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Mean mobilities of charge carriers in disordered media
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Time-of-flight transient photocurrents in molecularly doped polymers are analyzed in terms of an
effective velocity distribution, which is found to be normal. Combining this with a fractional power law

to describe the current that would flow in a semi-infinite sample provides an accurate description of ex-
perimental data on many materials and allows the determination of mobilities with a precision
significantly enhanced over previous graphical analysis. The mobilities are found to deviate systemati-
cally from the lnts —v E dependence previously suggested in the literature.

Since the work of Spear, ' Leblanc, and Kepler, time-
of-Sight measurements have been routinely employed to
determine photoexcited carrier mobilities in crystalline
and amorphous semiconductors, in polymers, and in
molecularly doped polymers. In the last three cases the
transient current is found to be more or less dispersive, in
the sense that the current is not constant at short times
(as would be expected for a sheet of charges propagating
with constant velocity), and the spread of arrival times is
much broader than expected on the basis of the Einstein
relation between mobility and diffusion. It is generally
accepted ' that dispersive transport is due to wide varia-
tions in site-to-site hopping rates, which arises because of
spatial (off-diagonal) and/or energetic (diagonal) disorder.
Although theoretical methods have been applied to
charge transport in these systems ' ' the results involve
approximations, which for example may not be valid at
high electric fields, or Laplace transforms, which require
numerical inversion using contour integration. Thus
there is no analytical expression for the time dependence
of the current that is generally applicable over the entire
range of experimental interest. This has hindered the
analysis of experimental data, and researchers have
resorted to various ad hoc methods (usually graphical,
and aimed at defining the "shoulder" in the transient,
which is frequently the single most obvious feature) to ex-
tract a transit time, and thereby determine the mobility.
Although convenient, this method of determining the
mobility is not in accord with its definition in terms of
(mean) drift velocity. It is desirable to find an analysis
that lends itself to computational, rather than graphical,
techniques, and that allows determination of experimen-
tal parameters for quantitative comparison with theory
and simulation.

In this paper we introduce a general functional form
for the shape of the transient that is useful for routine
analysis of experimental data and permits the determina-
tion of a properly defined mobility. It is natural to ana-
lyze the photocurrent in terms of a function describing
the current which would flow if the sample were semi-
infinite, reduced by a factor that accounts for the arrival
of carriers at the collecting electrode. It will be shown
that the arrival times result from a velocity distribution
that very closely approximates a Gaussian. As an exam-

pie of the function for the infinite sample behavior, we
use the fractional power law of Scher and Montroll
(SM). The subsequent data analysis then permits a more
precise determination of mobility than previously ob-
tained and reveals systematic deviations from its fre-
quently cited field dependence.

In a standard, constant-voltage mode, time-of-flight
experiment let the photocurrent be s(t), where t is the
time after the (negligibly short) laser pulse. (See Fig. 1.)
In most cases the current falls initially as a result of trap-
ping, s" dispersion, s and/or relaxation in a density-of-
states energy distribution. ' ' ' It can, in some cases,
rise because of delayed generation effects. ' Let so(t) de-
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FIG. 1. Time-of-flight photocurrent transient signal s(t).
The data are the dots and the solid curve is a fit to Eq. (6), giv-
ing the mean transit time to indicated by the solid vertical line.
The arrow marks the "traditional" transit time extracted by
graphical analysis to define the shoulder of the transient, and
the dotted line corresponds to so. In this example, 50%
diethylaminobenzaldehyde-diphenylhydrazone (DEH) in poly-
styrene, thickness 11.5 pm, at 260 K and 31.3 V/pm, the fitting
parameters are to =4.433+.005 ms, w„=0.442+.001, and
a=0.8643+.0006. (Quoted errors are statistical, one standard
deviation. ) y„=1.25. The inset shows the velocity distribution
obtained as described in the text, with the curve giving a Gauss-
ian fit to the data.
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scribe the time dependence that the current would take,
due to these processes, in the absence of a second sample
surface. As carriers arrive at the collecting electrode
they cease to contribute to the current. Hence,

body of literature on dispersive transport, keeping to a
minimum, at least initially, the number of adjustable pa-
rameters. Accordingly, we choose first for so(t) the frac-
tional power-law form of SM:

s(t)=so(t) 1 —f p, (t')dt' so(t)= At " ', 0&a&1 . (4)

where p, (t) is the probability that a carrier arrive be-
tween times t and t+dt. The arrival time distribution
can be related to a distribution of effective velocities
p„(v):

p, (t) =(L/t')p„(L/t), (2)

where L is the thickness of the sample. The velocities are
"effective" in the sense that no carrier maintains a unique
velocity throughout its entire transit, but rather the ve-
locity of each carrier is averaged over its path. The ve-
locity distribution then counts the number of paths that
result in a particular value of U.

Once p„ is determined, it is a trivial matter to obtain
the mean carrier mobility, since, by definition

(p) = =—f up„(u)du .(v) 1

E E

This is clearly the physically proper form for the mobili-
ty, in contrast to any definition based on a single point of
the current-time profile, such as its shoulder.

Given this formulation of the problem, the task of the
experimentalist is to determine which functions, so(t) and

p, (v), best describe the data, and to compare their pa-
rameters with theory. We have found a pair of simple
functions that fit a wide variety of our own experimental
measurements. Our choice of these functions was
motivated by a desire to make contact with the existing

The two parameters are A, which provides an overall
scale for the signal, related to the laser-pulse energy and
the charge generation efficiency, and the dispersion pa-
rameter a, which tends to 1 for a nondispersive signal
(i.e., one having a time-independent current until carriers
start to leave the sample). This power-law form can even
empirically describe delayed generation, if a is allowed to
be greater than unity, in which case the current increases
at short times.

The velocity distribution function is normal to a very
good approximation. We were led to this surprisingly
simple result by examining several current transients in
the following way: (1) fit the signal, for times short com-
pared to the traditional transit time, to the form of Eq.
(4) obtaining the parameters A, a; (2) divide the entire
transient by so', (3) using the derivative form of Eq. (1),

S
p, (t), — (5)

dt so

differentiate to find the arrival time distribution; (4) fol-
lowing Eq. (2), multiply by t /L to obtain the velocity
distribution, and plot vs 1/t. The results, an example of
which is shown as the inset to Fig. 1, follow a Gaussian
within the accuracy allowed by the digital differentiation.
By analyzing transients in this way, we became convinced
that the Gaussian form was appropriate, and subsequent-
ly analyzed the entire time dependence in terms of the
four-parameter function:

—(1/t' 1/t )2—
s(t)=At " ' 1 —f exp 2

dt'' &tt'2+2m.2' I
(6)

Here to=L/(u ) is the relevant mean transit time, and
ot=a„/L is the standard deviation of inverse arrival
times, giving the width of the velocity distribution 0.„.
We have successfully used this formula to fit transients
(for an example, see Fig. 1) obtained on 20 different sam-
ples, over temperature ranges from 215 to 400 K, and
electric fields from 1 to 120 MV/m. Values of a range
from 0.65 to 1, and the relative width w„=o „/(u ) from
0.3 to 1. We expect and find that the parameters a and
m, are not totally independent of each other in this
description, since both reAect the physics giving rise to
dispersion of the carrier packet. The quality of fit
(defined using the reduced y statistic, which is between
0.5 and 2.0 in more than 95% of the cases) is excellent
over these entire ranges and shows no obvious trend. Be-
cause the fit is highly overdetermined (typically 2000 data
points and only four fitting parameters) the precision
with which the parameters are determined is excellent—
usually better than one part in 10, an improvement of
one or two orders of magnitude over graphica1 methods.

l

Further details of the fitting procedure and additional re-
sults will be given in future publications.

We have used this procedure to reanalyze the mobility
of several materials, an example of which is illustrat-
ed in Fig. 2: diethylaminobenzaldehyde-methylphenyl-
hydrazone (DEMPH' ) doped into polycarbonate (PC) at
a concentration of 50%. The axes are logioti and v E,
which would be appropriate for Poole-Frenkel emission
from charged traps. ' Plots of this type, using the shoul-
der as transit time, generally yield straight lines within
the scatter of the data. The new analysis not only gives
mobility values that are considerably lower (about a fac-
tor of 2), but are sufficiently precise to reveal a systematic
discrepancy. The inset of Fig. 2 shows that the deviation
has a distinct upward curvature in this case. In some
other materials the curvature is downward or sigmoid.

One might wonder whether the deviations from
ln p-&F. result from a bias produced in the data by the
parametrization of so in terms of a. This is a dificult
question to answer in general, since the method implies
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FIG. 2. Field dependence of the mobility of 50% DEMPH in

polycarbonate at the temperatures indicated. The (frequently
indistinguishable) pair of bars through the symbols show the er-
rors. The lines are attempted fits to in@-~E. The relative de-

viations of the fit at 270 K are shown in the inset.

the extrapolation of so through the region of the transit
time, where, by definition, its validity cannot be quantita-
tively verified. However, since the power-law form al-
ways has a rather weak time dependence in the region of
interest, we find that unreasonably large errors, or time
dependent changes, in a (-0.05, which is of order 50
times the error estimate in a itself are required to ac-
count for the deviations. Moreover, in DEMPH:PC, a is
virtually independent of field above about 30 V/pm; yet
the curvature persists in this range.

Next we consider whether the choice of function, so(t),
might affect the mobility. The Scher-Montroll form used
in these initial analyses may not be totally consistent with
the data. It has been shown, for example, that a single
power law does not describe all the early time photo-
current for polysiloxanes with pendant carbazole
groups. ' Similarly, we have found the SM form to be
less accurate for tritolylamine (TTA) doped polycar-
bonate' than for hydrazones, the deviation being con-
sistent with a time-dependent a. ' Other forms of so
might be used to model better this behavior, for example,
the Kohlrausch-Williams-Watt function, which is well
known to give an empirical description of phenomena in-
volving dispersive relaxation. In a simple attempt to ac-
count for an a increasing with time, as well as to test the
sensitivity of the moblitiy to the choice of the so function,
we let so(t)=a+b/t, which interpolates between the
completely dispersive case (a=0) at t =0 and the non-
dispersive case (a= 1}at long times. Except for the case
of TTA/PC, which showed marginal improvement, this
led to poorer fits (y„~3) apparently because this two-
parameter form does not properly account for the time
scale of the relaxation. Most importantly, it did not qual-
itatively change the nature of the deviation of the mobili-
ty from exp'. We therefore conclude that the
discrepancies are not an artifact of the analysis pro-
cedure.

The experimental observation of an exp&E depen-
dence has been difBcult to account for. ' Our result indi-
cates that it is not necessary to consider theoretical mod-
els in which in@ is exactly proportional to &E. Unfor-
tunately, it is not yet clear what functional form does
provide a better description of the data. We note that
disorder simulations do show similar, though larger, de-
viations. The lack of a functional form limits the accura-
cy of obtaining the activation energy of the mobility by
extrapolation to zero field. '

The accuracy of the Gaussian form for p„(v) is intri-

guing. It is reminiscent of the central limit theorem as it
might apply to the sequence of hops made by each car-
rier. One can define an instantaneous velocity in terms of
the microscopic parameters associated with each hop:
v, =1;cos8;/r;, where 1, is the length of the ith hop, mak-

ing an angle 0; with the applied electric field, and ~; is the
residence time preceding the hop. Apparently the distri-
butions of I, 8, and ~ lead to a v; distribution that obeys
the central limit theorem when summed over a large
number of hops (-10 ) on each carrier's path and the
large number of carriers (-10 }. It should be emphasized
that it is the effective velocities (or inverse arrival times),
and not the arrival times, which have the normal distri-
bution. Indeed, one of the major features of dispersive
transport theory is that the SM waiting time distribution
f(r) —r "+ ' has no finite mean when a ( 1 and does
not obey the central limit theorem.

We find values of the relative width of the velocity dis-
tribution w„= tr „/( v ) lying mostly between 0.3 and 1 for
the data that we have examined. This implies a
significant probability of zero and even negative veloci-
ties, i.e., some carriers either never leave the sample or
presumably recombine at the illuminated electrode. Al-
though this is surprising, it is physically reasonable, and
properly accounted for in the average effective velocity.

In summary, we have described a method of analyzing
photocurrent transients to determine physically relevant
parameters that enter two functions, one describing the
current as it would evolve in a semi-infinite sample, and
the second accounting for the arrival of carriers at the
collecting electrode. We have demonstrated by a particu-
lar choice of these two functions, namely a Scher-
Montroll power law and a normal velocity distribution,
that a straightforward fitting procedure can be successful-
ly applied to a wide variety of data. The analysis reveals
that the commonly cited V E mobility behavior is merely
an approximation for these kinds of material. Theoreti-
cal input to the choice of the two functions, and further
careful data analysis, are required in order to refine the
methodology described here, and to determine, with the
enhanced precision that it affords, the field, temperature,
concentration, and time dependence of charge-carrier
mobilities in disordered media.
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