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Single-electron tunneling into randomly distributed double-electron states: Linear voltage
and temperature dependences of the conductance of high-T, tunnel junctions
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In sandwich-type tunnel junctions of high-T, materials the conductance is observed to have a large
zero-bias value, linear voltage dependence at low temperature, and linear temperature dependence at low

voltage. We suggest a model of single-electron tunneling into randomly distributed (disordered) local
centers with strong interelectron attraction to explain these features. In point-contact tunnel junctions
these features should be absent due to local homogeneity in contacts of small area. We compare predic-
tions of the model with experiment.

I. INTRODUCTION

Tunneling measurements, which are extremely useful
in investigations of conventional superconductors, do not
have any straightforward interpretation in the case of
high-T, compounds. Analyzing all experimental results
one can, however, single out a common tendency. The
conductance 6 =dI/dV obtained for point-contact tun-
neling structures and those obtained for usual sandwich-
type tunneling junctions are qualitatively different. '

These distinctions mainly show up in (i) the tunneling
conductance G( V, T) at voltage V =0 and temperature
T =T„and (ii} the type of voltage dependence of 6 over
a large bias range ( V-50—100 mV). Experiments recent-
ly carried out on sandwich-type contacts of large area
(0. 1 X0. 1 mm } demonstrate quite reproducible re-
sults: (i) large values of 6 (0,0) /G~ -0.1 —0.5,
6~=G(0, T, } is the normal-state conductance; (ii) linear
voltage dependence of the background in G( V, T} in the
range of large voltages up to 50-200 mV. In contrast, the
data obtained for the best point contacts have the follow-
ing features: (i) small values of G(0,0)/6~50. 01;9
(ii) either the voltage dependence of the background is ab-
sent, " or is it nonregular and asymmetric with respect
to bias sign. ' ' The most evident example of the quali-
tative distinction between point- and sandwich-type con-
tacts obtained for the 80K phase of the Bi-Sr-Ca-Cu-0
system, investigated in Refs. 2 and 10, is shown in Fig. 1.
It should also be mentioned that the results for point con-
tacts of comparitatively large area (250X250 pm ) are
close to those obtained for sandwich junctions. '

Existing theoretical models which predict a linear-
voltage dependence of tunneling conductance appeal ei-
ther to intrinsic properties of high-T, materials [tunnel-
ing into the resonating-valence-bond (RVB}state, ' ' in-
elastic tunneling with generation of paramagnons,
tunneling of quasibosonic electron pairs and bipola-
rons ] or to properties of the tunneling barrier itself
(field effect in electron tunneling' ). Such approaches
do not explain why the I-V curves are different for
different types of tunnel junctions.

Surface-layer investigations of high-T, materials by
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FIG. 1. Conductance (dI/dV) vs voltage for the 80I( phase
of the Bi-Sr-Ca-Cu-0 system is shown for (a) a point-contact
tunneling junction (from Ref. 10) and (b) a sandwich-type tun-
neling junction (from Ref. 2). The units for conductance are ar-
bitrary in both figures.

means of scanning tunneling microscopy (STM) (Refs. 10
and 25} demonstrate directly a substantial inhomogeneity
of the scale 1000—1500 A, ' where superconducting parts
as well as dielectric and metallic regions coexist. In the
tunnel point contacts, the size of the area involved in tun-
neling is usually about 100-1000 A, ' and at most a
minor set of inhomogeneities is probed, leading to
discrete and irregular structures in 6(V) curves, while
for sandwich-type junctions, with area of 0.1X0.1 mm,
the tunneling is determined by currents averaged on a
wide range of surface inhomogeneities.

It is obvious, due to substantial proportion of nonsu-
perconducting surface regions in large-area contacts, that
tunneling into the superconductor, which in the com-
pletely homogeneous case is blocked because of the su-
perconducting gap, would be allowed. Owing to this fact
large values of tunneling conductance 6(0,0) may be ex-
plained.

Within the theory of local pairing ' we would like
to formulate a model of single-electron tunneling which
enables us to explain the relation between the linear back
ground conductance and the surface disorder. The main
features in this model are the following:

(a) Presence in high-T, material of localized electronic
states (local centers, LC) along with conventional band
electrons; hybridization between the two types of elec-
trons is also supposed to exist;
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(b) strong electron-electron attraction within LC
(negative-U centers} causing the electrons to order in
pairs, so-called local pairs;

(c) distribution of LC energies as a result of surface in-
homogeneities.

Items (a) and (b) represent the idea of local pairing. In-
vestigations of models based on (a) and (b} have been
presented in a number of works, ' and one of the
objects of these investigations has been to relate the local
pair concept to high-T, superconductivity. Here our
prime interest is the normal-state properties of high-T,
materials and to test if it is possible to explain the much
discussed results of different kinds of tunneling spectros-
copies within a model of local pairing. The main theme
of this paper is the difference between measurements of
small-area and large-area tunneling junctions.

II. THE MODEL

The Hamiltonian of the tunneling structure, shown for
instance in Fig. 2(a), has the form

H =H&+Hc+Hr+eV g bi,~bi,

where H~ and H& are the Hamiltonians for the normal
and the strongly correlated metal, respectively, and HT is
the tunneling Hamiltonian. V is the voltage across the
junction.

The normal metal (M) is described by the Hamiltonian

HM= gs~b~~b~~ . (2)
kcr

All energies are measured with respect to the chemical
potential at T =0.

The system we are interested in corresponds to H& and
is described by a model of local pairing (correlated metal,
CM). The starting point is then a periodically extended
Anderson model:

Hc= g ei,a& z +E, g c" c. + U g c~ c, c, ~c,
ka.

1 —ik-R.+ g (tqe 'aq c +H. c. ) .
X, gi

In the Hamiltonian above there are two electronic sub-
systems. The subsystem represented by the a operators
consists of wide-band electrons characterized by a Bloch
momentum k, and the other subsystem, represented by
the c operators, consists of localized states characterized
by a site label j. The first and second terms are the ener-

gy of the electrons in the wide band and the energy of
singly occupied sites, respectively. The localized states
on the same site (with opposite spins) interact with each
other by the Hubbard energy U. Considering local pairs
this energy is negative and assumed to be large in magni-
tude. The last term is the hybridization between the two
subsystems, and in the analysis which follows this term is
treated as small compared to the other terms in H&. In
the situation discussed above with large negative Hub-
bard energy and small hybridization, the subsystem of lo-
calized states prefers to order in empty and doubly occu-
pied sites. The natural units, so to speak, of the subsys-
tem are then not the c operators but rather two-particle
operators that more efficiently describe the situation on
each site. The slave boson representation * ' is often
used in this context. Here we use it only for technical
reasons because of its notational ability. The localized
states of CM on each site j are represented by two Fermi
operators, sJ, one for spin up and one for spin down, and
also two Bose operators, e and d . One defines s, e,
and d. to annihilate a singly occupied state with spin pro-
jection 0., an empty state, and a doubly occupied state on
the site j, respectively. These operators are not indepen-
dent but fulfill the constraint e e + g s s +d.d. = 1,
and the electron operator is rewritten like cJ
=s. e +sgn(o )d, s . . Using these operators we reformu-

late Eq. (3):

Yld&YZZ/rYFXIIIIYXrrY.
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FIG. 2. (a) Diagrams of electron tunneling from the conven-
tional metal (M) to the strongly correlated metal (CM). Process
I shows tunneling from the band in M to the band in CM. Pro-
cesses II (a) and (b) show different channels of tunneling from
the band in M to a local center in CM accompanied by the tran-
sition from the band in CM to the same local center. 2E is the
local pair energy relative to the chemical potential and is also
the threshold energy for processes II. (b) The local pair levels
are distributed in an interval of 2A. The case when eV &5 is
shown.

In the tunneling Hamiltonian HT we have two tunnel-

ing channels, either band-to-band or band-to-LC levels

[see Fig. 2(a)]:

aH7 p trpb/ a
p
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III. CALCULATION OF THE CONDUCTANCE

We now calculate the tunneling current by using the
standard method of expansion in the small tunneling
Hamiltonian. Taking into account only single-electron
tunneling, we keep only the lowest-order contribution in
such an expansion. First we define the following quanti-
ties:

P = g t)tpb) nit pn,
a

kp

1
Q = g t), b), [s e +sgn(tr)djs ], .1 J J

1 —ik.R.S= pe 'a),
N, )tj

x [S)(k)s~ ej+S2(k) sgn(o }djs ].
—H. c. , (10)

where S,(k) =t), /(E) —e)', ) and Sz(k) =t&/(E2 E) ——s&)
are the hybridization amplitudes. According to Eq. (4),
Hc is a sum of H0 and V, where Vcorresponds to the last
term in Eq. (4). After the transformation Hc is changed
in the following way:

He~Ho+ V'+, V'= —,'[S, V],

and their time dependence

i (H~+Hc)t/S i (H~+H—c)t/t)

i ( Hit +Hc )t /t) i (Hit +Hc )t /—ti
(7)

Then the current is given by

d~ eiev(t —t')/A

fg~ —oo

X ( [ P( t) +Q( t), P (t')+Q (t')] ), (8)

and choose S to have the form

where the ( ) brackets denote the thermal average We.
make an expansion in hybridization by using the canoni-
cal transformation due to Schrieffer and Wolff. This
means we change any operator X into a new operator by
the rule

X e~Xe

+ 0 ~ ~ (12b)

To calculate the current to zeroth and first order in hy-
bridization we are not interested in the corrections of Eq.
(12) since these are now second order in hybridization.
However, from (iii) we find first-order terms. Below we
list them together with the zeroth-order terms:

where V' is second order in hybridization and further
terms are of higher order. The first-order term in V has
been removed by the special choice of S, Eq. (10). Writ-
ing down the current we have three types of contribu-
tions: (i) corrections from the statistical operator; (ii)
terms from the exponentials in the time dependence of
Eq. (7}; (iii) terms from the expansion of the exponentials
e Pe and e Qe s appearing in Eq. (8). Considering (i)
and (ii), we can formally write

0

iHot/S i (Ho—+ V')t/t) i t, iHot'/t), iHot'/S—0 e 0

0

Io= g ~t)'p( 5(sp —s)",—eV)[n(s&}—n(sp)]+ g (t)'J
~ (5(E) —s),—eV)[n(s), )nj), nj [1 —n(s), )]—]

kp kj

+5(E2 E, —
s),

—eV)[n(s),—)n, —[1 n(s), )]n—d]), (13)

0

g t)', (t)', )'e '(5(sp —s),—eV)[S,(p)(n ), +n )+S2(p)(n. +njd )][n (s), )—n (e')]
N, )w

+5(E)—s)b —eV}S)(p)[nj [1 n(s), )] n(s), )n——
~~ ]

+5(Ez E, —e),
—eV)S2(—p}[[1 n(E), )]njd n(s)—",)n—. ] ) . (14)

Here n (s) is the Fermi function for the band electrons
in M and CM. The functions n ),

= I /Zt, nt.
=exp( —PE) )/ZJ, and n d=exp( PE2)/Z, . where—

Z. =1+2exp( PE, )+exp( PE&—)—
and p=(k&T), are the distribution functions for zero,
single, and double occupancy on the site j.

In Eq. (13} we recognize the standard band-to-band
tunneling described by }t)',

~
and the band-to-I. C tunnel-

ing described by )t f,
.

~
. According to the theory of local

I

pairing, superconductivity is most favorable (highest
T, ) when the local pairs are close to the Fermi energy.
This means that E2 =0, and this is then the case of in-
terest regardless of our investigation being made in the
normal state. Also, since the expansion above assumes—U being large, E& and E2 —E, = —E~ are far above
and far below the Fermi energy, respectively. n. is then
turned off to zero, and the band-to-LC transitions in the
second sum of Eq. (13) are not allowed because we study
only the small-voltage regime, where the restriction
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~eV~ &E, is clearly satisfied. I, does not show any new
characteristic features compared to Io, but is just a renor-
malization of the simple processes responsible for Io.
The voltage dependence of the conductance G =dI/d V is
the same for both Go and G, . When we write down Go,
the standard approximations are made: ~tfz( =~t'~ is
independent of momenta and the electronic density of
states is independent of energy, justified by the small-
voltage limit. As a result,

Go
——(2e /g)~ ~

This expression, independent of temperature, is valid
when kz T is much smaller than the Fermi energies of the
a and b band, which usually is the case. NF and Nz are
the electronic density of states at the Fermi energy for
the a states and the b states, respectively. The conduc-
tance Go, and G, as well, has no voltage dependence.

Before introducing corrections of second order in hy-
bridization we want to make contact with a physical pic-
ture of this tunneling problem. In Fig. 2 the diagrams of
electron tunneling from the ordinary metal (M) to the
metal with strong electron correlations (correlated metal,
CM) are presented. Figure 2(a) illustrates different possi-
bilities for single-electron tunneling. Besides convention-
al band-to-band electron tunneling [see arrow I in Fig.
2(a)], there is also electron tunneling between the band in
M and the LC states in CM. At sufficiently low voltage
(e V & E —U/2=E, , U & 0 is the Hubbard energy, and
2E =Ez the local pair energy), the simple tunneling pro-
cess of taking one electron from the M side into an empty
LC state (on the CM side} is energetically forbidden.
Only tunneling processes resulting in the appearance of
two electrons in LC are possible. Even if we restrict our-
selves to single-electron tunneling, it is possible to get
such a double occupation of LC by inelastic tunneling,
combining single-electron tunneling into LC with transi-
tions from the wide band in CM into the same LC due to
hybridization [see Fig. 2(a), paths II]. It is very impor-
tant to stress that there is a number of different channels
for such a complex transition corresponding to the same
final energy of a double-electron state on LC, e.g. , (a)
and (P) in Fig. 2(a). Because of the necessity to have two
initial band electrons in both metals with a given total en-

ergy to form a bonding state, the tunneling into LC is
possible only at sufficiently large voltages e V & 2E, where
2E is twice the distance between LC energy and chemical
potential [see Fig. 2(a)]. This means that we should have
a threshold for single-electron tunneling into LC and,
correspondingly, a steplike voltage dependence of the
tunnel conductance. In a homogeneous material LC en-
ergies should be the same all over the bulk, as in Fig. 2(a).
This homogeneity is not present at the surface of high-T,
materials, as mentioned above, but rather the surface is
divided into different regions of local homogeneity. Each
such region is then associated with a certain LC energy
and a steplike conductance with threshold voltage twice
this LC energy. Point contacts only probe one or a few of
these regions, leading to a superposition of steplike con-
ductances associated with each of these regions. Having
larger contact area and approaching the limit of

s(p) s(p)~'
a b Zp)

X 5(Ez —
ez

—Et —e V}

X [njzn (ez)n (ez) —njd[1 n(e~)]-
X[1 n(et)]] . — (16)

We now investigate the conductance
G ( V, T) =Go+6&( V, T), where Gz =dIz/d V, in the
zero-temperature limit. To simplify, and to stress the im-
portant features of Gz, we assume that all the LC ener-
gies are concentrated in the energy interval 2h, which is
smaller than the Fermi energy of the a band, according to
some distribution function. In this case, at voltages
V& 5/e we can neglect momentum dependences of t"
and S& z and use electronic density of states independent
of energies. We also neglect site dependence of t'. Then
we rewrite the sum g J in Eq. (16) as an integral
jdE F(E), where F(E) is the distribution function for
LC levels involved in tunneling. For zero temperature we
have from Eq. (16}

2 N'
G, ( V, T =0)= „' x;xFb( /t'/'[s, —s, f'&,„„.

„h N, Nb

X f dE F (E)[ 8( E)8(2E —eV)—
+8(E}8( 2E+eV)] . —

N' is the number of local levels involved in tunneling, and
( . ),„„,, denotes the average over momentum orien-
tation for k and p on the Fermi surfaces and over the po-

sandwich junctions, a large number of locally homogene-
ous regions are probed, and a large number of randomly
distributed threshold energies should be present to
smooth out the conductance. The tunneling diagram for
this case is shown in Fig. 2(b}. Such an averaging results
in a linear voltage dependence of the normal-state con-
ductance.

Investigating the second-order contribution of the ex-
pansion we want to find the term(s) corresponding to the
processes denoted by II in Fig. 2(a). The first-order
corrections of Eq. (12) only enter as Hartree-like poten-
tial contributions in correlation functions such as
(ak (t')ak (t) ) and (c; (t')cj (t) ), appearing in Eq. (8).
Summing all these Hartree-like terms, the energy levels
are shifted due to the interaction between the two elec-
tronic subsystems. This shift is of the order of the in-
teraction energy, which is considered to be small. Except
from renormalization of the tunneling matrix element the
results are not different from Eq. (15).

The term of interest we find by calculating the large
number of terms emerging from the expansion of e Pe
and e Qe appearing in Eq. (8). Inspecting the argu-
ments of the 5 functions associated with each of these
terms, we find one term to be special and it obviously cor-
responds to processes II of Fig. 2(a). The other terms are
of the same kind as those of Io and I, . We name the spe-
cial term Iz.
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sitions for the local levels j. Notice that 62 is propor-
tional to N' or, in other words, the junction area, and
does not depend on the volume of the system, since
Ng Nb /(N, Nb ) is independent of the volume.

of probed areas with an associated LC energy EI. With
the use of F~(E) we simply get

G2~(V, T=O)= g G([8( E—i)8(2' —eV)

IV. RESULTS

The distribution function should be different for con-
tacts of small area (point contacts) and those of large area
(sandwich-type junctions). We believe that for the point
contacts only a few discrete realizations of LC energy are
possible and may be involved in the electron tunneling.
In this case F(E)=F (E) is sharply peaked at these LC
energies:

+8(EI )8( —2EI+eV)], (19)

which is a spectrum of irregular steps depending on a
given realization of LC level positions in the contact. If
we use only one LC level position equal to its equilibrium
position in the bulk CM, we will get from Eq. (16) the re-
sult obtained in Ref. 33. In sandwich-type contacts any
LC energy is involved in the tunneling, and
F(E)=F,„(E)should be a smooth function of energy.
The simplest model possible of the distribution function
F(E) is a uniform distribution:

F (E)= g F(5(E EI) . — (18)
F,„(E)=[8(E+b ) 8(E ——b )]j(25), (20)

The FI s are normalization constants and s is the number Using this, we have from Eq. (17)

N'
Gq,„(v, T =0)= N'N'& Ir'I'Is, —s& I'&...,...

a b
(21)

The formulas Eq. (19) and Eq. {21)illustrate our point that the scale of the locally homogeneous regions compared to
the contact area is of great importance in this model, and we suggest that this is an explanation for the difference be-
tween point-contact and sandwich-type tunneling experiments. This conclusion relies on the assumption of local pair-
ing, which is made evident, by putting U=O in Eq. (17}. IS, —Szl and Gz will then be set to zero. The same voltage
dependence within a negative-U Hubbard model was obtained in Ref. 22 without any assumption of the LC levels being
disordered. This result is due to double-electron tunneling, which we consider to be less probable, and does not predict
any difference between the point-contact and sandwich-type case.

We now calculate G2,„(V =0, T) when ks T « 6, still assuming Eq. {20). Since E, is large we have
n d

= [1+exp(2PE)] '. From Eq. (16) we get, if we scale the energies by ks T,

N;N,'& lr'I'Is, —s, I'&.„„.
„

a b

P~ P(,2E —eV+cF )

X f dx f dy In ( 2k+ Tx)n (ks—Ty)n (2k+ Tx ks Ty —eV)—
pg p CM

F

n(2k' Tx}n—( —ks Ty)n ( 2k' Tx+ks Ty—+eV) j .

Since ph »1 and 5 is assumed to be smaller than sb and sFCM, the Fermi energies of the a and b band, we can extend
the limits of the integral above to in6nity. We then write down

NF'Np& Ir'I'ls] —S21'&...,... f" dx f dy n{—2k'»)n(ksTy)

X [ n (2ks Tx ks Ty eV) n(—2ks Tx ——ks T—y +e V) J,
(23)

where we have substituted x ~—x and y ~—y in the second term of Eq. (22). Taking the limit V—+0, the difference in
the integral above can be expressed as a derivative times an increment. This produces a factor 2eV/k&T. As a result
we get

G2,~(V=O, T)=2f dx f dy 1+e 1+e
1

1+e z =2~ —y

2 k~T=1.2337' N;Np& lr'I'ls, —s, l'&.„„.„'
a

2

N;N,'& fr'I'Is, —s, I'&.„„.
„

(24)
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G2, (V=O, T) is linear in T. This is contrary to Go
which is not dependent on temperature. Taking the quo-
tient

Gq,„(V =0, T =e!ks )

G2,„(V =e/e, T =0)
(25)

we compare with experimental results of Ref. 4 which
suggest that y,„~=0.7. The reason for discrepancy could
be the electrode resistance, which in the case of high-T,
materials is a linear function of temperature. If this resis-
tance is of the order 1% of the total resistance of the
junction, one could obtain agreement with experiment.

Another distribution function is a Gaussian function:

F,„(E)= exp( —E /b, ) .1

nb,
(26)

6 still tells the width of the distribution. Despite the
smoothening, see Fig. 3, the discussion above still applies,
and the value of y is not sensitive to this different choice
of distribution function.

Finally, we want to point out the asymmetry connected
with the difference between the recombination process
described by Fig. 2(a) and the reverse process of dissocia-
tion of a local pair. In the first case the condition
e V =2E +eF means that all channels like (a) and (P) of
Fig. 2(a) down to the band bottom of CM have been

I

I-3 -2 —1 1 2

Voltage normalized by d, (ep/p)

FIG. 3. G2 as a function of voltage with F(E)=F,„(E)ac-

cording to Eq. (26) is calculated for different temperatures.

opened up by the positive bias. Further increase of volt-
age does not increase the current, implying zero conduc-
tance in this voltage regime. This effect is not present for
dissociation of a local pair at negative bias. To illustrate
the asymmetry, if we still make the approximations
preceding Eq. (17), despite the larger voltage scale, we get
from Eq. (16) at zero temperature

dG2

dV

3 I

~'~'& lr'I'Is, —s, I'&...,.s.
a b

X 8( eV)F —8(eV)F +—8(eV —e )FeV eV CM

2 2 F
ev ~cM

2

e V —c.F
M

+8(eV —e )FF 8( V &cM &M )F
ev cF eF

(27)

The formula above tells that we get direct information
about F(E), E (0 by taking the derivative of the conduc-
tance for e V (0. In the same way we derive F(E), E )0,
by examining the conductance at positive bias. In this
case the information is direct only as long as the voltage
is smaller than the Fermi energies of the a and b band.

Of course, there is also asymmetry connected with the
fact that the local pairs could be nonsymmetrically distri-
buted around the Fermi level.

V. CONCLUSIONS

In conclusion we propose a model of single-electron
tunneling into randomly distributed local centers with

I

strong interelectron attraction to obtain the linear tern-

perature and voltage dependences of the tunneling con-
ductance. Our predictions are in good agreement with

existing experiments on electron tunneling in normal-

state high-T, materials.
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