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Elementary phase-space arguments for electron-phonon scattering in metals give the temperature-
dependent resistivity p(T)- T" with n )3. Similarly for electron-electron scattering n=2. To explain
n=1 for superconductive (Bi,Sr)4Cu06+z over the range 7& T (700 K one can assume a structural
model with punctured semiconductive domain walls. There is strong evidence for this model not only in
oxide perovskites, but also in Chevrel compounds such as EuMo6S8 ~O„, which also exhibit linear p( T)
over a narrower temperature range. In the domain-wall model recoil energy and momentum are ab-
sorbed by the walls, much as umklapp momentum is absorbed by the crystal as a whole in pure po-
lyvalent metals. A wide range of experimenta1 data support the model. By-products of the model are ex-
planations of carrier freeze-out as measured by diverse anomalies in the Hall resistance, the correlation
of T, with the slope of the linear background tunneling conductance of Pb-Bi-0 superconductors, a sim-

ple qualitative explanation for the first- (second-) order electronic (structural) phase transition observed
near x=0.21 in well-annealed La2 „Sr„Cu04, and an explicit mechanism for the origin of c-axis linear
resistivities in intercalated Bi-Sr cuprates. A similar microstructural model explains the linear tempera-
ture dependence of the hopping conductance in stable ternary quasicrystals. The key factor common to
both ionic superconductors and stable quasicrystals is their multinary composition which creates hierar-
chies of saddle points in the local conductance.

I. INTRODUCTION

In the past decade the two new kinds of materials with
the most novel electronic properties have both been ter-
nary (or multinary) systems. The first kind consists of the
high-temperature superconductors and includes not only
cuprates with pseudoperovskite structures but also the
pseudoternary perovskite alloys (Ba,K)(Pb, Sb,Bi)03.
These materials have attracted world-wide attention and
their properties have been studied more extensively than
those of any other kind of inorganic solids except serni-
conductors such as Si, Ge, and GaAs. %'hile the rela-
tions between electronic properties (including doping)
and structure in the latter were explained easily and suc-
cessfully by theorists, this has not yet been the case for
high-T, superconductors. The second case consists of
stable quasicrystals such as Al-Cu-Fe. Here again elec-
tronic anomalies have been discovered which are quite
unexpected for alloys of three metallic elements.

It is the thesis of this paper that the origin of the novel
electronic properties of these materials lies in their mul-
tinary structures, which create the possibility of extensive
inhomogeneous micromorphologies which cannot be ob-
tained with binary materials such as Nb3sn or NbN su-
perconductors (in the first case), or Pd-Si metallic glasses
(in the second case). This paper explains these inhomo-
geneous micromorphologies in detail, but the evidence
for the models is largely circumstantial. The nature of
the models itself shows that this is unavoidable, but the
reader should realize that the models are inherently plau-
sible. The reason is that there are substantial phenome-
nological differences between the structural systematics

of binaries and ternaries which have emerged from exten-
sive statistical studies of Villars and co-workers. A re-
cent paper' discusses these results and connects them to
the properties of superconductivity, quasicrystallinity,
and ferroelectricity. The essential point is that ternary or
multinary compounds are inherently more complex than
binary compounds, with the ternary ABC structure being
formed from AB and AC building blocks. These building
blocks, and the defects associated with them, lead to a
wide variety of possible micromorphologies, and a few of
these are probably responsible for the above-mentioned
novel electronic properties.

It is important to realize that, while complex structures
may be necessary to produce electronic anomalies, they
are not sufficient. The sufficient conditions are satisfied
only to some extent by accident. This is an essential
feature of the present models and what the accidental
conditions are will become apparent as the models un-
fold. Experimentally these conditions are discovered
essentially by trial and error. The theory developed here
contains little mathematics and this also is a matter of
design. I do not pretend to be able to determine from
first principles the many delicate microscopic parameters
which would be needed to explain quantitatively the elec-
tronic properties of complex metals. I will show, howev-
er, that many apparently unrelated electronic anomalies
can be qualitatively understood by a single model based
on spatial inhornogeneities. This theory is therefore
designed to be different from conventional theories which
introduce many adjustable parameters to explain with a
simplistic conventional model a single experiment, and
then use completely different sets of parameters to ex-
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plain different experiments on the same or related alloys.
Also, most conventional theories do not discuss chemical
trends at all, but phase diagrams provide the best quanti-
tative evidence for the main features of the present mod-
els.

The reader may wish, before proceeding further with
this paper, to study the systematics of complex metals as
described in Ref. 1. This paper exhibits many similarities
between structural trends in complex metals and in high-
temperature ferroelectrics such as La2Ti207 and

Bi4Ti30&2 (T, =1770 and 950 K, respectively). It is im-

portant to realize that these systematics arise from clus-
ter structures which are absent from binary and elemen-
tal systems. It is also important to realize that these
structural systematics may well explain, as the model
here assumes, why compositional trends in electronic sta-
bilization energies (as measured by transition tempera-
tures) are generally so diff'erent in ternaries than in
binaries.

The superconductive pseudoternary layered cuprates
with high T, 's, such as (La,Sr)zCuO~ and
(YBa2)Cu307 „,exhibit many anomalous properties, but
the one that has attracted the greatest theoretical interest
so far is the linear temperature dependence of the (ab)
planar resistivity with dpldT )0. This is evident over a
very wide range of temperatures (7—700 K} in supercon-
ducting Bi2+„Sr2 ~Cu06+& crystals, ' while nonsuper-
conductive crystals exhibit semiconductive temperature
dependences which have been fitted by two-dimensional
localization theory. Linear temperature dependence
(over a necessarily narrower range of temperature) was
observed previously ' for (La,Sr}CuO~ and
YBazCu307 „,and in specially prepared samples of the
lower-T, chalcogenide cluster Chevrel compound '

"PbMo&SS." In all cases studied so far, both T, and the
linearity of p( T) are quite sensitive to the method of sam-
ple preparation.

If we imagine that these materials are normal metals,
then this temperature dependence is quite surprising. If
the resistivity were due to electron-phonon scattering, it
would vary' with a high power of T, p( T) —T" with
n-3. If it is due to electron-electron scattering, then
Landau Fermi-liquid theory" gives n =2. On the other
hand, the resistivities in some of these materials are large
( &102 Qcm at room temperature}, so we may suppose
that we are near a metal-insulator transition, as in metal-
lic glasses or ternary metastable quasicrystals. ' ' How-
ever, there n =0 with an n =—,

' correction term at low T
and an n =1 term at higher T, but with dp/dT(0. In
both cases the corrections are small [only of order 10
p(O) ]. Thus, the linear anomaly with dpld T)0 is
without precedent in either "good" or "bad" metals.

For these reasons I examine in this paper a structural
model which is fundamentally different from those used
to treat transport in simple homogeneous metals. The
atomic structures of both the cuprates and the Chevrel
compounds are characterized by a mixture of ionic and
covalent (but not metallic} bonding, and this also applies
to the family of pseudoternary perovskite superconduc-
tors {K,Ba)(Pb,Bi)03. (There are too few metallic elec-
trons near EF to affect the structure significantly. ) The

dominant scattering mechanism is not electron-phonon
or electron-electron, but electron-defect. In metals,
electron-defect scattering makes the resistivity constant
(n =0, the "residual resistivity" of elemental or binary
metals). This is easily explained by homogeneously distri-
buted scattering by point defects. So long as the electron
mean free path l is much larger than the average spacing
s of these defects, the metal can be treated within the
random-phase approximation as homogeneous with a
constant, temperature-independent scattering rate.

Our pseudoternary materials, however, have different
kinds of chemical bonding and there is no reason to sup-

pose that all the defects are point defects. In transition-
metal oxides planar defects have been identified by elec-
tron microscopy. '~ The resistivity p of NbO„(which is

not superconductive) is linear' over a very wide tempera-
ture range (77—900 K) for x in the last 3% of the upper
end of the homogeneity range measured by diffraction,
with p fully metallic (similar to Nb). In the cuprates
there is a wide variety of evidence that indicates the pres-
ence of insulating or semiconductive domain walls (which
may or may not be twin boundaries). The evidence
comes from the oxygen isotope efFect (where the oxygen
in the domain walls is not exchanged, although that in
the domains is fully exchanged' ) and from Ni and Zn
substitution for Cu in the Cu02 planes of YBa2Cu307
(where Zn precipitates in the domain walls but Ni does
not' ). As we will see in this paper, such domain walls,
forming insulating or nearly insulating networks, are
needed to resolve other anomalies in NbO„, the ionic-
covalent Chevrel compounds and perovskites.

On the one hand, it may seem that this structural mod-
el represents only a small extension of what is already
known. Certainly the factor limiting T, in all high-
temperature metallic superconductors is lattice instabili-
ties, ' and the present model merely extends this idea to
the regime of domain walls which are characteristic of
ionic-covalent bonding, for instance, in ternary ferroelec-
trics. Yet all the theories of electrical resistivity men-
tioned above assume micromorphological homogeneity
on an atomic scale, presumably because it seems that
there are too many kinds of larger-scale microscopic in-
homogeneities; as we shall see, this is actually not the
case. At the same time, the present theory is completely
different from available alternative theories of the lineari-
ty of p(T), which are entirely electronic in nature and
which have assumed that high-T, superconductivity is
caused not by electron-phonon interactions but by some
kind of electron-electron interaction. Careful examina-
tion of these theories shows, as we shall see in Sec. VI,
that they do not explain high-T, superconductivity nor
the correlation of p( T) linearity with T, . In fact, they do
not even explain chemical trends in p{T) itself. This
leaves the present model as the only consistent descrip-
tion of the p(T) linearity anomaly and its relation to
high-T, superconductivity.

Some genera1 remarks concerning the structural
differences between binaries and ternaries are in Sec. II.
The connection to transport in the presence of spatial in-
homogeneities is made in Sec. III, followed by a discus-
sion of Chevrel compounds in Sec. IV, the
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(K,Ba)(Pb,Bi)03 perovskites in Sec. V, the cuprates in
Sec. VI, and a few comments on alternative homogeneous
electronic theories are made in Sec. VII. The general
view here is that the relation between structure and prop-
erties is so close that the two can be connected through a
wide variety of indirect evidence. This approach has
been successful for many complex materials, and it has
previously been discussed at length. ' The present paper
extends that discussion with many examples based either
on new data or new ideas needed to connect and explain
older data. In Sec. VIII, I discuss Hall-effect anomalies,
which appear to be consistent with my domain-wall mod-
el. In Sec. IX, I explain the origin of the correlation of
T, with the slope of the linear background tunneling con-
ductance in perovskite superconductors. In Sec. X, I
reconcile the first-order change in electronic properties
with the continuous structural change which occurs in
well-annealed La2 „Sr Cu04 at the orthorhombic-
tetragonal transition at x =0.21. In Sec. XI, I explain
the origin of the c-axis linear resistivity observed after in-
tercalation in Bi-Sr cuprates. Finally, in Sec. XII, I dis-
cuss evidence for Fermi-level pinning defects in a very
simple system, Cu-Zn (brass) alloys.

II. STRUCTURAL COMPLEXITIES
AND REGULARITIES IN BINARY

AND TERNARY COMPOUNDS

Quite a lot is known about the idealized crystal struc-
tures of high-T, superconductors from diffraction data.
This paper makes more exp1icit the suggestion made in
many of my earlier papers on these materials' ' that
high-T, superconductivity is the result of an enhance-
ment of N(EF) in some spatially connected regions by
atomic defects in these structures. This suggestion has
surprised many scientists because they suppose that such
defects are always extrinsic with concentrations and spa-
tial distributions which are not reproducible. By and
large this view is correct for elemental and binary materi-
als but it need not be correct for ternary and superternary
(multinary) crystals. In this section I will explain why
this qualitative change in structure occurs from binary to
ternary compounds and why extensive defect arrays can
be described as native (either metastable or stable)
features of multinary crystals.

First I should remark that Wadsley (planar) defects can
be observed' easily in transition-metal oxides T-T'-0,
and that they are associated with the high densities of
both cation and oxygen vacancies characteristic of these
materials. Here we already have the emergence of clus-
tering effects which may form complexes which restrict
crystalline periodicity. The latter, of course, is still
present and is responsible for Bragg diffraction, but when
these diffraction patterns are refined they often give large
R values indicative of incompletely periodic clustering
effects (domains}. Large R values are also characteristic
of high-T, cuprates, and they have been explained as the
results of domain (orthogonal-tetragonal) or charge-
density-wave formation, etc. They key point is that such
effects are always qualitatively present and they are not
incidental. They are difficult to quantify by diffraction,

but they are strongly associated with the superconductive
transition, as has been demonstrated, for example, by ion
channeling. The channeling experiments reveal that the
Debye-Wailer factors associated with a small volume
fraction of the sample vary rapidly as T passes through
T, . The volume fraction must be small because Debye-
Waller factors measured by linear averaging through
powder neutron diffraction on the same material (for ex-
ample, YBa2Cu306 9) show no anomaly as T passes
through T, . No homogeneous or effective medium model
can explain this paradoxical behavior, but it appears as a
natural element of the present micromorphological mod-
el.

The structures of binary and ternary compounds can
be organized systematically in the context of quantum
structure diagrams. ' The coordinates in these diagrams
are compositionally weighted sums or differences of opti-
mized elemental chemical factors such as valence elec-
tron number, atomic size and electronegativity, and melt-
ing points. When the compound-forming ability for
binaries and ternaries is plotted using these coordinates,
there are striking differences between binaries and ter-
naries (see Figs. 5, 6, and 8 of Ref. l). The meaning of
these differences is that in a ternary such as ABC, the
structure generally consists of AC and BC building
blocks. For the cuprate superconductors it may seem
that this conclusion is obvious, as the layered structures
are obviously separated into metallic Cu02 layers and
semiconductive or ionic layers such as BaO. This is
indeed obvious for the ideal crystal structure as measured
by diffraction. However, the key point of the approach
based on quantum structural diagrams is that it is ex-
tremely general because it describes structural trends fol-
lowed by thousands of compounds, layered or not. Thus,
it is reasonable to assume that defects in ternary struc-
tures follow rules similar to those obeyed by the structure
themselves. Such defects can be called native defects, to
indicate that their properties are reproducible. One pos-
sible property of a native defect is that it may produce an
electronic energy level which pins the Fermi energy.
Such levels are often postulated for metal-semiconductor
interfaces (Schottky barriers}, but the simplest example of
such an effect is found in Cu-Zn Hume-Rothery brass al-
loys (XII).

Another way of looking at Fermi-level pinning native
defects in ternaries is to ask why they are so much more
likely to occur in ternaries than in binaries or elemental
metals. One could say simply that ternaries are more
complex and thus offer more possibilities, but experience
with high-T, superconductors, stable quasicrystals, and
high-T, ferroelectrics suggests that this answer is inade-
quate. In the simpler systems electronic anomalies asso-
ciated with peaks in N(E) for E near EF can be
suppressed by atomic relaxation of the Jahn-Teller type,
where local bonding-antibonding splittings occur. An ex-
ample is a simple-cubic metal with an s p configuration
such as Bi, where the sixfold coordination shell splits into
two threefold shells with three empty long bonds and
three occupied short bonds. The situation in pseudoter-
nary (K,Ba}(Pb,Sb,Bi)03 perovskites proves to be much
more complex and is discussed in detail below. The way
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in which the structure is stabilized and made insulating
(for instance, Ba, „K„Bi03with x ~0.37) involves ex-
tensive planar defects which are feasible in a system with
two building blocks, BaO and BiO planes, and this would
be much less likely to occur in a binary solid. In the
language of theoretical physics, it is much easier to break
translational symmetry with extensive defect arrays in
multinary compounds than it is in binaries and elemental
metals because one set of defect clusters can act to stabi-
lize or mechanically pin another set.

III. MODEL OF SPATIAL INHOMOGENEITIKS

At present, Fermi-liquid theory is fashionable among
theorists, especially those interested in low-temperature
properties of very pure metals. In Landau Fermi-liquid
theory it is argued on phase-space grounds" that
electron-electron scattering must give rise to scattering at
a rate I with AI -kT) /E~, where EF is a relevant band-
width. In good metals at room temperature, however,
the resulting scattering rate is too small" by a factor of
10 . For "bad" metals, even at low temperatures, the sit-
uation is even worse, since their resistivities, even at low
temperatures, are 10-10 larger than those of good met-
als at room temperatures.

There is another serious objection to electron-electron
scattering alone as a source of resistivity: in a plasma, be-
cause of momentum conservation, this scattering has no
effect on the total current. In a crystal only the crystal
momentum is conserved, while the recoil associated with
umklapp or reciprocal-lattice momentum can be ab-
sorbed by the crystal as a whole. For p and d electrons
this provides an adequate momentum sink, but it a1so
warns us that the phase-space argument alone is inade-
quate. Electrical resistivity results from momentum dis-
sipation, not energy dissipation, of accelerated carriers,
and in a complex solid there is no simple relation between
the two.

What about domain walls? As we will see by many ex-
amp1es in the following sections, semiconductive domain
walls explain many anomalies in the normal-state trans-
port properties of multinary superconductors. Here we
start not from a structural model based on an electron
gas in a perfect crystal but from a two-phase system in
which conductive domains are embedded in a semicon-
ductive matrix through which all currents must pass.
Such a matrix, with a distribution of barrier energies and
thermally activated conduction across the barriers, can
easily be used to describe the semiconductive p(T} mea-
sured in nonsuperconductive materials, and will fit the
data over a small range of conductivities just as well as
variable range hopping. Now the processing parameters
are varied experimentally to reduce the average barrier
height, and we must ask how this changes the domain-
wall properties.

In the spirit of homogeneous models one would say
that such changes in processing reduce the barrier height
uniformly, but from a structural point of view this seems
extremely unlikely. Domain walls are native defects,
which are introduced during sample growth of a mul-
tinary material with a complex unit cell and rigid ionic-

covalent, bond-length —angle requirements. The domain
walls reduce internal stress associated with incompatible
elements in a way analogous to misfit dislocations at a
heteroepitaxial interface. A good example is provided by
YBa2Cu307 „, where the as-grown value of x may be
-0.8 (semiconductive material). Oxidation of the sample
increases the conductivity of the CuO, „chains and at
the same time introduces internal stress since the natural
lattice constant (sometimes called the prototypical lattice
constant) of the chains no longer matches that of the
more rigid Cu02 planes. Although T, increases as x de-
creases, the smallest value of x is about 0.1. When x is
forced below this value, two bulk phases develop, ' the
new phase with the smaller x also having a lower T, .
Thus, the domain walls are formed to reduce internal
stress, which is intrinsically inhomogeneous. This means
that the morphology of native domain walls cannot be de-
scribed correctly by homogeneous averaging. Because
the mechanically strongest element in the cuprates is the
Cu02 planes (with nearly constant lattice spacing, regard-
less of the composition of the boundary semiconductive
layers such as BaO}, it is there that the domain walls re-
lieve stress. Thus, the walls are part of planes (which
may be bent} which are normal to the CuOz planes and,
in the case of YBCO, normal to the b-axis chains as well,
in other words, ac planes.

Before we discuss a detailed model of the atomic-
electronic structure of domain walls in these materials, it
is important to emphasize the modifications of standard
transport theory for homogeneous materials that are
necessary to treat severely inhomogeneous systems. In
classical metallic transport theory, all electrons carrying
current are treated ballistically, which corresponds in
quantum theory to using (Bloch) basis states which are
eigenfunctions of crystal momentum. If we use a
different set of basis states, for instance, standing ~aves
obtained from the real and imaginary parts of the Bloch
states, and neglect the phase relations between these
states, we will calculate the conductivity incorrectly, in
other words the validity of the Boltzmann equation and
the relaxation time approximation appears to depend on
the basis states used. Of course, this situation is unsatis-
factory, and this problem is usually resolved by assuming
that the scattering (by phonons or by impurities) occurs
randomly in space and time when we use as basis states
crystal momentum eigenfunctions. (This is sometimes
called the random-phase approximation. ) With this as-
sumption of randomness one can derive the usual forxnu-
las for the temperature-independent residual resistivity of
metals which contain a high density of irregularly placed
point defects, as mentioned in the Introduction.

The scattering in the situations we wi11 discuss is very
far from random. At first one might think that it would
be adequate to describe scattering of electrons from
domain walls as elastic, just as scattering of Bloch waves
by a periodic crystal potential is elastic. We note, howev-
er, that there is a hidden component in the scattering of
Bloch waves which is inelastic in both momentum and
energy (though usually only the inelasticity of the
momentum scattering is emphasized), and this is um-
klapp scattering, where the recoil is absorbed by the crys-
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tal as a whole. Here we must similarly use as basis states
the eigenfunctions of the system including the domain
walls. If the domain walls were to form a continuous net-
work surrounding the domains, then all the basis states
would be standing waves and the conductivity would be
zero. If the defects are randomly distributed, then Bloch
states are the correct basis states. The situations we will
be considering are ones in which most of the basis states
are standing waves so that most of the scattering takes
place from current-carrying states into non-current-
carrying defect states pinned by the domain walls. That
is why we say that the recoil energy and momentum are
absorbed by the domain walls, in close analogy with um-

klapp scattering in conventional metals. The reader
should be warned that this is a subtle idea; like the idea of
umklapp scattering itself, it is not obvious. (Nowadays
the correctness of umklapp scattering is no longer ques-
tioned, but the idea encountered considerable resistance,
especially from those schooled in classical transport
theory, when Bloch discussed it in 1928—1932.)

Some readers have found the foregoing explanation of
momentum dissipation satisfactory but are still puzzled
by the issue of energy dissipation as Joule heat. In homo-
geneous systems one can derive the temperature depen-
dence of p( T) from momentum and energy conservation,
after allowance is made for conventional umklapp, but
this is no longer correct for inhomogeneous systems
which are vicinal to metal-insulator transitions. When a
current-carrying electron is scattered into localized
states, there is local Joule heating and an increase in the
effective local temperature of the domain(s) where those
states are localized. Of course, this process is going on
continually and equally in all domains and, unless some
kind of electrical breakdown occurs, there will be no
significant effects associated with what is still essentially
uniform local heating. This is a problem with which ex-
perimentalists are quite familiar, especially in transport
measurements of very pure metals at ultralow ternpera-
tures. The standard procedure is to ascribe nonlinearities
to local heating at contacts, and to eliminate this by re-
ducing the applied voltage and measuring smaller
currents. Here, because of spatial inhomogeneities, the
entire sample becomes, in effect, a network of contact
barriers. Direct experimental evidence for native
perovskite contact barriers is discussed in detail in Sec.
IX.

There is another way of looking at the difference be-
tween the present phase-space arguments for inhomo-
geneous systems and the usual phase-space treatment of
homogeneous systems. The latter conserves energy and
particle number and corresponds to Boltzmann's rnicro-
canonical ensemble. The same results can be derived
more generally by what is nowadays sometimes called a
replica method, but what Gibbs called the grand canoni-
cal ensemble, in which a very large number of weakly
connected similar systems are prepared with fluctuating
particle numbers and energies, which are conserved only
on the average. The domains and spatial inhomogeneities
we are discussing represent a rather charming physical
approximation to the grand canonical ensemble. At any
instant in time the energy and density of current-carrying

particles fluctuates from one domain to the next, and
they are equal only on the average.

Some readers may still wonder where their favorite mi-
crocanonical phase-space reasoning broke down. The
answer is that, for homogeneous systems, there are no lo-
calized valence states and N&(E~), the density at localized
valence states at E =Ez, is zero. This is no longer the
case for the present system. Arguments that
NI(E~)))N, (E~), where e labels extended or ballistic
states, will be given later in this section, and the experi-
mental evidence which supports this assumption is dis-
cussed is Sec. IX. With local heating of localized states,
the assumption of instantaneous energy conservation at
constant temperature fails, and we have instead the much
less restrictive situation of energy conservation at con-
stant temperature only on the time average over all spa-
tial domains, but not continually in each domain sepa-
rately. Another important distinction between the
present inhomogeneous model and conventional homo-
geneous models is that the elementary excitations which
determine thermal properties (such as the specific heat)
are very similar in the two cases, but there are large
differences in the transport properties. This situation
also arises for uncompensated semiconductor impurity
bands, where there is a metal-insulator phase transition in
the electrical conductivity but not in the specific heat or
magnetic susceptibility when the impurity concentration
is varied. The reason there for the discordant transport
and thermal properties is that the applied field itself par-
tially separates localized and extended states. The impor-
tant point is that nonequilibrium transport processes are
much more subtle than equilibrium thermal ones, espe-
cially in inhomogeneous systems.

We next discuss the electronic structure of the
domain-domain-wall interface. We picture this interface
as a Schottky barrier analogous to metal-semiconductor
interfaces. When such interfaces and their neighbor-
hoods are decorated by point defects, the partial density
of states associated with the defects, Nd (E), consists of a
series of peaks or resonances corresponding to the
broadened localized states associated with the defects. If
one of these peaks is centered at or near E =EF, and if
the concentration of defects is large enough, then we say
that E„ is pinned at the interface by these defects. (These
conditions are often satisfied in conventional Schottky
barriers, and they have been studied by photoemission
from semiconductor surfaces covered by ~ 1 monolayer
of metal adsorbate. ) This situation can be described by
the model shown in Fig. 1 for the spatially inhomogene-
ous density of states N(E, r) which includes a metallic
band contribution Nb(E, r) and a defect contribution
Nd(E, r).

The interface in question may be a twin interface or an-
tiphase boundary associated with orthorhornbic symme-
try. Planar defects of this type can be observed by elec-
tron microscopy and they have been examined in detail
for La2 Sr Cu04 z. These planar defects of the ortho-
rhombic or tetragonal space group merely provide a
framework for planar arrays of the point defects which
actually provide the perturbation of the crystal potential
which, in turn, produces the electronic states that pin EF.
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FIG. 1. The spatial variation of the peak in N(r, E) associat-
ed with the defect states, Nq(r, E), for E near E+ and for r in the
domain (d), near the interface (i), and in the domain wall (w).
The background density of band states, Nb(E), is assumed to be
slowly varying near Ez and is represented by dashed lines. The
defect peak contributes to the total density of states
N(r, E)=Nb(r, E)+Nd(r, E) represented by the solid line. The
function N(r, E+) reaches a peak for r=r; near the interface
and drops (nearly) to zero inside a semiconductive domain wall

(w).

These point defects may be oxygen vacancies or intersti-
tials, for example, which are not observable directly by
electron microscopy, but whose presence must be de-
duced by another kind of experiment, for instance, ex-
tended x-ray-absorption fine structure (EXAFS), or
combined x-ray- and neutron difFraction, which lack
spatial resolution. By comparing [001] and [011] ion
channeling in YBazCu3 „Fe„07,one can infer that Fe
dopants localize along [110], causing a change in twin
orientations. Here the evidence for Fe localization near
twins is quite direct, but one can reasonably infer that na-
tive point defects will be gettered by native planar de-
fects. Electron microscopy has shown the necessity for
very large reconstructions of twin boundaries in YBCO
for Ni and Zn doping, and quite different reconstructions
for Fe and Al doping. This again emphasizes dopant
segregation at or near planar defects.

From Fig. 1, we see that Nd(E&, r) is maximized at the
domain —domain-wall interface where the point-defect
concentration c is optimized at c =c;. Well within the
domain, c &c;, while within the domain wall, c »c;. It
is clear that Nd(E~, c) will increase as c increases up to
c =c,-. For c & c,-, inside the domain wall, defect pairing
occurs and the defect resonance peak splits into two com-
ponents, bonding and antibonding, separated by a pseu-
dogap. Thus, although the integrated area under the
peak is proportional to c, the value of N(Ez, r) or
N(E~, c) is maximized at r =r; or c =c;. Well inside the
domain wall, N(E~) is small and the domain-wall center
is either semiconductive or semimetallic. The wall thick-

ness associated with pairs of microtwins or antiphase
boundaries may be of order 50 A, while the domain di-

ameter may be of order ' 300A. The filling factor (frac-
tional volume} occupied by framework planar defects is

typically ~ 10, while the critical bulk concentration'
for point defects decorating these framework planar de-
fects is typically +10 . This means that the planar
point defect array may be trapped by microtwin pairs of
defect framework planes, or merely by the stress field of
an antiphase or twin defect framework plane. In any
case, the filling factor or concentration associated with
the electronic domain wall is at least an order of magni-
tude larger than that of the framework planar defects ob-
servable by electron microscopy.

If the domain walls form a continuous network, then
the conductivity will be dominated by the electrical prop-
erties of the walls. If the latter are serniconductive, then
the material will be macroscopically semiconductive,
even though the domains remain metallic. Now suppose
we change the processing to reduce the point-defect con-
centration. As mentioned above, the most likely possibil-
ity is that when the metal-insulator transition occurs, the
electronic walls do not disappear. Instead, when the
average length of the framework walls exceeds a critical
value, gaps appear in the electronic defect densities which
make the electronic walls semiconductive, and the elec-
tronic wall network is discontinuous, as shown in Fig. 2,
with metallic bridges or shorts in the gaps. If the size of
these gaps is small compared to the bulk electronic mean
free path, carrier scattering by the walls of the weakly
metallic channels formed by the gaps will dominate
scattering in the metallic domains, and most of the
momentum dissipation will occur at the walls or edges of
the narrow channels formed by the gaps in the defect
density of the domain walls. Note that these electronic
gaps can form even though the framework twin or anti-
phase walls themselves remain continuous, so that the to-
pology of N(EF, r) is hidden from electron microscopy.
At the same time the composition at which the electronic
gaps form is implicitly associated with a geometrical
(more accurately, topological) singularity which
represents a per'colative threshold both electronically (for
electrons near EF } and structurally (because the electrons
near Ez are the ones that are most easily polarized to
screen long-range elastic forces). Moreover, this is the
only singularity in the domain-wall model. As is shown
in Sec. X, this singularity explains quite well the first-
order transition in transport properties which occurs in
well-annealed samples La2 „Sr„Cu04 in conjunction
with a second-order structural transformation.

At this point it is helpful to state explicitly what we
suppose the effect of the gaps in the domain walls may be
on the basis states which are properly used to calculate
electrical properties. Suppose w &c, then the number of
ballistic states Nb compared to the total number
N, =NI+Nb of localized and ballistic states should be of
order Nb/N, -c/d, in other words, Nl, tends to zero
linearly with c. As a function of chemical composition X,
we may expect that c varies linearly above a threshold
X=XO, that is, c —~X —Xo~. This linearity may persist
to a number of physical properties [for example, T,(x)],



8548 J. C. PHILLIPS

J
I

I

I

I

I

I

I

I

I

I

I

I

I

I
I (b)

I

I

I

l

I

I

c

I

I

I

I

I

l

l

I (c)

I

I

I

~l
t

I

I

I

I

FIG. 2. Domain-wall geometries as a chemical variable X is varied through the metal-insulator transition at X =X,. (a) X (X„
sample insulating. (b) X =X,+c, sample has just become metallic with maximum T„metallic gaps or channels of width c —u appear
in the electronic domain walls. (c) Larger gaps appear, but the density of defects in the domains may also increase; that is, the defects
may be less concentrated near the walls, and T, may decrease while p increases. The framework defects are shown by dashed lines as
isolated planes, but they also form pairs of closely spaced planes (Ref. 18).

and, in any case, it will tend to mask the exponential
singularities which occur in bulk homogeneous theories
of superconductivity such as the BCS theory.

We can calculate the temperature dependence of the
gap-channel resistance as follows. The current-carrying
states form wave packets that propagate through the
channels. These states are restricted by the exclusion
principle to lie in the kT-wide energy range determined
by the product f (1 f), where the—Fermi factor f is

f =[1+exp(E Er)/kT] —'. The probability that the
packet will scatter off the sides of the channel as it passes
through the gap is proportional to the length of the chan-
nel and to the number of final states it can scatter into,
which is proportional to T. This factor arises here exact-
ly as in Landau theory. However, there is no second fac-
tor of T because both momentum and energy are
transferred to the wall as whole. (Compare the example
of umklapp scattering discussed above, where the um-

klapp momentum is absorbed by the crystal as a whole. )

The latter is temperature independent because the energy
and momentum are absorbed not by a single independent
second electron, but by many strongly correlated elec-
trons localized in the wall which do not carry current
themselves.

Most of the experimental data will be discussed in the
following sections appropriate to each class of materials,
so that we can analyze chemical trends in detail. Howev-
er, there is one experiment we wish to discuss here be-
cause it illustrates quite neatly the special features of the
geometry of extended defects. The resistivity p(T) of ep-
itaxial YBazCu307 „ films was measured as a function of
ion-beam-induced damage. With p(T)=po+bT, it was
found (as expected) that the residual resistivity po in-

creased with fluence P and the originally superconductive
films (T, -90 K) become semiconductive for fluences
above (t, -20 X 10" ions/cm, with dp/d T & 0 for
T, &T&300 K. Also, T, (R =0) disappeared at about
this fluence, as expected.

The surprising result of the damage experiment con-
cerns b(P). For P&P, /2, the slope b(T) increases with

P, which is certainly counterintuitive because one would
have expected only po to increase if the ions created only
point defects. However, what actually happens is that
the ion leaves a cylindrical damage track with estimated
diameter d-8 A, which is significant on a scale of wall
width w -50 A, which may also be a good estimate of the
channel dimension c [Fig. 2(b)] for samples close to a
metal-insulator transition. The fractional increase in b is
about equal to Pl/„although, because of sample inho-
mogeneities, P, is not well defined. In any case, these
data clearly show that there is a close relation between
cylindrical extended defects and the resistivity linearity,
which provides strong support for the cylindrical channel
or punctured wall model of the origin of resistivity linear-
ity. Qualitatively the increase in slope results from a de-
crease in the number of current-carrying states in the
channel per unit energy. The overall scattering rate at
low T increases, of course, because of increases in po,
which result from bulk scattering from damage tracks.

IV. CHEVREL COMPOUNDS MyM06Chs sOx

The salient feature of superconductivity in the Chevrel
compounds is the drastic effect of oxygen contamina-
tion (x )0) which long went unrecognized. Even after
this was discovered and found to be responsible for trie-
linic distortions that correlate well with reductions in

T, for M=Sn and Pb, for example, or the insulating
character for M=Ba, many problems remained. The
most serious of these was that the observed average tric-
linic distortion angle 5 is very small, 0.5. According
to the band calculations, ' a distortion 5~ 10 would be
required to reduce T, to 0 or to render the normal state
insulating.

We have recently reviewed the Chevrel data in the
light of emerging evidence' ' of electronic domain walls
in the cuprates and found many similarities. The mystery
of the small measured value of 5 is easily solved because
this refers to the domains and not the domain walls. It is
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also most interesting that linear temperature dependent

p( T) is found ' in carefully prepared samples of
PbMo6SS, O„. Thus, the linear dependence is not a
property unique to layered cuprates but is rather associ-
ated with covalent-ionic bonding in transition-metal ox-
ides and chalcogenides (especially sulfides).

It is instructive to review the data in detail. In single
crystals of PbMo6 2Ss of volume —1 cm, p(T) is linear
from T, up to 50 K. Linearity at higher T may be
masked by inclusions of other phases (Mo2S3). Sintered
samples exhibit linearity up to 40 K and linearity may
be limited for the same reason. But, the most striking re-
sult is that oxygen-doped M =Eu samples which are in-
sulating as-grown become metallic and superconductive
with T, —10 K abruptly at pressures above P, —10 kbar.
This transition cannot be explained by hopping models
or by any spatially homogeneous model because no
structural change is observed by diffraction. We suggest-
ed that, at this transition, the semiconductive domain
walls fracture and the metallic domains become metalli-
cally connected along the fracture lines. This is analo-
gous to the channels formed in Fig. 2(b) compared to the
semiconductive domain wall array of Fig. 2(a). It seems
very unlikely that, at these modest pressures, the domain
walls could have disappeared completely. Moreover, by
growing M =Eu samples in the presence of an oxygen
getterer, superconductivity is achieved at P =0, which
means that the semiconductive behavior of the as-grown
samples is almost surely caused by oxidized domain
walls. Similarly, the degradation of T, as the oxygen
content increases probably indicates the gradual narrow-
ing of the channels in Fig. 2(b).

V. PEROVSKITE SUPERCONDUCTORS
(K,Ba)(Pb,Bi)03

The family Ba(Pb,Bi)03 exhibits superconductivity
with T, up to —15 K, while in (K,Ba)Bi03 the value of
T, can be as large as 30 K. One of the most striking as-
pects of superconductivity in this family is that T, varies
smoothly through the maximum T, —15 K in
Ba(Pb,Bi)03, with the likelihood of at least short-range
(Pb,Bi) sublattice ordering at the optimal Pb07~Biaz~
composition. ' However, at the same time, in
Ba, „K Bi03, as x decreases, T, increases to its max-
imum value at x =x, =0.37, whereupon a metal-
insulator transition occurs. We expect that the latter is
associated with a large lattice instability, but what is ac-
tually observed is only a small rhombohedral distortion 5
of the cubic superconductive perovskite. The value of 5
at the transition was too small to measure, but was prob-
ably less than 0.2'. According to band theory, this
should not produce a metal-insulator transition, but even
if this happened by accident, the resulting energy gap
would be SkT at room temperature and the material
would still be metallic.

This behavior is strikingly similar to that observed for
BaMo6S8, and sample quality permitting, one would ex-
pect that insulating Ba, „K Bi03 with x (0.37 should
become metallic abruptly with increasing pressure, as
EuMo6S80 did. In any case, with such small rhom-

bohedral distortions the only viable explanation for the
metal-insulator transition is domain walls. One would
also expect that well-annealed samples would exhibit a
linear p(T), but even after extensive annealing in oxygen
to reduce the oxygen vacancy concentration, supercon-
ductive (Ba,K)Bi03 alloys are weakly semiconductive
(dpldT (0) for T) T, . This means that the bulk mean
free path is too short for scattering from the domain
walls to be significant.

A determined effort has been made with EXAFS to
measure ' the atomic displacements associated with the
metal-semiconductor transition in Ba(Pb,Bi)03 and

(Ba,K)Bi03. This is a difficult experiment because, in

general, EXAFS lacks the spatial resolution needed to
resolve the clustering effects which lead to domain-wall
formation. However, the results are quite interesting,
especially when compared ' with measurements of the
optical gap (E -2 eV in BaBi03). The slope dE /dx is
greatest at the metal-semiconductor transition near
x =x, =0.37 in Ba& „K„Bi03, while the long-short
Bi-0 distance difference appears to be -0.15 A at the
transition. As remarked above, much larger distance
differences are needed to account for Eg -2 eV, so the ex-

planation of insulating domain walls seems appropriate.
This is topologically different from other models ' of spa-
tial inhomogeneities in the sense that here the defects are
clustered to form a continuous network.

VI. LAYERED CUPRATES

The most spectacular linear resistivity p,b(T) in the
layered cuprates is obtained for Bi2+„Sr2 „Cu06+& crys-
tals ' with T, 510 K. Unlike the Chevrel compounds,
secondary phases can be almost completely excluded.
Also, the Cu02 plane is very stable up to 700 K. At the
same time, T, is low because the Cu02 planes are separat-
ed by four semiconductive (Bi,Sr) oxide layers. There are
various theories concerning why large interlayer interac-
tions are necessary for high T„but most of them are
electronic and assume sample homogeneity. However, if
one accepts the ubiquity of domain walls in the Cu02
planes, then defect-generated interlayer coupling pro-
vides alternative metallic and superconductive paths
which may substantially enhance T, in materials like
YBa2Cu307 „and the bismates and thallates with
several Cu02 planes per unit cell. This is the basis of the
quantum percolation model of T, enhancement in mul-
tilayer cuprates where the Cu02 or CuO planes are
separated by only one or two semiconductive oxide lay-
ers. When there are four such layers, interlayer coupling
is very weak and interdomain coupling is expected to
occur primarily through gaps or channels in the in-
tralayer domain walls.

Superconductive samples of Bi2 „Sr2+~Cu06+z have
been prepared in two ways. ' Polycrystalline (ceramic)
samples were formed by repeated sintering. With these
samples with nominal compositions x =y, by varying x
one passes through the metal-semiconductor transition
and obtains superconductivity with a linear normal-state
resistivity, as shown for the reader s convenience in Fig.
3. The room-temperature resistivity is lowest and T, is
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monotonically as X is varied, and the general trend will

be that shown in Fig. 5(a). The dominant chemical pari-
ties (DCP} of both T, and p with respect to x —x, are
odd.

A second reasonable possibility, at least for the layered
cuprates (but not for three-dimensional Chevrel com-
pounds or NbO„} is that, at X =X„the Fermi surface is
nested, with E =Ez at a logarithmic peak in N(E) gen-
erated by a two-dimensional saddle point. Then one can
have charge-density waves (CDW}, spin-density waves
(SDW), or a high-T, superconductor. In this case the
behavior of T, (X) and p(X) is shown in Fig. 5(b). Nei-
ther T, or p will follow N(E~) if CDW or SDW form be-
cause of the nesting condition. In this case both DCP's
are even.

With the possible exception of (La,Sr)2Cu04, no high-

T, superconductor follows a general trend resembling ei-
ther Fig. 5(a) or 5(b). However, all of them exhibit linear-
ity in p( T) which correlates well with high T, . The com-
mon feature of Figs. 5(a) and 5(b) is that, whether or not
there is an alternative electronic instability which upsets
the functional relations between T, and p, and N(EF },
the DCP of T, and p relative to X —X, remains substan-
tially the same. This is an inevitable consequence of sam-

ple homogeneity. The large difference shown in Fig. 4—
practically opposite DCP's for T, and p—demonstrates
unequivocally that the linearity in p(T) cannot be ex-
plained by homogeneous one-component Fermi-liquid
theory. At least two structural components are needed to
produce DCP reversal.

There is one other important point to be made con-
cerning the (Bi,Sr)4CuO&+s system. In the ceramic sam-

ples, x [the (Bi,Sr) mixture variable] was tuned through
the metal-semiconductive transition, but in the single-
crystal samples' the relevant variable for obtaining super-
conductivity was found after extensive searches to be a
combination of x and 5, which led to the statement that
"the structure of a crystal grown under specific condi-
tions cannot be easily asserted. " According to our
present model, this variability is due to the difference in
ferroelastic clamping constraints between the two kinds
of samples and is in itself strong evidence for the need for
a multicomponent structural model.

VII. HOMOGENEOUS FERMI-LIQUID MODELS

There have been several efforts in the literature to
derive the linearity of p,b(T) in the layered cuprates from
a homogeneous Fermi-liquid model. I believe that only
one of these is mathematically consistent, and this is the
marginal Fermi-liquid model. This model is interesting
because it shows how unphysical the consequences of
homogeneity are in this context. Notably the model pre-
dicts that N(E) vanishes logarithmically at E=Ez, a
condition which is scarcely likely to generate high T, 's.
This result can be viewed as the result of taking a kind of
harmonic average of Figs. 1(d) and 1(w), and it is the an-
tithesis of Fig. 1(i), which produces high-T, superconduc-
tivity. No attempt is made in this model to discuss chem-
ical trends or to explain the metal-insulator transition.
However, this can be done, at least schematically, by re-

placing )E E—z~ with [(E E—
b ) +Eg ]', where E is

the insulating gap which varies like ~X —X, ~
for X &X,

and is zero for X&X,. With constant electron-whaton

coupling one then obtains T, (X) and p(X) patterns simi-

lar to those shown in Fig. 5(a). These clearly disagree
with experiment.

In earlier papers ' I attempted to explain the lineari-

ty of p(T) in a two-component context but without speci-
fying the spatial details of the model. Certainly these pa-
pers were on the right track in the sense that the two
components were extended and localized states, with the
dominant scattering of the former due to the latter.
However, the model required several assumptions that
are now seen to be unnecessary (a linear density of local-
ized states near Ez, elastic extended-localized scattering}.
In fact, the present two-component model derives the
linearity in T of p(T) in much the same way as Landau
derived the T factor for a one-component Fermi liquid;
that is, from phase-space considerations alone. As we
have seen, p(T) —poo- T is very common in anionic met-

als, including some which are not superconducting
(NbO„}, provided they are vicinal to an inhomogeneity
boundary. This makes the derivation given here particu-
larly satisfying.

VIII. HALL-EFFECT ANOMALIES

Many experimental papers have reported anomalies in
the Hall resistivity Rz(T) in YBa2Cu307 „and other
layered cuprates. Because of the large uniaxial anisotro-

py of p; (T) such measurements are more complicated
than those of p;J itself, because R& is obtained by invert-
ing the o;J(H) matrix. However, it seems unlikely that
these anomalies are artifacts because many workers have
reported similar anomalies, especially in layered cuprates.
Moreover, the temperature dependence of p( T) is similar
in single crystals [where o,b(T) is linear] and polycrys-
talline samples [where an average of p,b( T) and p„(T) is
measured, but p„(T) is slowly varying].

The present model suggests that these anomalies arise
from field-induced carrier freeze-out (or localization) on
extended linear or planar electronic defect arrays. Be-
cause these arrays are native defects generated by inter-
nal misfit in the layered unit cell, we expect to see several
kinds of extended defect arrays in each material. Howev-
er, the specific defects that arise, twins, microtwins, anti-
phase planes, spiral growth defects, mixtures of a-axis
with c-axis domains in thin films, or what have you, will

vary according to the geometry and method of sample
preparation.

Localization or magnetic freeze-out near a d = three-
dimensional metal-insulator transition is observed for
randomly distributed impurity centers in Si:P. When the
point defects are concentrated near a d=l (linear) or
d =2 (planar} framework, magnetic localization can
occur much more abruptly as a result of the reduced
dimensionality d'=d —d of the degrees of freedom nor-
mal to the framework, d'=2 or 1 in the linear or planar
cases. An arbitrarily weak attractive short-range poten-
tial always produces localization for d'=1, but for the
d =0 (point defects only) case, d'=d =3, and there is a



8552 J. C. PHILLIPS

threshold strength for producing bound states. The most
interesting case is d =2, which is marginal and has been
discussed by scaling theory. ' Note that magnetic
freeze-out is itself a consequence of the partial dimension-
al reduction associated with an applied field, which
confines electron motion normal to the field. Reductions
in dimensionality (or more generally, degrees of freedom)
always favor localization. ' Averaging over the wide
variety of possibilities of reduced dimensionality in gen-
eral we would expect to find that localization will always
contribute a Hall voltage linear in the applied magnetic
field and that this will be the dominant contribution in
the normal state for small fields. If a large enough num-
ber and variety of extended defects are involved in locali-
zation, then this should be linear in temperature as well.
Exceptions may arise in samples where a single type of
extended defect is dominant, for then a magnetic freeze-
out temperature characteristic of that defect may be ob-
servable.

The nature of the freeze-out is rather subtle and it de-
pends explicitly on the spatial dependence of N(E)
shown in Fig. 1. According to this figure, N(E~) reaches
its maximum value just at the interface between the
domain wall and the domain. This is the region where
the usual Bohr —van Leuuven skipping boundary orbits
are formed. In their classical model of diamagnetic sus-
ceptibility these skipping orbits cancel the contribution of
the internal cyclotron orbits, leaving zero orbital di-
amagnetism. Normally it is assumed that this cancella-
tion does not occur because the scattering rate for the
boundary orbits is much larger than that for the internal
orbits. However, in the present case these orbits may be
coherent over large distances. This would facilitate local-
ization on the extended defects (domain walls) at low T.
The phase coherence of the boundary orbits can be
quenched by impurity scattering, which wou1d thereby
suppress freeze-out.

These qualitative ideas can be made more quantitative
in the context of Fig. 2. When freeze-out occurs the mag-
netic orbits are separated into the boundary orbits and
the orbits localized in single domains. The boundary or-
bits are assumed to carry no Hall current. The latter is
carried by thermally activated hopping of carriers be-
tween adjacent domains. In each domain the Landau lev-
els contain a single level E„closest to EF, with the aver-

age value of
~ E„Ez~

=ah'co„w—here a =
—,
' and

co, =eH/m*c. The average activation energy is thus
akco„and for small H the Hall voltage V~ will be pro-
portiona1 to %co, /kT, or the hall resistance R~ will be
proportional to T '; that is, n~ ~ T. In thermally ac-
tivated films with complex defects such that a large frac-
tion f of V& is concentrated on one defect, the relevant
factor may be feV&/kT, which is not small, and more
rapid freeze-out may be observed. With Zn doping the
boundary orbits are mixed with the localized Zn orbits
and freeze-out is suppressed. '

The experimental data for R~ for Bl nominal c axis of
films and single crystals are consistent with this discus-
sion. Early work on uncharacterized epitaxial films of
YBazCu307 z grown on unheated substrates showed a
wide range of behavior for the carrier density nn(T)

defined as (R&e) ', including abrupt freeze-out for the
"poor" films with lowest critical current j, and linear
freeze-out for the "best" film with the highest j„which
presumably had the lowest concentration of extended de-
fects. Single-crystal measurements showed n&( T)
linear. In all cases the best material showed the smallest
values of n&(293 K), and the smallest range between 150
and 100 K. Recently measurements on highly oriented
epitaxial films of YBazCu3069 showed weak freeze-out
with an S-shaped n~(T) saturating near 100 K at about
0.5 carriers/unit cell, and saturating near 300 K at about
1.0 carrier/unit cell. These samples have apparently the
lowest concentration of extended defects of any samples
studied so far. The rapid upturn of n~(T) generally ob-
served below T„—150 K occurs only below T„—100 K
in these samples. This upturn is often ascribed to dynam-
ical fluctuations, but it is almost surely associated with
static superconductive "patch" effects and variable oxy-
gen stoichiometry in the neighborhood of extended de-
fects, even in single crystals.

One of the interesting questions is which point defects
are responsible for these Hall anomalies. The most plau-
sible candidates are the oxygen vacancies in the CuO&

chains because these are the point defects whose concen-
tration changes the most during the oxidation process
which generates internal stress and extended defects.
This hypothesis can be tested by examining Rn(T) for
YBazCu408, grown under high Oz pressure and an-

nealed for 72 h at 1025'C in 95 bar Oz. In this case
nz(T) is constant above 150 K (no carrier freeze-out), but
exhibits linear freeze-out below 150 K, with no upturn
approaching T, . Thus, these samples may be quite
homogeneous with perhaps a high density of clusters of
point defects, but with few extended defects or supercon-
ductive patches. Similarly, the temperature-
independent Hall coefficient found in sintered
Laz „Sr Cu04 probably reflects the absence of extended
defects in this material, where there is only one CuOz
plane and the YBCO problem of lattice-constant
mismatch between CuOz and CuO, planes does not
arise.

The nature of carrier freeze-out can be probed in sin-

tered YBaz(Cu, Zn )307 . There Hall measurements
show that, asy increases, freeze-out is suppressed. This
is what we would expect on the basis of the above discus-
sion of impurity disruption of the phase coherence of
Bohr —van Leuuven boundary states. Because Zn stains
the domain walls, ' it is particularly effective both in re-
ducing T, and suppressing Hall carrier freeze-out.

Another interesting example which supports the
present model of extended defects generated by internal
stress is Pro 5Cao 5BazCu307 z. In principle, this alloy is

isovalent to YBazCu307 & because the respective
valences (+z) are Pr(+4), Ca(+2), and Y(+3). In prac-
tice, it has not proved possible to grow bulk samples of
Pro 5Cao 5BazCu307 & which are superconductive, but
300-nm epitaxial films prepared by laser ablation are su-

perconductive with T, -40 K. The absence of bulk su-

perconductivity can be explained in several ways in
terms of point defects (larger bulk 5, for example), but all
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of these explanations involve drastic chemical changes in
relatively thick ()300 nm) films. The basic point about
internal stress is that it increases with increasing film
thickness, as is well known for heteroepitaxial semicon-
ductive films. ' Thus, in the bulk samples we expect to
find semiconductive domain walls which may be absent in
the laser-ablated thin films, which are formed so rapidly
as to suppress the growth of extended defects. Studies of
T, as a function of film thickness in Pro 5Cao 5Ba20&
indeed should provide the best test for the present
structural model, with an abrupt decrease in T, beyond a
critical thickness. ' Point-defect models, on the other
hand, would predict a more gradual decrease in T„espe-
cially since the thicker films would still in the point-
defect model be expected to have a superconductive sur-
face layer -300 nm thick.

The question of inhomogeneities has been addressed in
a non-Fermi-liquid context by Mott, using a homogene-
ous bipolaronic hopping model. With several flexible
assumptions he is able to derive the T linearity of p,& and

nH in YBazCu307 „. He then invokes disorder to ex-
plain the constancy of nH in sintered La& „Sr„Cu04.
This naturally leads him to the prediction that, with ion
damage or with increasing x in YBazCu307 „,the carrier
density nH(T) should lose its linearity in T and become
constant, which is opposite from the behavior actually
observed. ' I agree with Mott that disorder is present,
but in my model the samples are never truly homogene-
ous. The differences between materials, or even between
the same material in samples with similar T, 's but
diferent normal-state transport characteristics, arise pri-
marily from difFerences in defect topologies, clustered,
continuous, or discontinuous extended. In any event, in
spite (or perhaps because) of mathematical simplicity,
homogeneous models appear to achieve the maximum
distance from experiment.

IX. CORRELATION OF T, AND LINEAR
BACKGROUND TUNNELING CONDUCTANCE

IN (K,Ba)(Pb,Bi,Sb)03 SUPERCONDUCTORS

One of the striking characteristics which distinguishes
anionic (oxide) superconductors from metallic supercon-
ductors is the presence of a background conductance
which scales linearly with voltage over a large voltage
range ( —0.2 —0.2 V or more}. This linear background
conductance has recently been studied systematically
for four groups of superconductive perovskites (BaPb03,
BaPb075Sbo 2503, BaPb075Bi02503, and Ba07KO3Bi03)
with T, varying from (1 to 30 K. It was found that the
slope of the linear conductance was approximately pro-
portiona1 to T, . Because we have at present no reliable
independent means for estimating such trends in T„ this
observation is remarkably interesting. In fact, it can be
explained quite simply in the context of spatial inhomo-
geneities.

To begin we must first have a model which explains the
linearity (which is almost exact) of the conductance
against voltage. It is clear that a linear conductance is
different from a linear resistivity, and thus it would seem
at first sight that the structural explanation used for the

linear resistivity in Sec. III cannot be applied here to dis-
cuss the linearity of the background conductance. In
fact, there is a close connection between the two because
the linear resistivity corresponds to Fig. 2(b), while the
linear conductance corresponds to Fig. 2(a). In other
words, the linear resistivity is found just on the metallic
side of the metal-insulator transition, while the linear
conductance is found just on the insulating side. The
compositional difference between the two sides is small
and this is what makes possible the systematic correlation
of the slope of the normal-state background tunneling
conductance with T, .

Linear (in T or frequency or voltage) conductances
have previously been observed in two semi-insulating
contexts, lightly compensated semiconductor impurity
bands, and stable quasicrystals, such as i-A1-Cu-Fe.
Again the linearity is excellent and, in the quasicrystal
case, it extends up to A'co-1 eV; that is, well above the
Debye energy, k8D &0.05 eV. I have explained this
linearity in terms of a fixed- (not variable-) range hopping
model which I call compartmentalized. With a specific
structural model for i-A1-Cu-Fe, I was able to identify a
pseudogap in the electronic spectrum of 1 eV, and it ap-
pears that this gap explains the 1-eV cutofF of the linear
conductance observed for Al-Cu-Fe. The slope of this
conductance appears to be the same in i-Al-Cu-Li as in
i-A1-Cu-Fe, although I predicted that a smaller cutoff
(-0.3 eV} should be observed for the former.

Within two-component Fermi-liquid theory, one can
easily distinguish between materials on the metallic and
insulating sides of a metal-insulator transition. The den-
sity of states at the Fermi energy E =EF is written as

N(Ep) =Nb(EF)+Nd(Ep),

where Nb (E~ ) describes extended states which carry
current quasiballistically (quasi-Bloch states), while
Nd(E~) refers to localized or standing-wave states. The
latter are phase incoherent from one domain to the next,
and interdomain current is carried by classical hopping.
In this case the diffusivity D is proportional to T while
the mobility p is given by the Einstein relation

(2)

so that the conductance cr =e p is proportional to T. Al-
ternatively, kT, which determines the width of the Fermi
function, can be replaced by %co for optical conductance
or by eV for tunneling conductance. In each case we ob-
tain a linear conductance. Note that, if the hopping
range is dynamically variable in any way, this linearity
will be lost. ' The static range in the present model is
simply the average spacing of domain centers, and the
domains themselves are the compartments which define
the localized states.

With these physical analogies we have a firm basis for
understanding linear conductances, so we can now con-
sider the slope of this conductance. The range of slopes
observed experimentally is only an order of magnitude, so
that we need not try to explain exactly why T, appears to
be proportional to the slope. We must, however, explain
why both increase together. Compartmentalized hopping
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takes place over barriers (domain walls), and the barrier
height is related to the cutoff for the linearity of the con-
ductance.

To proceed further we need a more explicit structural
model. In the barriers we assume that Nb(E+) =0; that
is, we are on the insulating side of the metal-insulator
transition. On the metallic side, NI, (EF ) «Nd(EF); that
is, most of the states are localized, and in a two-
component expression for the electron-phonon coupling
constant,

A, =Ab+Ad =NI, (EF)Vb+Nd(E~) Vd, (3)

we still have A, d ))A.b. Thus, T, will be determined pri-
marily by A,d, not A,b, and this is why a correlation be-
tween T, and the conductance slope is possible.

It is important to realize that the localized states
should be described not as self-trapped polarons but rath-
er as domain-wall-pinned polarons. The stronger the
electron-phonon coupling A,d, the more eifective the pin-
ning. As kT, fin, or eV increase, the pinning decreases,
and this reduced pinning frees more carriers to act as
quasiextended current-carrying states. Thus, the slope of
the conductance increases with A, d, as does Td, so we can
now see why the slope is positively correlated with T„
which was our main purpose. Thermally activated hop-
ping also explains the linearity in T of the Hall conduc-
tance, as noted in the proceeding section.

There is one other systematic correlation which is also
interesting. Over a factor of 10, the slope of the conduc-
tance is linearly correlated with the zero-bias conduc-
tance. ' Thus, the latter is intrinsic and also represents
a common microscopic factor for the four systems stud-
ied. My candidate for this factor is paired BaO-BaO
planes [instead of BaO-(Pb, Sb,Bi)O planes as in the crys-
tals). There are three reasons for this suggestion. First,
such stacking faults would make excellent semi-insulating
domain walls. Second, they would be common to all four
systems studied. Third, in Ba, K„Bi03 with x «1 it
has recently been observed that K occupies Bi (not Ba)
sites, which can be explained as the result of staining of
BiO-BiO planes by K (such sites are preferred for electro-
static reasons over crystalline Ba sites). If one can have
BiO-BiO stacking faults, then one can also have BaO-
BaO stacking faults.

It may be the case that, for an ideal planar geometry,
thermal depinning is not linear in T (although this prob-
lem seems not to have been solved). However, in reality
the domain-wall geometry is far more complex than an
infinite plane. Also, the observed range of linearity of the
conductance is not. large. In the future it may be possible
to decide whether the apparently linear relationship be-
tween d o /d V and T, is real or accidental.

X. RECONCILIATION OF FIRST-ORDER ELECTRONIC
%'ITH SECOND-ORDER STRUCTURAL

TRANSITION IN La2 „Sr„Cu04

One of the primary problems both experimentally and
theoretically in understanding the effects of spatial inho-
mogeneities in cuprate superconductors is that the nature
of the inhomogeneities depends on the thermal history of

the samples. It may appear that this is not the case be-
cause, for example, different methods of sample prepara-
tion seem to yield very similar T, s. However, to obtain
similar T, s these different methods need to optimize the
spatial configuration only for some filaments on a scale
less than the penetration depth ( ~ 1000 A), whereas the
domain sizes which have been observed, for instance, by0
electron microscopy, are considerably smaller ( & 300 A).
One way to circumvent this ambiguity is to study the
effect of long annealing times on T, near a well-
established structural phase boundary. Kith long anneal-
ing times domain sizes grow and eventually exceed the
penetration depth, leading to observable changes in T,
and/or the superconductive volume fraction.

Although this procedure sounds simple in principle, in
practice, for oxides it requires exceptional care because
the needed annealing times can be very long. The first
successful experiment of this type appears to be the
study ' of the superconductive volume fraction in well-
annealed La2 „Sr„Cu04 near the orthorhombic-
tetragonal transition at x =0.21. For the reader's con-
venience, these dramatic data are reproduced in Fig. 6.
They show a structural transition which is apparently
continuous while both the superconductive and normal-
state transport properties are discontinuous, with the
magnitude of the discontinuity increasing with annealing
or improved homogenization (spray-dry samples). The
changing volume fraction suggests that the changes in T,
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or the normal-state resistivity temperature index n are as-
sociated with quantum percolation of the kind described
by the present model. The very small orthorhombic dis-
tortion angles ( SO. 1') shown in Fig. 6 also suggest that
the distortion itself near x =0.21 has a percolative origin,
and that it is no longer observable when the tetragonal
phase percolates. In a predominantly two-dimensional
geometry, of course, only one phase can percolate. For
the tetragonal phase this occurs when cracks or metallic
channels appear in the domain walls, which is a topologi-
cal singularity (Sec. II). All percolative transitions are
continuous, and the domain size increases as the transi-
tion is approached from the orthorhombic side. If we
think of the domain walls as pinning an internal soft
mode (local tilting of Cu06 octahedra}, then the correla-
tion length for this mode should be very large, even
larger than observed for x & 0.07.

I will not comment here on the quantitative details of
the experimental results, which are still preliminary.
However, there is an important qualitative point. When
domain walls are present (orthorhombic phase, or
"tetragonal" phase, but inhomogeneous or poorly an-
nealed) both superconductivity and linear rnormal-state
resistivity are observed. When the domain-wall density is
reduced, T, drops appreciably and the normal-state resis-
tivity is no longer linear in T. These qualitative trends
are exactly in accord with the structural model of this pa-
per. As far as I can see, there is no way to explain the
(first-order electronic)-(second-order structural} dichoto-
my within the context of any homogeneous whaton mod-
el, regardless of the microscopic choice of whatons.
As further progress is made in refining phase diagrams
with well-annealed samples, I expect that the role of de-
fect ordering, Fermi-level pinning, and extensive
structural defects in producing high-T, superconductivi-
ty will be clarified.

XI. INTERLAYER METALLIZATION
IN IODINE-INTERCALATED (2:2:I:2)

When the Bi-0 layers of (2:2:1:2)=BizSr2CaCu206+s
are intercalated with I, the ab planar resistivity p,& is vir-
tually unchanged, but the interlayer resistivity p, changes
dramatically from semiconductive to exactly linear in
T. However, the magnitude of p, remains much larger
than p,&(p, /p, &

~10 ). This means that the I layer has
shorted the semiconductive layers over a small area, with
a fractional filling factor f, ~ 10 . These shorts must be
of exactly the same type as the channels or shorts which
we have introduced to explain the linearity of p,b in pris-
tine materials such as other cupr ates as well as
PbMo6SsO„and NbO, +„.

It is interesting to discuss the microscopic origin of the
interlayer defects responsible for the linearity of p, after
intercalation. The intercalated iodine layer is found to be
epitaxial, but there is no reason that its prototypical lat-
tice constant should match exactly that of the (2:2:1:2)
substrate. (Typically, successful intercalation is possible
when the lattice constants match to within a few per-
cent. ) We therefore expect that the intercalated iodine
forms islands, with their centers staggered from one BiO

layer pair to the next. When the edges of these islands
cross (in projection along the c axis), a large stress is ex-
erted on intervening Bi-0 and Sr-0 layers which may, for
example, attract interstitial oxygen to the crossed re-
gions. If the diameters R of the iodide islands are of or-
der R /a -30 (where a -5 A is the ab planar lattice con-
stant), then the filling factor of the crossed regions will
indeed be of order f, —10 . A value of R /a -30 is con-
sistent with a misfit of prototypical lattice constants of
order 1%o.

The preceding structural model was presented to facili-
tate visualization of the kind of defect reconstruction
which is needed to explain both the linearity and magni-
tude of p, after intercalation. However, it is important to
realize that this is just an example. What are much more
important are the general principles behind the specific
model. To explain the data, a small filling factor is neces-
sary and this small filling factor is associated with hidden
defects which cannot be imaged by di6'raction or by elec-
tron microscopy. Moreover, these defects generate a
linear resistivity p, which must arise in much the same
way as the linear resistivity p,&. Thus, the latter also de-
pends on defects or shorts through semiconductive
domain walls. This means that the observed linearity of
p, and the small value of f, provide decisive evidence in
favor of the structural model of this paper, as well as de-
cisive evidence against homogeneous models of any kind
for the linearity of p( T) for any material.

In conclusion, we have seen that spatial inhomo-
geneities can drastically affect the normal-state transport
and superconductive properties of metallic oxides vicinal
to metal-insulator transitions. The present model not
only provides mechanisms which explain linear tempera-
ture dependences of planar resistivities and Hall carrier
densities, but it also explains chemical trends across ei-
ther a superconductive metal-insulator transition (Fig. 4)
or a superconductive metal-normal-metal transition
(Fig. 6). It is noteworthy that the latter exhibits only a
second-order structural transition, while the nature of the
structural changes for the former is at present still un-
clear.

The case of La& „Sr„Cu04 (Fig. 6) is probably better
understood structurally than the other cases discussed
here. The decisive factor is domain-wall gettering of
Fermi-energy pinning defects. It was suggested some
time ago that domain walls might play an important
part in high-temperature superconductivity, but the
defect-gettering mechanism, together with local enhance-
ment of N(EF), was not included in the discussion. This
mechanism is much more effective than lattice softening
of domain-wall phonons, as the phase-space weighting
factor of the latter is small.

One can view electronic defect gettering by extended
atomic planar defects as a kind of self-organized enhance-
ment of electron-phonon interactions. There may be
several kinds of electronic defects, only one of which ac-
tually enhances N (EF ) locally. The stress field of the pla-
nar atomic defects may attract the electronic defects at
longer distances and repel them at shorter distances,
leading for each kind of electronic defect to a planar layer
at a different average distance from the atomic planar de-
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feet. This will produce one high-T, superconductive lay-
er which can be connected along a channel or crack in
the atomic domain wall to the next domain. The mecha-
nism is quite general and merely requires processing op-
timization, which is customary procedure for these ma-
terials and in a deeper sense is implicit in the selection of
specific compounds.

Defect chemistry is extremely complex, even in simple
crystals like GaAs. For the more complex cuprates one
cannot expect to obtain direct evidence in a single experi-
ment to specify all the details of a microscopic electroni-
cally decorated domain model. The reader should note,
however, that such evidence is gradually accumulating in
careful studies of cuprates. Another example of such
work is an elastic relaxation measurement of
YBa2Cu306+„which shows evidence for CuO„chain
buckling and (anti)ferroelectric domain formation which
is fully compatible with the microscopic model described
here.

l5

" estimated
, error

l3

l2
IO I' I I3 n

FIG. 7. Variation of reduced electronic speci6c heat
coefficient y in Cu&, Zn„and Cu& „Ge~ alloys as a function of
n —1=x or y/3, from Refs. 82 and 83.

XII. FERMI-LEVEL PINNING DEFECTS
IN a-BRASS (Cn, „Zn„}ALLOYS

One of the central theoretical objections usually raised
against the present model is that enhancement of N(EF }

by a large resonant defect contribution Nz(EF) cannot
occur because it would be erased by static Jahn-Teller
distortions, or with a periodic defect array by charge den-

sity waves. I agree that this mechanism is the one that
occurs most of the time. However, there is no law of na-

ture that says that it must always occur. To prove that
such a law does not exist, we need find only one coun-
terexample where Fermi-level pinning by a defect does
occur. Unfortunately, as discussed in Sec. II, the likeli-

hood of Fermi-level pinning by defects increases greatly
in complex ternary systems where extended defects can
be stabilized against Jahn- Teller distortions by cage
effects. Nevertheless, I have found an unexpectedly
simple example of Fermi-level defect pinning in Hume-

Rothery Cui „Zn„(a brass) alloys.
First-principles studies of these close-packed a-phase

alloys have shown that Zn dopants form second-
neighbor pairs and thus four-member Cu-Zn-Cu-Zn-
rings which can be regarded as precursors of the more
open bcc P phase. Numerical simulations which repro-
duce short-range order derived from neutron diffuse

scattering intensities are dominated by such pairs even
at x =0.25.

Long after Hume-Rothery suggested that the a~P
transition was induced by the approach of a nearly free-

electron Fermi surface to the (111}or L Brillouin-zone
face, Fermi-surface studies showed that there was a large
L2 —L, energy gap at this face, so that the Fermi surface
already contacts this fact in Cu- and Ag-based alloys at
x =0. This means that y/yo, the coefficient of the linear
electronic specific heat, normalized to the free-electron
value yo at x =0, should decrease with increasing e/g
(electron-atom ratio). Instead, as Rayne found, it in-
creases, much as if Ez were less than E(L2 }. His data
are shown in Ziman's plot in Fig. 7, reproduced here for
the reader's convenience. Also sho~n is the rigid-band
prediction y„„/yo for a value of u = iE (L i )

E(L2. ) i /E~— close to experiment. Note that
dy/dx —dy, b/dx is proportional to Nz(Ez)/x in the
present model. If N„(E)/x were independent of e/a,
then Fig. 7 would mean that Nz(E)/x was largest near
x =0. In any case, the large discrepancy between dy/dx
and dy„b/dx clearly can be explained only by a Fermi-
level resonance associated with Zn pairs. I believe that
these Zn pairs are a special case of a defect complex pin-
ning EF, here in a very simple host (pure Cu). If such
pinning can occur in this simple case, I can see no reason
why similar pinning should not occur in complex mul-

tinary cuprates.
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