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A model of layered superconductors with exclusively interlayer pairing is studied. It is shown that

singlet and triplet interlayer pairing have the same amplitude as long as the hopping between the layers

is not too large and the effective interaction is dispersionless. However, a dispersion of the efFective in-

teraction results in the splitting of the critical temperature of singlet and triplet pairing for a finite hop-

ping amplitude. It is shown that not only impurities in the layers but also impurities between the layers

depress the critical temperature of interlayer pairing. Additionally, it is shown that impurities between

the layers scattering electrons hopping from layer to layer lead to a stronger depression of triplet than of
singlet interlayer pairing so that the critical temperature is split. We derive expressions for physical

properties which are sensitive to the structure of the order parameter: the anisotropic penetration

depth, the Josephson current to a conventional superconductor, the magnetic susceptibility which deter-

mines the Knight shift, and the jump in the specific heat in the case of the splitting of the transition tem-

perature. We discuss experiments on layered high-temperature superconductors and conclude that the

existence of interlayer pairing cannot be excluded in the superconducting state of these compounds.

I. INTRODUCTION

Since the discovery of high-temperature superconduc-
tivity' the interest in layered superconductors has risen
drastically. A common feature of most of the layered
high-temperature superconductors is the quasi-two-
dimensionality of their electron system. Irrespective of
which of all possible pairing mechanisms is responsible
for high-temperature superconductivity, there is the pos-
sibility that not only electrons in one layer are bound to
pairs but also electrons in weakly coupled neighboring
layers. Layered superconductors have been studied both
experimentally and theoretically, since the late 1960's.
The possibility of interlayer pairing with coexistence of
singlet and triplet pairing has been already considered.
Nonmagnetic impurities suppress interlayer pairing, and
it was believed not to exist in layered superconductors
known at that time because these superconductors had a
small mean free path compared with their coherence
length. Because of the high critical temperature of the
new superconductors and their small coherence length

0
/=10 A, which is smaller than their mean free path
i=100 A, a possible interlayer pairing would not be
suppressed by small concentrations of nonmagnetic im-
purities.

There has been a series of articles recently that studied
the possibility of interlayer pairing and also pointed out
the influence of nonmagnetic impurities on T„but
disregarded the coexistence of singlet and triplet pairing.
However, due to the separation of the electrons of one
Cooper pair in neighboring layers the effective attractive
interaction between them must necessarily be degenerat-
ed with respect to the spin of the electrons because the
contribution of the exchange interaction remains small as
long as the hopping amplitude between layers is small.
Recently we learned that Klemm and Liu have studied
the competition between s-wave intralayer pairing and in-

terlayer pairing using the correct order parameter but
neglected some consequences of hopping between the lay-
ers.

In this article a model with purely interlayer pairing is
studied in order to consider possible novel features of this
unconventional type of pairing. We will not specify the
mechanism of the attractive interaction between electrons
in neighboring layers. A possible mechanism is the polar-
ization of a dielectric spaced between the layers. This
possibility was recently studied for layered high-
temperature superconductors. ' '" While it is known that
the amplitudes of singlet and triplet pairing without hop-
ping between the layers are equal, we will show here that
hopping can invalidate this equality and give rise to a
splitting of the transition temperature if the interlayer in-
teraction is dispersive in the momentum parallel to the
layers. We would like to stress that this splitting of T,
has to be distinguished from the one obtained in Ref. 9,
which is due to the dispersion of the effective interaction
in the momentum perpendicular to the layers arising
from the presence of more than one conducting layer per
unit cell. Nonmagnetic impurities in the layers are
known to depress the critical temperature of interlayer
pairing, since they break the symmetry of the Cooper
pairs. ' Here we show that nonmagnetic impurities be-
tween the layers also give rise to a depression of T, . Im-
purities that scatter electrons hopping from layer to layer
are shown to cause a splitting of T„since they act on
singlet and triplet interlayer pairs in a different way. This
splitting can be stronger than the hopping-induced split-
ting mentioned above.

In studying physical properties of the interlayer pair-
ing we concentrate on those observables that are sensitive
to the structure of the order parameter and especially dis-
cuss those measurements that were cited as being evi-
dence against any kind of triplet pairing in
YBa2Cu307 &.

' We argue that the observed low-
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temperature behavior of the magnetic penetration depth,
measurements of the Knight shift, as well as experiments
that give Josephson coupling with conventional super-
conductors, cannot exclude the possibility of the kind of
interlayer pairing that we propose. Finally we treated the
consequences of the splitting of T, on the jump in the
specific heat at the transitions. We find that there is a
jump at both the transition temperature of the singlet as
well as the triplet order parameter. Having obtained
these results, we were informed that the authors of Ref. 9
also considered the consequences of the splitting of T, on
the density of states as well as the specific heat. While
the origin of the splitting of T, in Ref. 9 is different from
the one obtained in our model, as was pointed out above,
the consequences on the density of states and the specific
heat are similar. '

In the next section we will introduce the model of in-
terlayer pairing, derive the temperature Green's func-
tions describing the superconducting state, and discuss
the structure of the order parameter of interlayer pairing.

In Sec. III, the Ginzburg-Landau equations are derived
from the self-consistency equation for the order parame-
ter, and their solution is discussed. In Sec. IV, we study
the influence of nonmagnetic impurities on interlayer
pairing in detail. In Sec. V, we derive expressions for
physical properties of interlayer pairing. In Sec. VI, we
discuss the possible existence of interlayer pairing in
high-temperature superconductors and give our con-
clusions.

II. INTERLAYER PAIRING
IN LAYERED SUPERCONDUCTORS

We consider a system of parallel planes and assume an
attractive effective potential between electrons located in
neighboring planes. We start from the total Hamiltonian
of the system of electrons, which are allowed to move in
the planes or to hop between the planes, feeling the
effective interaction V,, :

2

H= —Xfd pP(p); tt'(p); —g fd p[f(p)«WQ(p) ;«&++/(p)«WQ(p);, —2$(p); WtP(p)«]
i, a i,a

—
—,'gg f d pd p'V &J(p p')P(p)—;P(p')@P(p')@P(p), .

ij aP
(2.1)

Here f(p), is the field operator of an electron in layer i with spin a. p is the coordinate in the plane. The distance be-
tween layers d is set equal to 1. We also set R=c =kz =1. 8'is the hopping parameter between layers and m is the
effective electron mass.

From the imaginary time Heisenberg equations using temperature Green's functions and its Fourier transforms, with
respect to the inlayer coordinates p, the layer indices i and the imaginary time ~, defined by

0 27r
(2.2)

and the anomalous Green's function F accordingly,
where the fermionic Matsubara frequencies are
co„=nT(2n +1),.we get the Gor'kov equations, describ-
ing the interlayer pairing model

(ico„—g) G (p;co„)+bqFq+(p;co„) = 1,
(ico„+g)F+(p;co„)+bqGq(p;co„)=0 .

(2.3a)

(2.3b)

The effective interaction of interlayer pairing has the gen-
eral form

V (k, v„)=2 cosq Vo(k, q, v„), (2.5)

The energy dispersion g is given by g=g —2Wcosq,
where g=p /(2m) —p. The Fermi surface is defined by
(=0, which gives a corrugated cylinder. The order pa-
rameter must satisfy

b, '(p, e )

= Tg V(p —p', q —q', e —co„)Fq. (p', co„) .dp dg
2~'

n

(2.4)

where v„ is a bosonic Matsubara frequency v„=2mTn.
As a simple model we will take Vo to be of the form

Vo(k, q, v„)=Vcoo(k, q) /(coo(k, q) +v„),

where V & 0 for an attractive effective interaction. Usual-
ly, in BCS theory a dispersion of coo is not essential and,
for simplicity, one considers only a constant frequency
coo(k)=coo. But in the case of interlayer pairing even
small momentum dependence of the effective interaction
can become important if the hopping amplitude between
the layers is finite. To study this effect we will consider a
small dispersion of the frequency in the momentum
parallel to the layers, while we neglect the dispersion in
the rnomenturn perpendicular to the layers:
coo(k) =coo+aQ(k) where a) 0 is a small parameter and
the function Q(k) is symmetric, Q(k) =Q( —k) and
periodic, Q(k+G)=Q(k), G being a reciprocal lattice
vector.

Let us now consider the structure of the order parame-
ter corresponding to interlayer pairing. Because of the
spatial separation of the electrons of a Cooper pair, the
Pauli principle is not important and the singlet pairing no
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q

co„+P+5'b,

iCO+ +g
co„+P+ b, *b,

+~+(p, co„)=

G (p, co„)=—

where the order parameter 5 satisfies the equation

dp dq6'=Tg J 3 V(p —p', e —co„)2~'
n

X2cos(q q')F~+. (p', c—o„) .

(2.7)

(2.8)

In the absence of hopping between the layers we see,
I

longer has to be dominant as it must for conventional
BCS superconductors. Rather we should start with a su-

perposition of singlet and triplet pairing and then solve
the Gor'kov equations to see if singlet and triplet pairing
can coexist or if one of them is suppressed in the thermal
equilibrium. As is known from the study of liquid He,
the order parameter of a triplet state has, in general, a
rich structure with orbital, spin, and gauge degrees of
freedom. ' ' Since the orbital degree of freedom is bro-
ken for interlayer pairing, the general form of the order
parameter is

5 =2e'~(ao cosq ibcrn—o sinq)=b, +6, (2.6}

where a and b are real and n is a unit vector fixing the
direction of the total spin of the pair in the spin space.
Here we assumed that the phase y, the singlet pairing
amplitude a, the triplet pairing amplitude b, and n do not
depend on the coordinates in the thermal equilibrium.
From the Gor'kov equations (2.3) we now obtain the tem-
perature Green's functions:

a =b =
—,'50, (2.9)

where 60 satisfies the standard BCS self-consistency equa-
tion. The solution, Eq. (2.9), can be shown to minimize
the free energy, ' so that without hopping between the
layers the amplitudes of singlet and triplet pairing are
equal.

However, with hopping, Eq. (2.9} is no longer a solu-
tion of Eqs. (2.7} and (2.8) due to the q' dependence of
the electron energy g. Although the deviation of the
correct result from Eq. (2.9) is rather small for small tun-

neling amplitude W, the finiteness of this parameter can
lead to new effects, in particular to splitting the transition
temperature for singlet and triplet interlayer pairing. As
long as this splitting is small it can be studied with the
help of Ginzburg-Landau equations.

III. GINZBURG-LANDAU EQUATIONS
WITH HOPPING BETWEEN LAYERS

Let us derive the Ginzburg-Landau equations using
Eqs. (2.7) and (2.8). From these we will be able to deter-
mine the critical temperature T, and the order parameter
in thermal equilibrium. Assuming that the momentum
dependence of the effective interaction is weak, we ex-
pand the effective interaction, Eq. (2.5), up to first order
in a so that the self-consistency equation (2.8) becomes

that Eqs. (2.7) and (2.8}, giving the order parameter in
the thermal equilibrium, can be satisfied if h*h does not
depend on q. Noting that

6'6 =4a cos q+4b sin q,
we thus find

c00
b, '=Tg J dq'Vcos(q —q') f dg F+(g', ro„)„(2~)' ~o+(~n em )

dp dq 2coo(co„E~ )+ Tg 2Vcos(q —q') aQ(p' —p)F+. (g(p'), co„) .
(2m ) [coo+(co„—e ) ]

(3.1)

Note that the first term does not depend on the hopping
amplitude 8' since one can set eF equal to 00 in good ap-
proximation so that one can shift the integration variable
from g' to P=g' —2Wcosq', thus eliminating the q'
dependence totally. Therefore, if one would only consid-
er the first term in Eq. (3.1) the solution, Eq. (2.9), would
still hold for a finite hopping amplitude 8'. The second
term, however, depends on 8', since the q' dependence
cannot be transformed away as in the first term because
the function 0 depends on g' rather than on P in our
model. Note that, if one considers a more general model
with an additional dispersion in the momentum perpen-
dicular to the layers, which we have neglected for simpli-
city, the q' dependence still cannot be transformed away
as long as the tota1 momentum dispersion of the effective
interaction does not have exactly the form
Vo(g=g —2Wcosq). Thus, the effect, obtained in the
following for our simplified, model, is, in general, not

I

changed qualitatively by an additional q dispersion, while
its magnitude will be diminished accordingly. To study
the effect of the second term, we expand the function F+
in Eq. (3.1) in the hopping amplitude W to second order.
For a solution near T, we can expand Eq. (3.1) around
a, b =0, which gives the Ginzburg-Landau equation,

b, 'r= —[3b, '+b, ']CW
q q q

+[As (3a +b )+Aq (a +3b )]B (3.2)

where 5 =6 +6 is related to the singlet and triplet
pairing amplitudes a, b by Eq. (2.6}, and
8 =7/(3)/[8(nT, o) ], where g(z) is the Riemann-zeta
function and r=(T,o T)/T, o, where —T,o=2y/
n.cooexp[ —2m/(mV)]. The magnitude of the W depen-
dence of the Ginzburg-Landau equations is determined
by the constant C:
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uQ(p' —p)

where K is the complete elliptic integral and

L =2[(a b—)l(co 4—b )]

2 8g'

(~2 +g/2)2 (
2 +(&2)3

(3.3)

Since only excitations near the Fermi surface are impor-
tant, we can expand the function Q around it by putting
the external momentum p on the Fermi surface and vary-
ing the vector p' close to it:

We see that in the region Tb & T & T, the order parame-
ter has nodes, resulting in a gapless density of states with
N(co)-co as co~0 [see Fig. 1(a)]. For T & Ti, the gap in

the density of states is diminished to 2b and there is no
longer a singularity but a remarked peak at ~=2a, in-
stead [see Fig. 1b)].

For C &0 we find

Q(p' —
p)~i

i

=Q' '(p)+Q"'(p)f+ —'Q' '(q&)g'
Ipl —pF

(3 4)

~here y is the angle between p' and p. Using this expan-
sion of Q, we can perform the integration over g'. Final-
ly, performing the Matsubara summation, we find

a =b =0 for T) Tb

a =0,b = + 8' forT &T&TC
3B 3B

a = +—8' andb = for T&T, ,
C 2 7

4B B 4B

(3.10a)

(3.10b)

(3.10c)

2m a &~ dy Q(2)( )
copm V p 2m

(3.5)
(aj

Now, we can solve the Ginzburg-Landau equation (3.2).
For C)0 we fin

a2 b2 0 for T) T (3.6a)

a = +—g b =0 for T )T)T2

3B B a b ~ (3.6b)

a = +—W and b = for Tt, & T &0, (3.6c)
C 2=

4B B 4B

where

T, = T, (o1+3C8' ), Tl, = T,o . (3.7)

Thus, for C )0 the hopping between the layers enhances
the critical temperature of singlet pairing, while the criti-
cal temperature for triplet pairing stays at the value it has
without hopping between the layers. Note that for C )0
the considered dispersion increases the strength of the
effective interaction, which explains the increase of the
upper critical temperature T, . We see that in the tern-

perature region between Tb and T, only singlet pairing
a %0 exists, while below TI, singlet and triplet interlayer

pairing coexist. The singlet and triplet amplitudes have
no jumps but only kinks both at T, and Tb so that both
transitions are second order. The unusual structure of the
order parameter qualitatively changes the density of
states N(co), which can be expressed in terms of the
imaginary part of the Green's function, Eq. (2.7):

N(co)=—,Im TrG (p, co„)~,
8p Qg

(2m )
q & tl leo ~cc)+l "rI

2m vr/2 1

[co 4b 4(a —b) c—os q ]'—
(3.8)

Finally we get

,

(bj

(co 4b )
'~ K(L)—for co&2a,

N(co)= co [4(a b)] ' IC(L —') for 2b &co&2a
2m

7T2
0 for 0&co &2b,

(3.9)

FIG. 1. (a) The gapless density of states in region where ei-
ther singlet or triplet interlayer pairing exists, exclusively. {b)
The density of states in region with coexistence of singlet and
triplet interlayer pairing with unequal but nonzero amplitudes.
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where

Tb=T,O(1 —iC[W ), T, =T,O(1 —4iCiW ) . (3.11)

where

2[(b 2 a 2)/(ai2 4a 2) ]
—i/2

(3.12)

Here the density of states is gapless in the temperature re-
gion T, & T & Tb [see Fig. 1(a)]. For 0 & T & T, the gap
is diminished to 2a and there is a remarked peak in the
density of states at c0=2b [see Fig. 1(b)].

The results of this section show that a finite hopping
amplitude between the layers can result in a splitting of
the transition temperature of interlayer pairing if there is
dispersion of the effective interaction. For temperatures
below the lowest transition singlet and triplet states coex-
ist, whereas in the region between the two transitions
only one of these states is possible, depending on the sign

I

Thus, for C &0 the critical temperature of singlet is
stronger diminished than that of triplet interlayer pairing
and there is a temperature region, between T, and Tb
where there is only triplet interlayer pairing. The weak-
ening of the strength of the effective interaction by the
dispersion for C &0 explains the decrease of the upper
critical temperature. Note that the singlet and triplet
pairing amplitudes are continuous functions for any tern. -
perature and show kinks at both transitions. For C &0
the density of states is

r

(co 4a ) —'~ E(L') for co&2b,
N(co)= co

' [4(b —a )] '~ E(L' ') for 2b &co&2a,
2m
m.2

0 for 0&co&2b,

of the second derivative of the effective interaction, in-
tegrated over the Fermi surface. In the next section we
show that splitting of the transition temperature can ad-
ditionally be caused by scattering of the electrons from
nonmagnetic impurities and that all kinds of nonmagnet-
ic impurities lead to a depression of the transition tem-
perature of interlayer pairing.

IV. INFLUENCE OF NONMAGNETIC IMPURITIES

The influence of nonmagnetic impurities on interlayer
pairing is strongly dependent on the position of the im-
purities in the layered compound. Here, three cases are
considered to which all other possibilities can be reduced:
impurities in the conducting layers (I impurities), impuri-
ties between conducting layers scattering electrons that
move in the planes (BI impurities), and impurities be-
tween conducting layers that scatter electrons from layer
to layer (B impurities). Here, we indicated in parenthesis
the abbreviations we will use below. We neglect any
quantum corrections that are known to depress T, addi-
tionally to the depression we derive here. '

At first we consider I impurities, which are expected to
depress T„since they break the symmetry of interlayer
paired Cooper pairs. To prove this we add the following
impurity interaction to the total Hamiltonian:

jm p pi p I p i ai p ai p 4 1

a, i, l

Here it is summed over all I impurities I sitting at (R, r, ).
pi is a random variable, which is 1 if there is an impurity
at (Ri, ri) and 0 if there is none. J' is the scattering po-
tential of the I impurities. Since the impurities are ran-
domly distributed, the system is not translationally in-
variant. Therefore, the Fourier transform of the Green's
function is now defined as

i'd (T~ T2) dp dp' ip p&
—ip.p2G J(pi, p2 ~, —~2) = Tge " ' ' e 'e 'G J(p, p'co„),

(2n. )~
(4.2)

and the anomalous Green s function, accordingly. Using the same line of derivation as for Eqs. (3.2), but still using the
representation of layer indices, we arrive at the Gor kov equations in the presence of I:impurities:

(ico„—g
—2W)GJ(p, p';co„)+ W[G; i i(p, p', co„)+G;+i~(p, p';co„)]

II '( ll R+ pi p —p;;.p, p;Q)„e +Q,k k. p, p;~„=,, p —p(2n )

(ic0„+g+2W)F;+(p, p', co„)—W[F,.+ i
.(P, p', co„)+F;+, (p, p';co„)]

tl tl

2 XPI~ (P P ')5„,F&+(p",p'; co„.)e '+ 6;«G«J. (p, p';co„)=0 .
(2n )

(4.3a)

(4.3b)

Now, we average over I impurities, sitting in the layers. We follow the scheme by Abrikosov, Gor kov, and Dzy-
aloshinski. ' In the Born approximation it is sufBcient to consider only diagrams that contain two scatterings from the
same impurity, at the most. Furthermore, one can neglect all impurity-crossed diagrams, since they correspond to large
momentum transfers, giving only a small contribution near the Fermi surface. Thus, we find that the impurity-
averaged Green's functions are given by

G; «(p;co„) Gu(co„) F«i(co„) Gij(p—;~„)
G J(p;co„)=G; J.(p;c0„)+ 0Fc~ «(p;co„) F«i(ai„) —G«i( c0—„) Fij (p;co„)— (4.4a)
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F,i+(p;co„)=F;+ (p;co„)+
G' —k(p ~ ) Fkl (~
F;+ l, (p;co„) Gl,l(co„)

Gkl ( —co„) G(, (p; co„)

Fk—l(co„) Flj (p con )
(4.4b)

where

G,,(co„)=nf ~J'(p —p")~ 5, G;, (p";co„),dp
(2qr)

(4.5a)

F; (co„)=nf 2 iJ (p —p")i 5,jF,+(p";co„) . (4.5b)
dp

(2qr )

Here G and F are the Green's functions in the absence
of impurities as given by Eq. (2.7). Transforming to
momentum space perpendicular to the layers [compare
with Eq. (2.2)], substituting Eq. (2.7) for G and F+,
and combining the above equations for the impurity aver-
aged Green's functions, we arrive at the following equa-
tions:

b,
q Gq(p;co„)+(ico„+g)Fq+(p;co„)=0, (4.6a)

(ico„—g)G (p;co„)+b,qFq+(p;co„) =1, (4.6b)

i co„=ico„—G„,5& =6*+F„+
N ~n

where

(4.7)

G„=n f ~J(p —p') G (p', q'),dp
(2m. )

(4.8a)

F„+ =n Jp —p' F+ p'q'dp dq (4.8b)

For small impurity concentration n we can expand in the
scattering rate

where the frequency and the order parameter are renor-
malized due to the scattering by the I impurities as given
by

where we made the q' dependence explicit by using

6*=A * cosq+5 * sinq .

In the absence of the hopping between the layers the in-
tegral over the momentum perpendicular to the layers
vanishes due to the specific structure of the interlayer
pairing. For finite W, we can expand in 8'and find in the
first order

-+ s*
CO„ 22%%(6F

(4.12)

Thus, the renormalization of the effective attractive inter-
layer interaction by I impurities represented by F„+ does

vanish for triplet pairing and is negligible for singlet pair-
ing as long as 8'&&eF. The physical reason is that for a
small hopping amplitude the probability that both elec-
trons of one interlayer paired Cooper pair are scattered
from the same impurity is small. As a consequence, the
vertex correction is small. This results in a depression of
T, since the renormalization of co„and 6* cannot be
transformed away in the self-consistency equation as for
nonmagnetic impurities in an isotropic superconductor.
Solving the linearized self-consistency equation, using the
obtained impurity-averaged anomalous Green's function,
we find that the critical temperature T, is depressed
linearly with a scattering rate that is proportional to the
concentration of nonmagnetic impurities in the planes, in
agreement with Ref. 12:

I

1 f dg'
~F 2'

X
2~ dq' 6 * cosq'+ 5 * sinq'

o 2m' coz+(g 2Wcosq ) +bq'bq'

(4.11)

(4.9)
T T p

7
g

(4.13)

l
sgn(co„) .

2 Tg

(4.10)

The renormalization of the order parameter is, to first or-
der in the scattering rate, given by

where P is the scattering angle in the planes. For the fre-
quency renormalization (self-energy) we find thus to first
order in the scattering rate

We note that, if we do not neglect the small renormal-
ization of the singlet order parameter, one finds that the
critical tem. perature of singlet pairing is larger than that
of triplet pairing. This splitting of T, is of the order
(Wcoo)/(qleF) which is much smaller than the splitting
induced by scattering by B impurities, which is derived
below.

Next we consider the inhuence of BI impurities sitting
between the conducting layers, scattering electrons mov-
ing in the layers, as described by the Hamiltonian

8; =fdpyp[J (p —Rl)1$;(p)l/r, (p)(5„;+///+5„; l/2),
ail

(4.14)

where the notation is as before and J is the impurity scattering potential of the BI impurities, which is felt by the elec-
trons moving in the planes. Deriving the Gor kov equations, averaging over impurities as described above and trans-
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forming to momentum space with respect to the layer indices, we find that the BI impurities give the following renor-

malization of the frequency and the order parameter, respectively:

G„(q)=n f IJ '(p —p')I 2[1—cos(q —q')]G„(p', q'),dp'dq' Bg

F+ (q)=n f IJ (p —p')I 2[1+cos(q —q')]F„+ (p', q') .dp'dq'
(4.15b)

Expanding in the scattering rate

nm fdpi JB1(y)I2
7 Bg 27T

we find to first order

(4.16}

two neighboring layers. Thus, the renormalization by the
BI impurities cannot be transformed away in the self-
consistency equation so that T, is depressed. Solving the
linearized self-consistency equation, we get a linear
depression of T, by BI impurities:

G (q)=—
i sgn(co„}

+BI
F+ (q) = . (4.17}

T =T 7r
C CO 8+BI

(4.18)

Note that the self-energy correction 6 is twice the
~n

correction one would get from impurities with the same
scattering strength, sitting in the layers. The reason is
that an electron moving in the planes sees the BI impuri-
ties sitting both above and below its layer, so that it sees
an impurity concentration 2n instead of n as for impuri-
ties in the planes. But the vertex correction represented
here by F is caused by n impurities, only. This can be

~n

understood in the following way: the vertex corrections
arise from the scattering of both electrons of an interlayer
paired Cooper pair from the same BI impurity, which is
only possible for the n BI impurities sitting between these

I

Thus, the depression of T, by BI impurities has exactly
the same form as the depression by I impurities, Eq.
(4.13). However, since the impurity potential decreases
rapidly with distance, the scattering rate due to BI im-

purities ~B& is expected to be sma11 so that the depression
of T, by BI impurities is smaller than the one by I impur-
ities as long as the concentration and strength of the BI
impurities is not much larger than the one of the I impur-
ities.

Finally, we study the inhuence of the B impurities sit-
ting between the conducting layers and scattering only
electrons hopping from layer to layer, as described by the
Hamiltonian

~imp fdPQPIJ (P RI )[ 4i(P) 4, 1 —1(P+rii —li2+ 4i(P 4, i+1(P+rii+1/2) &

ail
(4.19)

where the notation is the same as before and J is the scattering potential of the B impurities. Deriving the Gor'kov
equations, averaging over impurities as described above and going to momentum representation with respect to the lay-
er indices we find that the renormalization by the B impurities is given by

G (q)=n f z IJ (p —p')I 2[1+cos(q+q')]G (p', q'),dp dq B (4.20a}

I d t
F+ (q)=n f IJ (p —p')I 2]1+cos(q+q')]F+ (p', q') . (4.20b)

It is important to note that the scattering potential appears here with a dependence on q+q' rather than q
—q' as it

does in the case of BI impurities. Consequently, the singlet and triplet order parameters enter with a different sign in
the vertex correction. Expanding to first order in the scattering rate

+B

we find that the self-energy correction is given by

sgnco„
G =—i

7 B

The renormalization of the order parameter is to the first order in the scattering rate given by

(4.21)

(4.22)

F (q)=
—+ 1 ~ dg' 2~dq' 5 cosq cos q' —b, sinq sin q'

co„+(g' 2W cosq') —+6~.b ~.
(4.23)
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where we have neglected terms of order (8'b')/(TBeF)
by setting eF~~. Thus we find

F~+ ( ) (ps' AT+ )
1

(4.24)

The fact that the singlet and triplet order parameter
enter with a different sign and prefactor in the vertex
correction as represented by F+ results in a strong split-
ting of T, as can be seen by deriving the Ginzburg-
Landau equation analogous to Sec. III from the impurity
renormalized self-consistency equation. We find

AS+
q

+B(3a +b )
8~~ Tco

++7 4
q

+B(a 2+ 3b 2)
8~~T,o

(4.25)

where T is defined by T=(T,O T)/T,—o. The solution of
this equation is given by

a =b =0 for T)T (4.26a)

a2= —,b2=0 for T, & T & Tb,
TB c

(4.26b)

T =T 7T

a cO 8
~ b cOT —T

7 Q 1 8
(4.27)

Thus, the BI impurities, sitting between the layers,
scattering electrons from layer to layer, cause a large
splitting of the superconducting transition temperature,
given by b, T, =3m/8TB. Note that the singlet and triplet
interlayer pairing amplitudes are continuous functions
for any temperature and have only kinks at both transi-
tions.

for Tb & T, (4.26c)
8B~&Tco

where T, ) Tb are the transition temperatures for the
singlet and triplet interlayer pairing, respectively, which
are given by

In this section, we found that scatterings of the elec-
trons at nonmagnetic impurities in the layers as well as
between the layers depress the transition temperature of
the superconducting state with purely interlayer pairing.
However, impurity scatterings from plane to plane more
strongly suppress triplet pairing and therefore lead to a
splitting of the transition temperature.

V. SOME PHYSICAL PROPERTIES

mk
Ak(k, q) Pki(k—, q, el=0) Al(k, q), (5.1)

where k, l E [1,2, 3], m, =m2=m, m3=1/(2JY}, and

Pki(p, q, iv„~co+iri) is defined as the Fourier transform
of the current-current correlation function in imaginary
time, which is defined as

(5.2)

where j is the current operator without external field

In this section we will study how some physical proper-
ties of layered compounds are influenced by interlayer
pairing. We will concentrate on those observables that
are sensitive to the structure of the order parameter:
low-temperature behavior of the penetration depth,
Josephson coupling with a conventional superconductor,
Knight shift, and specific-heat jump at T, .

Let us start with the response to a static magnetic field.
It is well known that unconventional order parameters
can lead to a power-law behavior of the magnetic
penetration depth at low temperatures rather than a
BCS-type exponential decay with temperature. However,
by looking at the density of states of the system with

purely interlayer pairing, as given by Eq. (3.9), which has
a gap at low temperatures, one can guess that the
penetration depth will have a BCS-type exponential be-
havior for T~O. To show this explicitly, we derive the
current induced by the magnetic field H=VX A in the
linear response approximation. In the momentum repre-
sentation the current components can now be written as

Jk(P l T) (Vl V2)l 1 2[4(pl ll TW(p2 l2 T)]lp =p,
2mk

(5.3)

Note, that because of the discreteness in the direction perpendicular to the layers, the gradient component in this direc-

tion is defined to take the difference between the value of the function in neighboring layers:

(V}3G(p,i, r}=G(p,i + l, r) —G(p, i, r) .

Applying Wick's theorem and noting that the expectation value of the current without magnetic field vanishes, we can
write the current-current correlation function in terms of Green's functions

e
Pkl(p p', i j,r T'—)= —(Vl —V2)k(V3 V4)ill 2, 3 4[ G (1,4)G (3,2)+F (1,3)F+ (4,2)] .

4mk ml

It is convenient to go now to the momentum representation, using

(5.4}

Pk&(p p', i j,r T')= —e' '—e—e'e' ' J'Tge "
Pk, (p, q, v„},

27T
3

V
n

(5.5)
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where v„=2»rTn are the bosonic Matsubara frequencies. Substituting Eq. (2.7}for the Green's functions in momentum

space, we find

PI I(k~0, q —+0,co =0)=—
4J kJ I

e dpdq 4sin q'
2mI, (2n. )

for k, 1=1,2'

for k =l =3 cosh
otherwise

(5.6)

where E =(P+5» b,
»

)' and we made an analytic continuation to the real frequency axis. Since we are interested in

the response to static magnetic fields, we set the frequency co=0. Furthermore, we consider only the limit k, q~O,
since most known layered superconductors are in the local (London} limit, which means that they have a small coher-
ence length compared to their penetration depth. The current components can now be written as

n~~e2

jl, (k, q) = —
Ai, (k, q),

)BI C

where nI, are the diagonal components of the anisotropic density tensor of superconducting electrons:

(5.7)

2p for k =1,2
nI, =n — p . , cosh '

8TmI, (2»r)2 4sinq for k =3 2T
(5.8)

Here, n is the density of electrons. Thus, we find that the low-temperature behavior of the penetration depth A, is given
by

with

~k( } m a b —4b—1= e~ b/nT 1+
2

1—
16b 2

2b
exp T

8' for k =1,2
for k =3

2

(5.9)

A3(0) =—v'm /4m n, A, , 2(0)= +1/—8»rn W .
1 1

(5.10)

Thus, even if the amplitudes of singlet and triplet interlayer pairing are unequal, aXb, the penetration depth decays ex-
ponentially as T~O and the statement that triplet pairing is in disagreement with an exponential decay of the penetra-
tion depth at low temperatures' does not apply to the interlayer pairing under consideration.

Now, we will give an expression for the Josephson current between a conventional BCS superconductor and the lay-
ered compound with interlayer pairing only. The supercurrent between these two superconductors can be written in
terms of the one-particle Green s function in the superconducting state, given by

G (r, r'}—G (r, r') —fds fds'G (r, s)b, (s)G „(s',s)h'(s')G (s', r') . (5.11)

Here, G is the Green's function in the normal state, defined by

in)„+ V2+p G„(r,r') =5(r—r'),1
(5.12)

where V3 is the continuous derivative for r E VI, where V& is the volume of the conventional superconductor, whereas it
is defined to take the difference of the function in neighboring layers if r E Vz, where V2 is the volume of the layered su-

perconductor. The order parameter h(r} is a complex constant b, &e if rE V&, while it is defined by Eq. (2.6) if rE V2.
Following the derivation by Josephson, we arrive at the following expression for the supercurrent:

I =2ie TrTQ f, ds'f ds —f, ds'f ds Gs (s, s'}G (s', s)h(s)A*(s'), (5.13)

where the trace is taken over the spin. Near Tc we can
substitute 6 by 6 and we find

Calculating the trace in Eq. (5.14}we find

I =4Eh, a sin(P, —p), (5.16)
I =Tr g [K(b,~ai sin(P, y)+h, b cos(P—,

—y)ons}],
s =+1

(5.14}
where

K =2&eTQ f, ds' f ds G „(s,s')G (s', s) .
n

(5.15}

Thus, only the singlet part of the interlayer order param-
eter contributes to the Josephson current. In the region
of temperatures where the singlet pairing amplitude does
not vanish, the Josephson current is not equal to zero,
and its magnitude depends on the orientation of the lay-
ered compound to the interface with the conventional su-
perconductor. For small hopping amplitude 8' we have
seen in Secs. II and III that 2a=2b=ho, where 60 is
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dSg dp dq
Xkl gH

TX p
fr~t

&H
G „(p e)IH=O

k H=O

(5.17}

where k, l&1,2, 3. The Green's function G, which in-

cludes the paramagnetic interaction of the conducting
electrons with the external magnetic field H is obtained
from Eqs. (2.3}by substituting for g

—o H g. Here, cr is
the vector operator composed of the three Pauli matrices.
Calculating the Matsubara frequencies and using the
commutation relations for the Pauli matrices, we find

5; Y+ (5; n;n )(1—Y—)
m b

a+b (5.18)

defined by the standard BCS self-consistency equation,
and we see that the supercurrent between a conventional
and the layered superconductor with purely interlayer
pairing is only half of the supercurrent one would get if
one substituted the layered compound with another con-
ventional superconductor with the order parameter 50.
Therefore, we conclude that the mere detection of a
Josephson current, in principle, is not in disagreement
with the mixed singlet and triplet pairing we proposed.
Only if one could measure the magnitude of the Joseph-
son current accurately and also know the amplitude of
the order parameter from an independent measurement,
definite conclusions about the existence of interlayer pair-
ing could be drawn.

Now we derive the magnetic susceptibility, which
determines the Knight shift. In terms of the Green's
function, the spin susceptibility can be written as

~C (T )
2N(0)
38T,

(5.24)

while the jump in the specific heat at the transition to the
coexistence phase is given to lowest order by

b,C„(Tb)= N(0)
C

(5.25)

where we used Eqs. (3.6c), (3.10c), and (4.26c), respective-
ly. We note that for an experimental observation these
two jumps must be well separated, which is only possible
if the splitting of the transition temperature is large
enough and the sample is homogeneous so that the transi-
tion temperatures in difFerent regions of the sample do
not differ much.

If the singlet and triplet pairing are equal at T =0 as is
probable in view of the results obtained in Secs. II, III,
and IV, the Knight shift at T=O is half of the Knight
shift in the normal state.

Finally, we study the effect of splitting of T, on the
specific heat. The jump of the specific heat at a supercon-
ducting transition is given by'

&Cv= ——N(0) Tr(b, 'b, )= —2N(0) (a +b ),1

2 aT
' =

aT
'

(5.23)

where we used the order parameter of interlayer pairing,
Eq. (2.6). At the higher transition temperature we find,
using Eqs. (3.6b}, (3.10b), and (4.26b) for the respective
jump in the specific heat, to lowest order,

where

Y= dg
o 2T cosll (E/2T)

(5.19}

VI. DO EXPERIMENTS ON LAYERED
HIGH-TEMPERATURE SUPERCONDUCTORS

EXCLUDE INTERLAYER PAIRING
IN THESE COMPOUNDS'

is the Yossida function that has the properties
Y(T=O)=0 and Y(T=Tc}=1where we used, at low

temperatures, a =b so that the energy E in the integrand
of the Yossida function is independent of the momentum
perpendicular to the layers q in good approximation:
E=(g +4a )' . The magnetic field tends to orient the
spin axis so as to minimize the magnetic free energy:

magn
=

2 X)J'~]&~ (5.20)

By substituting the expression for the susceptibility we
find Hn=0, which means that the spin axis is oriented
along the magnetic field, since n is directed along the axis
with vanishing spin projection as shown by Leggett. '

This gives for the susceptibility in thermal equilibrium

X=X. Y+ b

a+b (5.21)

X(T =0)=X. b
"a+b (5.22)

where y„=m /m is the susceptibility of the normal state.
Thus, the Knight shift K'0-y is nonvanishing at T =0 as
long as the triplet pair amplitude b ( T =0)%0:

Numerous excellent experiments on almost all measur-
able observables of YBazCu307 & have been done since
the discovery of superconductivity in this compound five

years ago. Unfortunately, the set of experiments on other
layered compounds is not yet complete so that we mainly
have to restrict our discussion of the possible existence of
interlayer pairing on YBa2Cu307 &. For this compound,
however, it is possible to give strong constraints on the
possible structure of the order parameter of the supercon-
ducting state. However, while these constraints are
strong enough to exclude a purely triplet paired state in
this compound, ' we want to point out now that they do
not exclude the possibility of interlayer pairing, since in

this case the triplet pairing is in coexistence with the
singlet pairing in a large region of temperature as was

shown in Secs. II and III.
The low-temperature behavior of the magnetic

penetration depth of YBa2Cu307 & shows an exponential

decay with temperature to a nonzero value at T=O. 13

Interlayer pairing shows this behavior as long as the split-
ting of T, is not extremely 1arge. The detection of per-
sistent currents in superconducting rings consisting of
part lead and part YBa2Cu307 & was interpreted as being
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evidence of pure singlet pairing, since lead is known to be
a conventional singlet superconductor. As we have
shown in the preceding section, the mere detection of a
persistent current in such a system does not exclude the
possibility of interlayer pairing. Particularly, interlayer
pairing does not result in a depression of T, of the mixed
ring as long as the critical temperature of singlet inter-
layer pairing is close to that of triplet interlayer pairing.
Only by the application of a high magnetic field parallel
to the layers could one favor triplet interlayer pairing
and strongly depress T, of singlet pairing so that the crit-
ical temperature for existence of a persistent current in
the mixed ring would also be depressed if interlayer pair-
ing exists. Unfortunately, the measurements known to us
cannot give such information, since they present only
data to prove that there is no measurable suppression of
T, in the mixed ring compared with the pure lead ring
without the application of a strong magnetic field. '

The strongest evidence against pure triplet pairing in
YBa2Cu307 & is given by measurements of the anisotrop-
ic Knight shift. The consistent explanation of a large
number of NMR experiments by a phenomenological
theory, ' ' which gives a vanishing Knight shift at
T =0 after subtraction of the chemical shift using an es-
timation of its anisotropy, seems to rule out the existence
of interlayer pairing in this compound, since it gives at
T =0 a Knight shift of half of its normal value. But we
note that there is some uncertainty in the estimation of
the chemical shift anisotropy, since the electronic eigen-
functions in the Cu02 layers are still a matter of contro-
versy. This still leaves the possibility that there is a small
nonvanishing Knight shift E(T=0). Thus, we can con-
clude that the Knight-shift data of YBazCu307 5 exclude
the possibility of purely interlayer pairing, while its coex-
istence with intralayer pairing cannot be excluded in this
compound. Additionally, the inhuence of spin-orbit cou-
pling on the layered high-temperature superconductors
still must be studied in detail. As was shown in Ref. 25,
spin-orbit interactions in layered superconductors can
give rise to modifications of the anisotropic susceptibility
in the superconducting state where only intralayer pair-
ing was considered. The inhuence of spin-orbit interac-
tions on interlayer pairing will therefore be the subject of
further study.

We note that the experimentally seen depression of T,
by nonmagnetic impurities as, for example, by the substi-
tution of Cu atoms in YBa2Cu307 & by diamagnetic Zn
ions would have a natural explanation if there exists in-
terlayer pairing in these compounds. Let us now estimate
the upper bound for the splitting of T, in YBa2Cu307
which has a maximum T, of 90 K. In YBazCu307 & the
hopping amplitude between layers is approximately
S'=100 K as obtained experimentally from the anisotro-
py of the lower and upper critical magnetic field and
theoretically from band-structure calculations. The
main part of the Fermi surface is known both by band
theory and experiment to have a shape of a corrugated
cylinder with @+=1500 K. The cutoff parameter coo

and the strength of the dispersion depends on the pairing
mechanism. As an example, we consider a phonon medi-
ated effective attraction. The phonon dispersion curves

of YBa2Cu307 & were calculated in Ref. 29. A typical
optical phonon frequency is about 100 K. The dispersion
amplitudes a range from 2 to 30 K depending on the
respective phonon branch. Using pF =2.8/a, where a is
the in-plane lattice constant, we can calculate the con-
stant C defined in Eq. (3.5), where we take

Q(p —p')- cos(a~p —p'~)

as a typical phonon dispersion curve. Thus, we find as an
upper bound for the hopping induced splitting of the crit-
ical temperature:

bT~aW /(cooe2F)T, O=0. 1 K .

Therefore, if the effective interaction is phonon mediated,
this splitting of T, is so small that it is not likely to be
detected in any experiment on YBa2Cu307 &. For the
splitting of the critical temperature by nonmagnetic im-
purities in YBazCu307 &, we can give an upper bound,
using as a lower bound for the mean free path due to
scattering from layer to layer by nonmagnetic impurities
between the layers 1=100 A, which is known to be the
total average mean free path, mainly due to scatterings at
impurities in the layers. Thus, we find the scattering
rate to be at the most 1/r ~ 1.1 X 10' /sec ' so that the
splitting of T, has the upper bound b, T, =3/(8r) =30 K.
We see that the splitting by impurities could be consider-
ably larger than the hopping-induced splitting of the
transition temperature. However, the actual mean free
path corresponding to scattering from plane to plane by
impurities between the layers should be much larger than
the total mean free path taken as a lower bound. There-
fore, the splitting is probably so small that it will not lead
to measurable effects such as the appearance of a double
peak in the specific heat, since this can only be seen for a
large splitting of T„because spatial inhomogeneity
smears out the lower peak if the peaks are close to each
other. The specific heat of YBa2Cu307 & near T, is one
of the most extensively studied thermal properties. The
huge majority of experiments see only one jump in the
specific heat and the exceptions ' can be explained by
the inhomogeneities of the samples as done by a theory of
Abrikosov. Thus, we can conclude that specific-heat
measurements of YBa2Cu307 & exclude a large splitting
of T, in agreement with the results obtained above for a
possible interlayer pairing.

In conclusion, it was shown that interlayer pairing re-
sults in some qualitatively new features such as the split-
ting of T, by hopping between adjacent layers and by
scattering from impurities between the layers. Not only
nonmagnetic impurities in the layers, but also those be-
tween the layers, lead to a depression of the critical tem-
perature of interlayer pairing. Our investigation of physi-
cal properties of interlayer pairing leads us to the con-
clusion that according to the present experimental situa-
tion on YBa2Cu307 &, only the Knight-shift data indi-
cate that the interlayer pairing plays a minor role in com-
parison to intralayer singlet pairing. However, in order
to give a certain conclusion about the existence of inter-
layer pairing in layered high-temperature superconduc-
tors, it is necessary to have zero-temperature Knight-
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shift data of other layered superconductors, especially of
those with a higher transition temperature such as
T128a2Ca2Cu30&0+& and Bi2Sr2CaCu208+&, which are
known to have a much larger mass anisotropy than
YBa2Cu307 &.

' giving values for the hopping ampli-
tude 8' smaller than I K so that the existence of inter-
layer pairing in these compounds is more likely. There-
fore, it is worthwhile to extend our simple model to in-
clude intralayer pairing as was already done without trip-
let pairing and recently for the correct order parameter

including triplet pairing. Furthermore, spin-orbit cou-
pling and spin fiuctuations could lead to modi6cations of
our results and will be the subject of further work.
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