Then spin waves are the elementary ex-
citations of the film. We have studied the temperature
dependence of the spin-wave dispersion in such films.
The temperature variations have their origin in the in-
teraction between the long-wavelength spin wave of in-
terest here and thermally excited magnons in the film.
We show how a theory of spontaneous spin rotations
evolves from this analysis. We have also encountered an
intriguing instability not noted in the earlier literature.

In our analysis we use a nearest-neighbor Heisenberg
exchange Hamiltonian, supplemented with single-site an-

isotropy and dipolar coupling, recognizing this to be a
phenomenological procedure for an itinerant-electron
material such as Fe. Our attention is confined to the
monolayer. We begin by summarizing various tempera-
ture and energy scales, since their (assumed) relative mag-
nitudes enter our considerations importantly. There is

AQM, with Q~ the maximum spin-wave frequency. Since
exchange is very strong compared with either anisotropy
or dipolar coupling, A'QM -——4JS for the film with spins S
and exchange strength J. We also define T~ by the rela-
tion fiQ~=k&T~, with kz Boltzmann's constant. The
ordering temperature T2 is controlled by the weak anisot-

ropy, and so Tz & T~. The spin-wave regime explored
here is the region T & T2. Clearly, RQ~ is large com-
pared with k~ T, and so quantum statistics must be used
to treat the short-wavelength spin waves and their
influence on the film's thermal properties. In earlier
work, Pescia and Pokrovsky examined temperature-
dependent renormalizations of the parameters which
characterize ultrathin films. In their work, classical sta-
tistical mechanics was used to describe all spin fluctua-
tions in the film, including those of short wavelength with
frequency in the range AQM. We shall see that this led
them to overestimate substantially the magnitude of the
renormalization effects in the domain T & T2. Finally, in

general, there is a gap in the spin-wave spectrum we call
fiQO(0). This is controlled only by the combination of an-
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isotropy, external field if present, and the dipolar cou-
plings. Thus, it is the smallest energy in the problem.
We have RQo(0) «kt( T.

where

A, (k~~ ) =H sin8+H„cos 8

II. CALCULATIONS

vrMokllao+ — [1—cos(2$)]+D~k l, (2a)

In earlier papers ' ' "we have examined the behavior of
spin waves in very thin films with dipolar and anisotropy
effects modeled microscopically, and we have explored
their thermodynamic properties at temperatures
sufficiently low that the spin-wave dispersion relations are
well approximated by their low-temperature form.

We first begin with a discussion of the behavior of
long-wavelength spin waves in the ultrathin film. We
suppose the film has uniaxial anisotropy H~ normal to
the surface, taken to be the z direction. This arises from
single-site anisotropy of the form —KS, . Then
H ~

=2ES, and when H ~ )0, this anisotropy acting
along will render the axis normal to the surface an easy
axis. Dipolar interactions lead to an effective anisotropy
field H g

=H g 47TMO c I, with Mo the magnetization per
unit volume of the bulk material and c, a number close to
unity, dependent on the microscopic structure of the film.
(In macroscopic theory, c, = 1, while for the 2D square
lattice, c, =0.762). The requirement for the surface nor-
mal to be an easy axis is 8„&0. When H„&0, the mag-

netization lies in plane.
Now we imagine, as in the experimental arrangement

used by Dutcher et al. ,
' that there is an external mag-

netic field H applied parallel to the surface of the film in
the x direction. If H~ & 0, the magnetization lies in the
x-z plane, canted with respect to the film normal by the
angle 8. One has" sin8=H/H„, when H & H„, and

8=m /2, for H & H„.
In our earlier work, ' ' " and that of others, ' it was as-

sumed that this picture applied for all external fields H.
In fact, we shall see shortly that there is a most interest-

ing instability in the system for fields in the very near vi-

cinity of H ~ . This instability in fact was encountered as
an anomaly in our earlier study of spin-wave dispersion
in ultrathin films, but was erroneously dismissed as a
consequence of limited numerical accuracy very con-
siderable accuracy was indeed required to generate the
results in this paper, but we now appreciate that the
anomaly is real.

%e have obtained the long-wavelength form of the
spin-wave dispersion relation in the ultrathin film for the
model described above. %e use the method described by
Yafet, Kwo, and Gyorgy to evaluate the dipole sums in

the limit of small wave vector kll. The terms linear in kll,
which enter their discussion in a central manner, enter
crucially in generating the instability for external mag-
netic fields near H ~ .

Let P be the angle between the wave vector k~~ and x-z
plane. We find the zero-temperature spin-wave disper-
sion relation to be, ignoring the small contribution of the
dipolar contributions to the terms quadratic in the wave
vector,

0 (k~~)=[A (k~~)A (k~~)]

A ~ kll H sin8+H„cos(28) —i/2mMok

mMok
~~

ao+ — [1+cos(2$}]cos8+D~k~~ . (2b)
2

In these expressions, Dz is the exchange constant of the
monolayer, equal to D/2 in our model, where D is the
bulk exchange constant (this assumes the exchange cou-
plings within the film have the same magnitude as in the
bulk).

Suppose H~ & 0, and so in zero field we have a film

with magnetization normal to the surface. Then let H be
well above H„, and so 8=sr/2. The external field has
forced the film into the in-plane state. Then '

M,
klan

a
A, (ki~ ) =H+ — [1—cos(2(t, ) ] +D~k

ii
(3a)

and

(k~~~ ) =(H —Hg )
—i/27pMok~~ao +Dpk

~~

(3b)

Note that Az (k~~) has a minimum at k~~@0 when

k~~ =k~~ '=mMoao/&2Dz. At the minimum,

2 2 2

A; (k'„"' )=(H —H„)— Moa 0

2

As H is lowered toward H„ from above, A z (k~~ '}

vanishes at a field we call the upper critical field H,
given by

2 2 2Moa o
H =H +-

c A 2D 2

The spin-wave frequency is pure imaginary when

H„&H & H, , and so in the Jield regime H~ &H &H,
the uniformly magnetized in plane state is-unstable We.
suggest that the uniform state breaks up into linear
domains whose linear dimensions are the order of
1/k

~~

'. Typical parameters (Mo —1.5k G,
Dz —1.5X 10 Gcm, ao —3X 10 cm) give k~'~~

' —10
cm ' and H, —H~ = 10 G.

Now suppose H & H~, so that the magnetization is

canted and 0 & 0 & ~/2. If, in fact, 0 is very close to but
just slightly less than ~/2, then, to good approximation

A 2' (k l)—=2(HA —H )
—v'2~Mokllao+D2kll (6)

We again have an off-center minimum in A z (ki ) at k
~~

but now

M a
A (k' ~) =2(H H)——

Il

2

The uniform state is now unstable above a lower critical
field
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~2M2~ 2

H'=H-
4D

'
2

Thus, in the regime H, &H & H, , the uniform state is
unstable with respect to breakup into a linear pattern
whose length scale is set by the inverse of kII

'. In light-
scattering experiments such as those reported in Ref. 12,
one should observe anomalous elastic scattering of light
in this field regime. Since k

~II

' is 10 cm ', analysis of its
angular distribution can provide information on the na-
ture of the magnetic structure present in the film, in prin-
ciple. We have theoretical studies of the magnetic struc-
ture of the film in this field regime underway. Examina-
tion of the eigenvector of the "soft spin wave" suggests
that the film. acquires an out-of-plane component of the
magnetization when H, &H &H, . The domain struc-
ture should thus be similar to that discussed by Yafet and

&y«gy.
We now present results of our analysis of the tempera-

ture dependence of the spin-wave dispersion relation. We
keep the instability just described in mind in this discus-
sion. We have proceeded as follows. We carry out the
Holstein-Primakoff transformation for the model mono-
layer described above. Linear terms in the annihilation
and creation operators vanish if sin8=H/Hz, as dis-

cussed earlier. ' Continuing on, one encounters quadra-
tic, cubic, and quartic terms, where we stop. We treat
the quartic terms in lowest order of perturbation theory
as described below to generate the temperature correc-
tions discussed here. The cubic terms have their origin in
the magnetic dipole interactions or when 8%0 or m. /2 in
the single-site anisotropy as well. We assume, as estab-
lished for the bulk problem, ' that the inhuence of the cu-
bic terms taken to second order of perturbation theory is
small. (Note, however, that the cubic terms taken to
second order contribute to the same order in the basic ex-
pansion parameter 1/S as the quartic terms taken to first
order. ) The role of the cubic terms will be explored else-
where, ' where a full description of the calculations will

be presented. Here we shall use the results to discuss the
properties of the film.

Our earlier discussion' of spin waves at T=0, upon
which the derivation of Eq. (1) is based, uses equations of
motion for the annihilation and creation operators aI,

Ii

and a &, which are coupled in the presence of dipolar
II

coupling and anisotropy. These equations of motion con-
tain certain dynamical matrices D'+'+(kII), D'+' (kII),
etc. , from which the spin-wave dispersion is obtained
after diagonalizing the appropriate 2 X 2 matrix of these
objects. We have developed a diagrammatic Green's-
function method within which a self-energy matrix.

&++(kII,co), X+ (kII, co) is generated, in a manner similar
to early versions of the theory of superfluidity in dilute
Bose gases. ' To lowest order in the quartic terms (the
one-loop diagram and its partner, which gives exchange
corrections), we generate the leading corrections to
D'+'+ (kII), D'+' (kII), etc , and evalu. ate these in the long-
~avelength limit. The calculations are quite complex
and, as remarked above, are described elsewhere. '

The result of this analysis, for values of H su%ciently

far removed from Hz for the role of the linear terms in
the spin-wave dispersion to be ignored, is that Eq. (1)
continues to describe the spin-wave dispersion, but now
Hz and D2 are replaced by temperature-dependent
parameters H„(T)=H„+bH„(T) and D2(T)=D2
+bD2(T) F.or the monolayer we thus arrive at a con-
clusion identical to that of Ref. 13, where it was demon-
strated that at finite temperature, with small effects from
cubic terms set aside, the T =0 formula for the spin-wave
dispersion still applies to leading order in temperature
corrections.

We find the results

b,H„(T) A(kII)
(9)

and

b,D2(T)

D2

ao 2
A (kII)

4N S II Q (k )
(10)

where

A(kII)=H sin8+H„(1 ——', sin28}

n(kII}= [exp[iriQO(kII)/kgT]—

is the Bose-Einsein function.
We may also calculate, within standard spin-wave

theory (no renormalization effects), the temperature vari-
ation of the film magnetization Mo( T). We find

Mo(T)/Ma= 1 b, (T), where h(T)—has a form identical
to the right-hand side of Eq. (9), except the factor of 2 is
missing. Thus, at least initially, we find that Hz ( T) de-

crease with temperature twice as fast as the film magneti-
zation. This will be important for what follows.

Consider the case where the external field H vanishes
and Hz &0; so 8=0. Then Qo(kII) =H„+D2kII, and the
right-hand sides of Eqs. (9) and (10) are readily evaluated
to give, in the limit RQo(0}((k~ T,

Hq (T) aok~ T k~ T=]- in
4MD2S A'Qo(0}

and

D2(T) ao k~T=1-
D2 32mS AD2

(12)

Here g(2) is the Riemann zeta function of argument 2.
We turn next to a discussion of the implication of these
results.

+ v 2n Mok
II
ao [1——', sin 8—

—,
' cos(2$ )sin 8]

+D2kII .

Here NII is the number of unit cells in the film [the lat-
tice is arranged so we have an atom at the origin and four
neighbors at (ao/2)(+xky) ], and
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III. RESULTS AND DISCUSSION

H„(T} ka&oT= 1 — ln[kxt( ],
H ~

2m.AD2S
(13)

where g =[Dz/Qo(0)]' /2 is the correlation length
which entered our earlier discussion of the nature of spin
fluctuations in ultrathin films at low temperatures [see
Eq. (38a) of Ref. 9, and suppose the external field is ab-

sent].
The result in Eq. (13) is equivalent to the result found

by Pescia and Pokrovsky, save for the difference in nu-

rnerical prefactors mentioned above. Their application of
classical statistical mechanics to all spin Auctuations, in-

cluding the large number of spin Auctuations with excita-
tion energy AQ~ &&k~T, has led them to overestimate
substantially the magnitude of the renormalization effects
in these systems.

We are not the first to note that quantum theoretic
methods are required in the analysis of spin Auctuation
effects in ultrathin films at low temperatures. For exam-

ple, in their study of the two-dimensional spin- —, antifer-

rornagnet, Chakravarty, Halperin, and Nelson' note the
necessity of using quantum theoretic methods in such
problems and have developed a renormalization-group

We first compare our results with those of Pescia and
Pokrovsky. These authors begin with a model Hamil-
tonian with dipole-dipole interactions of strength 0
(analogous to our parameter Mo in the spin-wave disper-
sion), uniaxial anisotropy of strength A, (analogous to our
H„), and exchange couplings of strength I (analogous to
our D2). They generate temperature dependences of
these T=O parameters by means of a renormalization-
group analysis.

We find our H„and Mo (as they enter the equations of
motion for spin waves) to be renormalized in precisely the
same manner, and so in the end the renormalized spin-
wave dispersion relation may be expressed in terms of the
single effective anisotropy field H„(T). Pescia and

Pokrovsky find the same functional dependence on tem-
perature for their two parameters A, and 0, but in fact
different numerical prefactors enter into each [see the
first two entries in their Eq. (2}]. We have not repro-
duced their calculation; unfortunately, few details appear
in their paper. We regard this difference between the two
analyses as technical in nature, and we offer no further
comments on this point. The temperature dependence of
their renormalization corrections to A, and 0 differs from
ours; in place of the factor ln[k&T/A'Q(0)] in our Eq.
(11), they have ln(L /a), with a the lattice constant and L
the characteristic length scale which describes spin Auc-

tuations.
A result equivalent to theirs follows from our Eq. (9)

(with H =8 =0) if we treat all spin fluctuations, including
the high-energy short-wavelength Auctuations, in a classi-
cal manner. This is done by replacing the Bose-Einstein
function n (k1) by its classical limit everywhere,

kii T /iQri(0k~~). When this is done and the Brillouin zone

is replaced by a circle with radius kM, we find Eq. (11) to
be replaced by

vrMo ( T)k
~~

ao
A i (k[~)= — [1—cos(2$)]+Dzk

~~2
(14)

A2(k~[)=IH„(T)l &2aM (T)k~~ao+D2k~~ .

Now, as T is lowered toward T~ from above, there is a
temperature region just aboue Tz where the state of uni

scheme appropriate for the problem addressed in their
paper.

Pescia and Pokrovsky also examine the temperature re-
normalization of their exchange parameter I, to find a
correction very similar to that displayed in our Eq. (13),
and which thus differs qualitatively from the behavior
given in our Eq. (12). For the ratio D2( T)/D2, we obtain
a result equivalent to theirs if we ignore the contribution
from the exchange diagram to the proper self-energy.
There is a partial cancellation between the leading ex-
hange contribution to the proper self-energy and
the "one-loop" (Hartree) contribution which leads to a
small residue proportional to T, rather than
Tln[k&T/A'Qo(0)] [or to Tin(kMg ) if the influence of
quantum statistics is ignored]. This cancellation is well
known in the theory of spin-wave renorrnalization in bulk
magnetic materials. Exchange contributions to the ener-

gy are not included within classical renorrnalization-
group analyses, unfortunately.

We conclude, then, that at least at temperatures well
below T2, the two-dimensional ordering temperature, the
analysis of Pescia and Pokrovsky leads to overestimates
of the magnitude of the temperature renormalizations. It
would be of great interest to see this problem reexamined,
within the framework of a quantum theoretic scheme
such as that in Ref. 16. We believe that at low tempera-
tures our spin-wave renormalization scheme provides the
correct leading terms.

As we remarked above, our analysis shows that at low

temperatures, [H„(T)/K„] decreases more rapidly than
the reduced magnetization Mo(T)/Mo. [Recall our men-

tion of the factor of two in Eq. (9)]. There is then the
possibility that H„(T), initially positive at low tempera-
tures, may vanish at a temperature T„below T2,' H„(T)
will then be negative for T & Tz. We conclude by explor-

ing the implications of this behavior within the frame-
work of the concepts discussed above.

We suppose that the external field H =0 and that the
spin-wave dispersion is described by Eq. (1) with H~ re-

placed by H~(T), Mo by Mo(T), in the linear terms in

k~~, and D2 by D2(T). (Our analysis proves the correct-
ness of the first and third requirement at low ternpera-
tures. ) Then, for T(T~, H„(T) is positive and 8=0.
Everywhere for T & Tz the spin waves are stable, and at

k~ =0 we have a gap proportional to H„(T). The gap
thus vanishes as Tz is approahced from below; long-

range order will be absent at Tz, and critical scattering of
light such as that reported earlier' will be realized as T~
is approached.

Well above Ttt, H„(T) is negative, so that 0=sr/2
We then have, in Eq. (1),
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~' ~0&02 2
1

T~ 2 D2 Ttt I (dH „/d T}I r„ I

(16)

Pappas, Kamper, and Hopster, in their study of spon-
taneous spin rotation, find behaviors consistent with the
above scenario. As they approach Tz from below, the
order parameter drops to zero continuously as Tz ap-
proached, a behavior consistent with a spin excitation
spectrum whose gap vanishes at Tz. They do see a tem-
perature region within which there is apparently no
long-range order in the film. We suggest that this is the
regime where lH„( T) l

is so small that the dipolar insta-
bility has set in. Then, with increasing temperature, the
spin-wave spectrum is stable at all k~~ and the gap grows
with increasing temperature, as does the magnetization
parallel to the surface.

It is difficult to estimate b, T from Eq. (16), since we do
not know (dH&/dT)r for these films. Crude reasoning

R

suggests that Ttt(dH„/dT)r has a magnitude cornpara-
R

ble to the low-temperature value of H„ itself, which we

guess to be =10 6 for the films, which at T =0 are quite
close to the thickness at which the perpendicular
configuration is unstable. Then, if we take Mo —=1.5X 10
G, ao—-3X10 cm, and D2=-10 Gcm (again a pa-
rameter whose value is not known), then Eq. (16) gives
(b T/T„)-5X10 . The best quality data displayed in
the paper by Pappas, Kamper, and Hopster would seem
to be that for the six-atomic-layer Fe film on Cu(100), and
the gap in temperature where long-range order appears
absent appears perhaps an order of magnitude larger than
this estimate. (We are referring to the lower panel in Fig.

form magnetization is unstable, for reasons identical to
those encountered earlier in our discussion of field-
induced canting at T:—0. For temperatures near Tz, we

may write lH&(T)l =l(dH&/dT)T l(T T—
Jt ), and then

upon following reasoning identical to that given earlier,
we find the width 6T of the unstable region is

1, which describes the sample as having three atomic lay-
ers of Fe. It was noted later' that in fact six layers of Fe
were present on this particular sample. ) In our picture
the order parameter drops to zero as T~T„ from below
and again as T~Tz+hT from above. The true width of
the unstable region may be difficult to extract from the
data reliably. Also, the film may be inhomogeneous, and
so the effective value of Tz may vary from region to re-

gion on the film.
The film may also have the character of an island film,

with islands of size L coupled loosely; spins within an is-
land could be coupled tightly. One would then replace
the lattice constant ao in Eq. (16}by L, and if L =—10ao,
the value of AT would be comparable to experiment. If
this conjecture is correct, then there should be a corre-
sponding increase in the gap (H, H, )

—within which
field-induced spin rotations produce a spatial instability.
This could be checked experimentally.

The discussion in this paper has centered on the conse-
quences of the fact that, in two dimensions, dipolar cou-
plings can lead to anomalous negative dispersion in spin
waves. In the thin film, this leads to the instabilities we
have discussed. It is interesting to note that in a very
different context such negative dispersion has been mea-
sured directly. Oxygen atoms on metal surfaces have
large time-dependent electric dipole moments as they vi-

brate normal to the surface; there are thus strong dipole-
dipole couplings betwen the oxygen atoms. Electron-
energy-loss studies of surface phonons of the c(2X2) 0
overlayer on Ni(100} provide clear evidence for the pres-
ence of negative dispersion at small k~~ very similar to
that explored here, although in this system this leads to
no instabilities of the sort explored here.
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