
PHYSICAL REVIEW B VOLUME 46, NUMBER 2

Influence-functional theory for a heavy particle in a Fermi gas
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We use Feynman's influence-functional theory to study the quantum dynamics of a heavy particle
moving in a free Fermi gas with arbitrary average velocity. A semiclassical expansion yields a nonlinear

Langevin equation with the exact friction coefficient as derived in an earlier publication. The fluctua-

tions around a steady state far from equilibrium are due to a nonclassical state-dependent noise term and
can be described by a diffusion constant. In the limit of zero average velocity, the Einstein relation is

fulfilled for arbitrary temperatures. For finite velocities the diffusion around the steady state is different
in longitudinal and transverse directions and can be expressed in terms of the transport cross section and
a "diffusion" cross section. In the case where the frictional force exhibits a maximum as a function of
velocity and thus an unstable branch for v & v„ the longitudinal diffusion constant diverges on approach-
ing U, from below. Numerical results for the noise spectrum and the temperature and velocity depen-
dence of the diffusion constants are presented for simple repulsive interaction potentials in one and three
dimensions.

The theory of Brownian motion is a fundamental prob-
lem in nonequilibrium statistical mechanics which —for a
classical particle —is usually treated in terms of simple
Langevin or Fokker-Planck equations. ' In quantum
mechanics the standard model assumes that the particle
is coupled linearly to a collection of harmonic oscilla-
tors. Our aim in the present work is to investigate the
problem of quantum Brownian motion for the more real-
istic case in which a heavy particle moves in a degenerate
Fermi gas. In particular we study the fluctuations
around a steady state far from equilibrium with arbitrary
average velocity. On the basis of the Feynman-Vernon
influence-functional theory, which is appropriate to de-
scribe the quantum dynamics of a single particle in a dis-
sipative environment, we derive a semiclassical expan-
sion that is valid for arbitrary velocities, temperatures,
and strength of the interaction potential. Our main result
is that the fluctuations are diffusive with state-dependent
diffusion constants which are different in longitudinal and
transverse directions.

As a model we use the Hamiltonian

where Hs is the heavy-particle kinetic energy and Hz is
the Hamiltonian for the Fermion bath. The interaction
between the heavy particle and the bath is described by

Hstt= g V(x; —q)

with x,. the Fermion coordinates and V a localized poten-
tial which —for simplicity —we assume to be spherically
symmetric and to have no bound states. In addition we
have included a term corresponding to a constant exter-
nal force F„,which we expect to lead to a nonzero aver-
age velocity.

The complete information on the dynamics of the
Brownian particle is contained in the reduced density ma-
trix p(t) =Trttpto, (t) which is obtained from the total den-
sity matrix by tracing out the bath variables. Its coordi-
nate representation at time t can be related to the initial
value at time to (Ref. 6)

&qlp(t)lq'&= f dqodqo&qolp(to)lqo&J(q q', tlqo, q,', to)

H =Hs+Ha+Hsa —F,„,. with J expressed as a double path integral

J(q, q', tlqo, qo, to)= f 2)q f 2)"q'exp —IS[q]—S[q']] E[q,q'] .
qo q

(4)

Here S [q] is the classical action for the particle moving
along the path q(t) and F[q,q']=(Ut[q']U[q]& the
influence functional where (. . . & means
Tr~[ptt(to). . . ]. U[q] is the time evolution operator
under the influence of the Hamiltonian
H (t) =

Htt +Kstt(q(t) ), i—.e., the heavy particle acts like a

time dependent external perturbation on the bath. In the
semiclassical limit the dynamics of the heavy particle
may be obtained from a quantum Langevin equation.
To derive this, it is convenient to introduce center-of-
mass and relative coordinates x=(q+q')/2 and
y=q —q', such that
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f(x, p, t)= f exp —p y x+ —~p(t)~x ——dy i
(27rfi)" 2 2

tions for the x integrations, which force the path for the
center-of-mass coordinate x to obey the nonlinear
Langevin equation

is the standard Wigner distribution function which gen-
eralizes the classical phase space distribution to quantum
systems. Introducing the influence phase 4[q, q'] by
F =exp(i4) we expand F into powers of the off-diagonal
components y up to order y . This is equivalent to
separating i 4 into imaginary and real parts
i+=i+&—42 where 4& is linear in y and 42 quadratic.
There are several limits in which the expansion to order
y is expected to be a good approximation. (i) The classi-
cal limit is obtained from the Feynman-Vernon theory by
an expansion to second order in the off-diagonal density
matrix elements as was shown in Ref. 7 and 8. (ii) For
large external force F,„, the term (i/A')F, „( f y dt in the
exponent of the path integral suggests a stationary phase
expansion around y=O since the main contribution to the
path integral is then obtained from paths for which f y dt
goes to zero. (iii) For large dissipation the quadratic term
42 0 suppresses deviations from y=0 exponentially.

Using standard second-order time-dependent perturba-
tion theory in H+ (t) =Hs~ [x+y/2] Hss [x] —the general
form for 4, and 42 to order y and y turns out to be

&((t)=——f y(t, ) (K'")(t())dt, ,
0

@,(t)= f dt(y (t() f «,ytt(t2)ReS'"tI(t„t, )
'o 'o

with

S "p (t „t2 ) = (K " (t()K)" (t2 ) ) —(K * (t, ) ) (KI(" (t2 ) )

and the force operator

K(")(t)=—y U'[x]a.V(x, —x(t))U[x] .

Physically ()((, describes the systematic friction force exert-
ed by the bath on the heavy particle while ()((2 corresponds
to the associated fluctuating force. To see this we follow
Schmid and formally linearize the quadratic term 42 by
writing exp( —4z) as an average over a Gaussian stochas-
tic process

l
e '= exp — y t' t' dt'

The fluctuating force g has zero average and covariance
[v(t) —=x(t) ]

t +
M M+M (9)

vari(uo) =F (10)

To obtain the fluctuations around this path we write
v(t) =vo+5v(t) and linearize (9)

M5u (t)+ f y ) (t t')5uz(t')—dt'=g '(t),
0

where

y t3 (t t') =5(K—(")(t)) /5vt((t') ~„(()

and the derivative 5g /5u& has been neglected since it is
of higher order. For variations of 5v(t') on time scales
large compared to the decay of y t((t) we may replace (11)
by

with a "state-dependent" noise where M is the mass of
the heavy particle. The systematic friction force term
(K(" (t) },as well as the spectrum of the random force
cannot be explicitly calculated for arbitrary I v(t)] unless
additional approximations like a weak potential or the
adiabatic approximation are introduced. Here we study
the limit of large mass M where the behavior should be
nearly classical. If the external force F,„, is properly
scaled (see below) only the neighborhood of the path
x=vot, i.e., v(t)=const enters. For constant velocity vo

the friction force (K (t)) =g(vo)vo was calculated pre-I:~ol

viously for arbitrary velocities, temperatures and cou-

pling strength ' and —as will be shown below —S &
9, 10 [~o)

can also be explicitly calculated. Since the friction
coe(Iicient r)(uo) is a function of velocity the Langevin
equation (9) is nonlinear unless uo ((u~ where r)(u~) goes
to a constant. For a three-dimensional hard sphere with
constant mass density g increases like M . Therefore
y(u)—:g(v)/M is proportional to M ', i.e., small in the
large mass limit. In order for the external force F,„, to
give a finite average drift velocity independent of M it has
to scale like g and thus F,„,-M in our example. By
contrast, as may be seen from the Einstein relation, the
fluctuating force generally is expected to scale like &g,
i.e., ~g~/M-M ~. Therefore to leading order in the
large mass limit the term g/M representing the noise on
the right-hand side (RHS) of (9) can be neglected. Then a
path x(t)=vot+xo, i.e., v(t)=const is a solution and
vo=~vo~ isdeterminedby

( g (t)g&(t') ) =ReS') (t, t') . M5(} (t)+r) p(vo)5vtt(t)=g ' (t) (12)

Note that the spectrum of the random force depends on
the complete history of the path x for times earlier than
max( t, t ').

Since the phase 4 is now linear in y the functional in-
tegral over the relative coordinate y can be easily per-
formed. Integrating the kinetic energy term Mxy in the
Lagrangian by parts, the discretized version of the in-
tegral Xly factorizes and leads to a product of delta func-

which describes a simple Ornstein-Uhlenbeck process'
for the velocity fluctuations. Here we have introduced a
friction tensor

["o
g t((vo)= y p (r)dr .

0
(13)

The tensor g &(vo) is diagonal but has two independent
components since e0=v0/U0 specifies a direction in the
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otherwise isotropic heat bath. If we decompose
5v(t) =5v))(t)+5vt(t) Eq. (12) becomes

M5v (t)+ri (vo)5v (t)=g ' (t), (14)

where (r stands for
~~

or I. The relation between the two
coefficients r) (vo) of the friction tensor describing the

damping of velocity fluctuations around the nonequilibri-
um steady state and the usual friction coefficient 71(vo) is
obtained by replacing the random force on the RHS of
(14) by a change 5F,„, of the constant external potential,
which leads to

Here we have taken the limit t ~ (x) and have used that
y~0 in the limit M~ ao which means that the typical
time scale for the motion of the heavy particle is much
longer than characteristic times involved in the fluctuat-
ing force.

We now define nonequilibriurn diffusion constants
D (vo) by

2(d —1)D)(v())=—lim ( [5x)(t)—5x)(0)] )~,
d

t~~ dt

) =—" & [5xii(') 5x)i(0)]'), ,
d

t~a) dt
rt, (vo) =ri(vo),

=d
ri~~(vo)

= (vs(v))~, =„=ri(vo)+vari'(vo) .
(15) where d is the number of spatial dimensions. Using (17)

the diffusion constants can be related to the zero frequen-
cy limit of the force-force correlation function

These two friction constants are identical with the in-
verse of the

differential

mobility defined by
B ' —= ~5vo ~ /~5F, „, ~. Obviously the transverse

differential mobility 8~ ' is simply given by the inverse

friction coefficient I/rt(vo) while B~~ has an additional
[~o]

term involving the derivative ri (vo), i.e., is not the same
as the usual mobility ~v()~ /~F, „,~. In particular in a situa-
tion in which the product vs(v) exhibits a maximum at
some value v„which occurs for any finite interaction po-
tential V(x), the longitudinal differential mobility B~~

'
diverges linearly at v, . The physical reason for this is
that at high velocities v ))v, the Fermi gas eventually al-
ways becomes transparent if the interaction V is finite.
For a given external force F,„, there is then more than
one value of vo which fulfills the condition F,„,= (K ).["o]

Only the solution with B))
' =8( ~K~ )/Bvo &0 is stable,

[Vp]
while solutions with 8

~~

' & 0 are unstable with respect to
an unlimited increase in velocity. As was pointed out by
Thornber and Feynman" a similar situation occurs in the
motion of polarons in high electric fields. Below we will

see that the divergence of 8
~~

at v, also implies a diver-
[Vp]

gence of the associated longitudinal diffusion constant.
In order to derive the diffusive nature of the Quctua-

tions around the nonequilibrium steady state the solution
of (14)

5v (t)=5v (0)e ' + f e g (t')dt'

(16)

with y (vo)—=g (vo)/M is averaged over the random
force for t ) t' which leads to

Sj ' (co=0)
(d —1)D) (v() ) =

2[rt~( v() ]

S ' (co=0)

2[np(vo)]'

(19)

which is the central result of this paper. Since both
[~p]S ((o=O) and g)(vo)=ri(vo) are regular and finite

functions of the average velocity vo the transverse
diffusion constant Dj(vo) remains finite in any case. By

[&p]contrast the linear divergence of B~~
'

=g~~ '(vo) at v, in
the case of a nonmonotonic v ri( v ) relation with a max-
imurn at v, leads to a quadratic divergence
D)~(vo)-(v, —vo) of the longitudinal diffusion con-
stant, signaling the approach to an unstable branch for
v & v, as mentioned above. For nonzero average velocity
there is no simple relation between the force-force corre-

[Vp]lation function S and the nonlinear friction coefficient
ri( v) and thus there is no generalized fluctuation-
dissipation theorem relating diffusion and friction in this
case. It is only in the linear response limit v0~0 that
such a relation is valid. Indeed from (19) it is clear that
the Einstein relation D =k&TB is fulfilled if the Kirk-

[vo]wood relation S ' (co=0)=2ri (vo)k&T, respectively,

Sj ' (co=0)=2(d —1)ri)(vo)ks T which expresses the
friction in terms of the zero frequency force-force corre-
lation function holds in the limit v0~0. To show this we

explicitly calculate the correlation function S (co) for[&p]

the model of noninteracting Fermions. For an arbitrary
path x(t) one obtains

(5v (t)» (t'))g —(» (t))g (» (t'))g
—

y (V )(t —t ) —y (I) )(t'—t )
dt, dt2e ' ' eM'

x(g (t)) g (t2))g

S t)(t, t )= g (p~K (t )~p')(p'~Kt)(t )~p)
PP

Xf (sp)[l —f (8,)] (20)

where I(. (t) is the single fermion version of the force
operator defined following (6) and the ~p ) are momentum
states. For x=vt +xo the time evolution operators can
be calculated after a Galilean transformation ' and one
obtains for the Fourier transform

[&p] —)-.(U, )() —) )

e
2y (v())M

(17)

where S (co) is the Fourier transform of S (t t'). —[Vp]
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s.p(~) =2~& f & p+ I& Ip'+ & & p'+
l I(:q I p+ &

&&f(s „)[1—f (E „)]
X6(e —c.~+A'co)dp dp', (21)

where we have taken the limit to~ —~. The lp+ & are
one-particle scattering states with outgoing boundary
conditions corresponding to the Hamiltonian
H~+Hsz(q=O) with the scattering potential centered at
the origin. To check the validity of the Einstein relation
for zero velocity we insert the completeness of the incom-
ing scattering states f lp' —&&p' —ldp'=1 instead of

f lp'+ &&p'+ ldp' in (21) and use'

& p+ I
K

I

p'+ &
= —'(p' —p) & pl vl p'+ & . (22)

An expansion for small velocities then indeed shows that
S &(co=0)=5 &2gk~ T+6( vv), i.e., the Einstein relation
is valid for arbitrary temperatures even in the quantum
limit kz T « EF. Since the friction constant ri(vo)
behaves as r)(vo)=g(v0=0)+0(vo) in the low velocity
limit, we have g~~=g as up~0. For general velocities
g(vo) is given by

rt(vo) = f f(st, „)plplR (p)dp (23)

for a one-dimensional system with the reflection
coefficient R (p) and for a three-dimensional system by'

1
( o)=, , f f( „,)p, p „(p)dp,

(2M) mvo
(24)

where o,„=f (1 cos8)cr—(8)dQ is the transport cross
section.

In order to discuss the behavior at voAO we first con-
sider the one-dimensional case where S(co) can be given
in closed form. According to our discussion above the
limit ~=0 determines the diffusion constant. Then the 5
function in (21) restricts p' to +p and in this case the
force matrix elements can be expressed by the reflection
coefficient

p'
'

1&p+ &Ip+ &I'= p R'(p),
(25)

p'
I&p+Iz (

—p)+ &I'= R(p)[1 —R(p)] .

I

1&p+ IItlp'+ & I'
7TAm

l&p+li~l( —p')+ &I' 0. (27)

Inserting this into (21) it follows that in the region
Vo ))fico))(EF,mvo/2) the spectrum behaves like to'~ .
This is confirmed by the numerical calculations which are
valid for arbitrary potential strength Vp. For %co= Vp the
approximation (27) breaks down and S(co) tends to zero.
In our model the spectrum is obviously far from white
noise.

0.6

0.4

0.2

energy mvp/2 which is clear from the fact that the bath
Fermions in the latter case have a mean velocity vp rela-
tive to the particle. In the general case (26) has to be
evaluated numerically. For simplicity the interaction is
approximated by a rectangular potential with height Vp
and width L which we take as the unit length. In Fig. 1

the reduced dimensionless diffusion constant
Dr)(vo =0) IAAF is shown as a function of the temperature
for different values of the average velocity vp ~ In the lim-
it vp ~0 the diffusion constant is simply linear in the tem-
perature as expected from the Einstein relation. At finite
vp the diffusion constant no longer vanishes as T~O,
however the behavior is still roughly linear in T, as long
as the velocity is smaller than vF.

For arbitrary frequencies cv the matrix elements in (21)
involve scattering states at different energies and can no
longer be expressed by the refiection coefficient R (p).
Therefore we have numerically calculated S(cv) from (21)
for the above mentioned model potential. Figure 2 shows
P(tv)= —,'[S(tv)+S( —co)], i.e., the Fourier transform of
ReS(t) for various velocities. It is only in the limit
Vo »(s~, s ) where simple expressions for the force ma-
trix elements exist (p,p') 0):

'2

From time reversal invariance we have R (
—p)=R (p)

and with the notation f+ f (E +, ) we can w—rite
S(co=0) as

f p'R (p)l f++f 2f+f- —
0.00.0

I

0.1
I I

0.2 0.3
ks 7/e~

I

0.4 0.5

(f+ f )'R (p) ]dp——-
(26)

The case of very high velocity vp » UF yields
S(co=0)=2mv rI(vo~ao). This corresponds to a re-
placement of the thermal energy k~T/2 by the kinetic

FIG. 1. The reduced diffusion constant Dg(vo=0)/cF for a
one-dimensional rectangular potential with height Vo and width
L is shown as a function of the temperature for velocities
v/vF =2 (solid curve) and v /vF =0.5 (dashed). For the parame-
ters we have chosen kFL = 1 and Vo/v+ = 10. Note that for any
vo&0 the diffusion constant is finite at T=O which is however
difficult to see on the scale chosen here if vo/vF =0.5.



INFLUENCE-FUNCTIONAL THEORY FOR A HEAVY PARTICLE. . . SS9

1.0 0+2Q I ~ ~ ~ I ~ ~ e ~

O.S-
I

I
I

0.6 ~

0.4-

0.15-

Cl 0.10-

0.2
0.05-

0 io 20 30 40
~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ I ~ I ~ ~ ~ ~ I ~ ~ ~ I0 0~ %J

50
0..00 a ~ I ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ a

0 io 20 30 40 50
V/VF

FIG. 2. For the one-dimensional model potential the spec-
trum II)(co) =ReS(III) is shown in arbitrary units at zero temper-
ature as a function of co/2coz where Rcoz=cz for velocities
v/vF=0. 5 (solid curve), v/vF=1 (dashed) and v =0 (dashed
dotted). We have chosen k+I- =1 and Vo/eF=5.

FIG. 3. The longitudinal (solid curve) and transversal
(dashed) diffusion constants according to (28) are shown as a
function of the renormalized velocity in the regime vo/vz & 2
for a hard sphere potential with radius a and kFa =0.1. D~~ and
D& are divided by a factor vo/ma no and are therefore dimen-
sionless.

Since it does not seem possible to calculate the force
matrix elements in (21) at energies s Ps, in closed form
for a three-dimensional system we further restrict the dis-
cussion to co =0 and large velocities. As mentioned above
the Einstein relation holds in the low velocity regime. In
the opposite limit of high velocity it is advantageous to
split (21) into two contributions where the first term
without the extra Fermi function f (sF + „) can be
sirnplified in the same manner as in the proof of the Ein-
stein relation. Then the matrix element may be removed
from the integrand. This is also true for the second con-
tribution where the remaining integral containing two
Fermi functions is exactly known at zero temperature. If
we choose vp=upe3 we obtain S &(rp=0)
=

—,'5 &[Si+5~3(2S~~—Si) j with the longitudinal and
transversal components given by (T =0, up ))uF )

Si =m v pno d;s(mup),
(28)

k„
m vpn 2o'I (mup) Crd;I(mup) CTI ( vp)

5m.

where n is the Fermion density and
od;s(p)= f (1—cos 8)or(8)dQ which we call the

diffusion cross section. Obviously o a;s is large if there is a
strong scattering transverse to the incident direction
O=n. /2, 3m/2, leading to large transverse fluctuations
Sj. Taking the average over different directions yields
TrS &(0)=2mu ri(vap ) (Ref. 13) where rrd;tt plays no
role, i.e., one obtains an expression similar to one dimen-
sion. In the same manner as u„ the diffusion cross sec-
tion may be expressed in terms of phase shifts 5I of par-
tial waves l by

2
fi "

1
crd;s(p) = 8m.

I=p

(2l+1)(l +l —1)
sin 5&

—(1 + 1)(l + 2)cos(5&+2 5I )sin5&sin5—t+2 (29)

which we used in the numerical calculations. The result-
ing velocity dependence of the longitudinal and transver-
sal difFusion constants derived from (28) are shown in Fig.
3 in the case of a hard-sphere potential. Since (28) is only
valid in the limit vp))vp we have chosen kza (&1. In
contrast to our one-dimensional potential the scattering
cross sections for an infinitely hard potential do not tend
to zero in the high energy limit, i.e., lim „o„(p)=ma
and lim o d;s(p) =2ira /3 and therefore
D ~vp/6~a n for vp))vF. The fact that the longitudi-
nal and the transverse diffusion constants are equal in the
high-velocity regime is an artifact of our hard sphere
model potential and will not hold for finite potentials.

In conclusion we have studied the fluctuations in the
motion of a heavy particle interacting with a free-
Fermion gas by means of a semiclassical expansion. Our
model may be considered as an example for a quantum
system far from thermal equilibrium. No assumptions
like a weak potential or linear response' ' were made.
We have shown that the fluctuations around the none-
quilibriurn steady state are diffusive and have calculated
the corresponding longitudinal and transverse diffusion
constants explicitly for simple model potentials.
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