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Model of difFusion on deformable lattices. III. Adatom-interaction effects
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We present results of theoretical studies of diffusion in a lattice-gas model of a deformable lattice,
which has been proposed to explain the anomalous diffusion anisotropy of H adatoms on a W(110) sur-
face. In this work, we consider the effects of finite adatom-adatom interactions to diffusion in the model.
In particular, using Monte Carlo simulation methods we study the properties of both tracer and collec-
tive diffusion in the presence of various spatially ordered phases within a model phase diagram of
H/W(110). To incorporate the role of the energy barriers associated with diffusion more realistically, we
select carefully a choice for transition probabilities used within the Monte Carlo method. We demon-
strate that while the tracer and collective diffusion tensors behave in a fundamentally different manner
within the model, the corresponding diffusion anisotropies are similar and are mainly controlled by the
symmetry of the adlayer phase.

I. INTRODUCTION

One of the simplest example of a diffusive process con-
sists of a classical particle executing isotropic random
walk on an inert lattice. In the case of only one particle,
its diffusion constant can be written down as va /z,
where z is the coordination number of the lattice, v is the
(microscopic) jump rate, and a the lattice constant (i.e.,
the length of each jump). ' However, if any particle-
particle interactions are present in the system the
diffusion process becomes correlated, and a distinction
has to be made between single particle or tracer, and col-
lective diffusion processes. A substantial amount of ana-
lytic work and numerical simulations have been done in
simple model systems in order to study these correlation
effects. ' So far, accurate analytic solutions have been
obtained in cases where only hard-core on-site exc1usion
interactions between particles exist. ' ' '

Surface diffusion of adatoms on substrates ' provides
an important realization of classical diffusion in two di-
mensions, and has frequently been modeled by lattice-gas
systems. However, modeling of surface systems in-
volves two main complications. First, in real surface sys-
tems there are nonnegligible adatom-adatom interactions,
which often dominate the behavior of adsorbates at low
temperatures. ' Second, in reality the adsorption of an
adatom is often accompanied by a local substrate relaxa-
tion or distortion. Recently, it has been proposed
that this local distortion can have significant efFect on the
surface diffusion tensor. In our previous works
in this series [hereafter referred to as I (Ref. 23) and II
(Ref. 24)], a lattice-gas model was introduced that incor-
porates the essence of such a distortion with respect to
diffusion. This model has originally been proposed to
explain the observed diffusion anisotropy of H adatoms
on a W(110) surface. The essence of the model is to
recognize that the binding energy of an H adatom can be
lowered if it is displaced locally from the original adsorp-
tion site along the [110]direction and accompanied by a
shift of the surrounding substrate atoms in the same

direction (see Fig. 1 of I). Obviously, the same is true if
the displacements of both the adatom and the surround-
ing substrate atoms are reversed. This results in a
"dynamical" double-well-type adsorption potential,
which is imposed on the surface unit cell by each
diffusing particle. The generation of such a double-well
potential through a lattice distortion has been explicitly
demonstrated in a previous work. When the local dis-
tortions start to mutually correlate for higher coverages,
a global surface reconstruction may occur, such as has
been observed for H on W(110) around c ~0.5.

An important feature of the model is that even without
direct adatom interactions, double occupation of an ad-
sorption site is not favorable. This is due to the fact that
a simultaneous occupation of the subsites leads to oppos-
ing surface relaxations which cancel each other, resulting
in a much higher value of the total energy. Since the
time scale for the adatom motion is much longer than a
typical time scale for the substrate response, the effect
just described can be approximately modeled by splitting
the original single adsorption site into two symmetric
sites. When this is done, an energy barrier exists for the
motion from one subsite to another. Moreover, a simul-
taneous occupation of the two subsites is then forbidden,
i.e., a hard-core repulsion applies within each cell. Note
that this is different from a true static "double-well"
configuration as obtained in a previous model calcula-
tion. ' For such a static well, double occupation of the
subsites is possible provided that there are no strong
direct repulsive interactions between the H adatoms. For
the H/W(110) system, the hydrogen-induced distortion is
more plausible because it provides a natural explanation
for the global surface reconstruction at higher cover-
ages. In the context of a simple random-walk theory,
the diffusive motion of the adatoms can then be con-
sidered to consist of two separate steps on a static lattice.
The first is an intracell jump across the barrier originat-
ing from the loca1 distortion, while the second is an inter-
cell jump across the barrier due to the usual periodic ar-
rangement of the substrate atoms. the competition be-
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tween these two processes can be parametrized by a
branching ratio r, which is the ratio of the intracell to in-
tercell diffusion rates. An important point to note here is
that from these simplifications it follows that this model
is applicable to H/W(110) only in the regime c 50.5

where no global surface reconstruction occurs.
In I and II, we present a detailed theoretical study of

both tracer and collective diffusion processes within the
lattice-gas model, assuming only hard-core interactions
as described above. We demonstrate that the presence of
both intracell and intercell jumps as well as the exclusion
of double occupancy within a cell lead to a very compli-
cated coverage dependence and cause strong correlation
effects to appear. Remarkably enough, for the physically
interesting case of r -1, the diffusion anisotropy displays
universal behavior, in the sense that it is very similar for
both tracer and collective diffusion. This is clearly due to
the absence of broken-symmetry phases in the model with
hard-core interactions only. However, as we have men-
tioned above, in realistic adsorption systems such as
H/W(110), additional direct or indirect interactions exist
between adatoms on different adsorption sites, as evi-
denced by the appearance of many distinct ordered
phases of the adlayer. ' Thus, it is of great importance
to determine how the diffusion anisotropy is affected by
the presence of such ordered phases.

In this work, we have undertaken a comprehensive nu-
merical study of the effects of adatom-adatom interac-
tions and ordered phases to diffusion within our lattice-
gas model. We demonstrate how the presence of two dis-
tinct diffusion jumps leads to a somewhat unphysical
dependence of diffusion on the form of the transition
probability used in the standard Monte Carlo (MC} algo-
rithm. To incorporate the role of the energy barriers in
the model more realistically, we introduce a form for the
transition probabilities used within the MC algorithm
which is then compared with the standard forms. In par-
ticular, we demonstrate that although the absolute values
of the diffusion coeScients depend on the choice of the
MC algorithm, the dijfusion anisotropy nevertheless
remains virtually independent of the particular form of
the transition probability used, and depends mostly on
the global symmetry of the underlying phase.

The actual simulations in this work were done for a
model with two sets of adatom interaction parameters.
The first set is a model with nearest-neighbor interactions
only, intended for a qualitative comparison with the
hard-core interaction case. The second set is the lattice-
gas model of Sahu et al. , which they used to study the
adsorption system H/W(110) in various parts of its phase
diagram. This simplified model excludes the surface
reconstruction of the W(110) substrate at c ~0.5; howev-
er, the experimentally observed ordered phases formed by
H are reproduced. Thus, our results may not be applic-
able to H/W(110) at higher coverages. We nevertheless
present results of extensive Monte Carlo simulations of
collective and tracer diffusion for a11 coverages, using
mostly r=3, which for the hard-core interaction case
most closely reproduces the experimentally observed
diffusion anisotropy.

II. MONTE CARLO SIMULATIONS OF DIFFUSION

As discussed in the Introduction, the physical motiva-
tion behind the diffusion model introduced by Kjoll
et al. is based on the anomalous diffusion anisotropy of
H adatoms on a W(110) surface. On an ideal surface,
the underlying surface forms a centered rectangular lat-
tice, with adatoms adsorbed on the long bridges sites
within the "hourglass" potential [see Fig. 1(a} of I]. The
principal axes of diffusion are given by the [110] and
[001] directions denoted by y and x, respectively. When
H is adsorbed on the surface, this local symmetry break-
ing is described by a tmo-step lattice-gas model with jump
rates M and I for intracell and intercell rates, respective-
ly, as shown in Fig. 1(c) of I. The branching ratio
r =M/I then determines the value of the diffusion anisot-
ropy ratio, which in the zero coverage limit is given ex-

ly by
'2

Dyy r b

D r+2 a
(2.1)

Here a and b denote the dimensions of the underlying
unit cell, and for the W(110) surface, (b/a ) =2. By sym-
metry, the off-diagonal terms D„„=D„=0.

For finite coverages, the simple result (2.1) for the an-
isotropy no longer holds. We must also distinguish be-
tween the behavior of the collective diffusion tensor D',
and its tracer diffusion counterpart D'. In I and II, as-
suming only hard-core interactions within each cell, we
were able to analytically calculate both D' and D' using
the Green's function method of Tahir-Kheli and El-
liott. ' ' For branching ratios r & 1, the results were in
rather good agreement with corresponding MC simula-
tions. Most remarkably, for such larger values of r the
anisotropy ratio is well described by a nontrivial mean-
field theory associated with the Green's function method.
which gives:

C 2
Dyy Dyy r
D' D', r+2v a

(2.2)

where v =1—c is the vacancy factor. In particular, (2.2}
reveals that either in the limit r ~ 0O, where the effect of
the local distortion vanishes or in the limit c~1, the
diffusion anisotropy (2.1) approaches the value of 2, ap-
propriate for a simple lattice-gas model of undistorted
W(110). Also, for any finite value of r and c (1, the an-
isotropy ratio is always less than 2 in accordance with ex-
periments of H diffusion. However, when finite
adatom-adatom interactions are introduced in the two-
step model, the analytic solutions for the collective and
tracer diffusion are no longer valid, except in the trivial
limits of very high temperatures k~ T~ Qo, or c ~0. The
transition rates I and M become explicitly dependent
both on interactions and local configurations. Because of
the lack of an analytic theory, we must resort to MC
simulations to study diffusion at finite coverages and, in
particular, the diffusion anisotropy in the presence of in-
teractions. Before presenting the results of our simula-
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tions, we discuss below the role of the transition probabil-
ities in determining the coverage and temperature depen-
dence of diffusion coefficients in the model.

A. Choice of transition probabilities

N; fP; =Nf 'Pf (2.3)

where w;f is the transition rate from a state (i ) to a
state (f ), and p; and pf are corresponding probability
densities, does not specify the transition rates uniquely.
Two of the most commonly used functional forms for the
rates are the Metropolis form

ve ~~, if AE &0,
v, if hE 0 (2.4)

Aside from the usual problem of the interpretation of
the dynamics in the Metropolis Monte Carlo method,
there is an additional ambiguity associated with the
choice of the transition probabilities when time-
dependent phenomena such as diffusion are simulat-
ed. ' ' Namely, the condition of microscopic reversi-
bility,

Ni, f Ni, s Ns, f (2.6)

The first transition rate w;, describes a transition from an
initial energy state E; to an intermediate energy state E„
and it is given by

w;, =
—,'v, [1—tanh[P(E, E;)/2]—} . (2.7)

Similarly, the second transition rate describes a transition
from the intermediate state to the final energy state Ef ..

intracell rate should be controlled by a saddle point
within the cell, created by the local distortion [Fig. 1(c) in
I]. In fact, microscopic calculations of single-particle
diffusion in distorted potentials have demonstrated that
the temperature dependence of D and the anisotropy ra-
tio are controlled by the relative magnitudes of tNo sad-
dle points on the surface, located at L and S (Fig. 1 in I).

Since the dynamics of diffusion will always depend on
the choice of the MC transition probabilities, we can ac-
tually utilize this freedom to more realistically model the
diffusion process within the two-step model. To this end
we have chosen a form of the transition probability in
which the intracell and intercell diffusion jumps are
decomposed into two steps, i.e.,

and the symmetric Kawasaki form
W f 2v2[ 1 —tanh[p(Ef E, )/2]]— (2.8)

tv, f =
—,
' v[ 1 —tanh( —,'Pb, E )], (2.5)

where hE —=Ef —E; is the energy difference between the
final and initial states, v is the attempt frequency, and
p= I/(ks T) is the inverse temperature. Usually, v is set
to unity and time is measured in units of transition at-
tempts per particle.

In studying diffusion, either (2.4) or (2.5) can in princi-
ple be employed. Some studies have also been done using
the exponential function in (2.4), but identifying h,E =E;
as the initial-state energy instead of the energy
difference. ' An additional normalization factor includ-
ing the maximum value of energy has to be included also.
This choice is based on the activated nature of classical
diffusion processes, and is sometimes called the "initial-
value dynamics. " However, the barrier introduced with
this choice of transition probability is somewhat artificial.
A second and more serious problem is that if the energy
distribution is relatively wide, the initial-value dynamics
becomes very inefficient at low temperatures. We should
also note already at this point that the coverage depen-
dence of diffusion is clearly rather sensitive to the choice
of w, f. For example, the choice of the Kawasaki form
(2.5) preserves particle-hole symmetry whereas the
initial-value dynamics does not.

The fundamental problem with all these choices, in-
cluding (2.4) and (2.5) is that they do not realistically de-
scribe the diffusion process in terms of an intermediate
energy state, which for classical diffusion is the saddle
point of the adiabatic surface potential. This becomes
particularly serious for our model. Namely, consider the
intracell jumps, for which AE is always zero. This means
that not only the absolute diffusion rates but also the
diffusion anisotropy depend on the particular choice of
the MC transition probabilities. However, in reality the

Thus, for both steps the transition probabilities have the
familiar Kawasaki form, although (2.4) is also equally
applicable. It is easy to verify that (2.6)—(2.8) satisfy the
detailed balance condition, as required. Our choice of the
transition probabilities describes explicitly the effect of an
intermediate energy state in the diffusion process, which
in the classical picture is the saddle point of the potential.
We shall refer to this choice of probability of transition as
the transition dynamics algorithm (TDA). Within the
TDA, there is still a freedom of choice for the intermedi-
ate barrier E„which will be discussed in subsequent sec-
tions.

When applied to the two-step model, neither the rates
v& and v2 nor the saddle-point energies for the intercell
and intrace11 jumps need to be identical. The definition of
a "bare" one-particle branching ratio then becomes
r =(v,vz) /(v, v2), while the effective branching ratio r'
is given by

M M
wi, sws, f

I I
w; qw~f

(2.9)

B. Model with nearest-neighbor interactions

To study systematically the effects of finite interactions
and the choice of different MC transition probabilities to
diffusion in the two-step model, we have first performed
simulations for a model of isotropic nearest-neighbor in-
teractions given by

where I and M refer to intracell and intercell jumps, re-
spectively. Note that only in the limit of an infinite tem-
perature does (2.9) reduce to a constant similar to the
cases discussed in I and II. In general, r' is temperature
and coverage dependent and could even change with
different configurations according to the choice of E, .
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H=J g nsn', .
(gg'), ss'

(2.10) 2.0

As in I and II, g and g' are cell indices, s, s' refer to sub-
lattices A and B, and n's denote the usual lattice gas oc-
cupation variables. For the interaction between the ada-
toms, no distinction is being made between the "up" and
"down" sites of the cells, and thus for half coverage
c=—,', (2.10) corresponds to the two-dimensional Ising

model with a phase transition at J/(4k& T )=0.4407. For
other coverages, the model Hamiltonian describes an Is-
ing model in an external field.

We have studied collective and tracer diffusion in the
case of both attractive and repulsive nearest-neighbor in-

teractions. Here we first discuss our results for the case
of tracer diffusion, which can then be directly compared
with the results in II. To calculate the tracer diffusion
coelcient, we have used the definition

N
D' =—lim —g ( ~R' (0)—R' (r)~ ), a=x,y,N~ ~ t,.

(2.11)

where N is the number of particles, R' (t) denotes the
spatial component of the position vector of the ith parti-
cle at time t, and ( ) denotes configuration averaging. In
the algorithm, each difFusing particle is tagged and the
displacements are averaged over all of the N particles to
improve statistics. Further details of the method used
can be found in our previous work in II.

Comparisons of the effect of transition probabilities
were done between the Kawasaki form, and the TDA in
which we set r =3, with E, = (E ) for both intracell and
intercell jumps. Analysis of tracer diffusion data for
60X60 systems was performed similarly to the case of
hard-core interactions only. We checked the high-
temperature limit of B~O by running simulations at
pJ=0.4, which gave results essentially identical to that
described in II. In Fig. 1 we first present results for the
tracer-diffusion anisotropy D' /D„'„ for the cases where
PJ=1.428, and PJ= —1.428. At this temperature the
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FIG. 2. Collective diffusion anisotropy vs coverage for the
nearest-neighbor lattice-gas model, with PJ= —1.428 (squares)
and pJ=1.428 (crosses). A strong critical slowing down of
diffusion makes it difficult to determine D„y /D accurately for
the case of attractive interactions, as indicated by the error bars.
The mean field solution (2.2) is shown by a solid line.

corresponding Ising model is still disordered even for
c =

—,', but for all coverages there is a considerable amount
of local ordering present in the form of clusters. Our re-
sults show clearly that although the absolute diffusion
rates are rather different from the hard-core case, and
also depend strongly on the sign of J, the diffusion anisot-
ropy is rather insensitive to either interactions or the
transition probabilities used. For our particular choice of
E„ the results for TDA are close to the Kawasaki case.
Using different values of E, for intracell and intercell
jumps one can definitely change the anisotropy ratio, but
for any reasonable choices where the ratio E, /E, is not
much different from unity, the effect is not very large.
The main qualitative feature of the two-step model, the
reduction of D /D„ from the value of 2, always mani-
fests itself in the absence of spatially ordered phases.

In the case of collective diffusion, we observed a strong
critical slowing down effect in the case of attractive in-
teractions as expected from standard theoretical argu-
ments, while for the repulsive case no such anomalous
temperature dependence was observed. Analogous re-
sults have also been obtained by Jiang and Methiu' in
their MC study of the Ising model on a square lattice. In
Fig. 2, we display the anisotropy ratio D' /D„'„as a func-
tion of coverage, calculated using Kawasaki dynamics.
Both D„'„and D' were calculated from the density fluc-
tuation autocorrelation function, as explained in I. The
same conclusions as above apply to the case of collective
diffusion. Again, the diffusion anisotropy behaves in a
manner very similar to that in I.

1.0 '

0.0 0.2 0.4 0.6 0.8 1.0
III. MODEL OF H/W(110) WITH FULL

INTKRACTIGN PARAMETERS

FIG. 1. Comparison of the tracer-diffusion anisotropy vs
coverage for the nearest-neighbor lattice-gas model with
Kawasaki dynamics (PJ= —1.428, squares; PJ= 1.428, crosses)
with the transition dynamics algorithm, where E, = (E) (trian-
gles for both repulsive and attractive cases). Error bars are
about the size of the points, or smaller. For reference, the solid
line indicates the mean field result (2.2).

In this section, we describe the simulation results for
our two-step lattice-gas model in which the interaction
parameters are taken from a recent study by Sahu et al.
on the H/W(110) adsorption system. This model makes
no allowance for a local distortion or surface reconstruc-
tion but the direct H-H interactions are chosen such that
the experimentally observed phase diagram of H/W(110)
is correctly reproduced. Thus, it should provide a good
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description for H/W(110) at least for c & —,
' before the glo-

bal surface reconstruction takes place. Again, we make
the simplifying assumption that interaction between the
hydrogen atoms does not depend on which sublattice
they are on (i.e., on A or B), but only on the separation
between the cells. The interaction Hamiltonian is there-
fore given by

H= g J(g,g')nsn', .
(gg'), ss'

(3.1)

Here s,s'= A or 8, and g, g' denote the cell indices. The
interaction parameters are chosen such that J& = 1,
J2 =J3 2 J4 —1, and J~&

=Jt2=0. 6, and their
meaning is illustrated in Fig. 3(a). In Fig. 3(b) we show
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FIG. 3. (a) A schematic figure of the interaction parameters
used in the model of H/W(110) (from Ref. 30). Crosses denote
the positions of the hourglass adsorption sites for H. (b) The
corresponding model phase diagram for H/W(110). CX s
denote coexistence regions between different phases (from Ref.
30)~

the phase diagram of the model, as calculated by Sahu
et al.

Our simulations of diffusion were carried out using the
TDA exclusively. The intermediate "barrier" energy pa-
rameter E, was chosen to be

E;+EE= ' '+~.
S (3.2)

The first term in (3.2) is an approximate representation of
the interaction energy with other adsorbates when the
atom making the jump is at the "transition state. " The
quantity 6 represents the intrinsic saddle-point barrier,
and in most runs we set 6=0.5 in the same units as the
interaction parameters. For the results presented
below, the bare branching ratio r was set to three. Note
that with this choice of E„r' in (2.10) is not only tem-
perature dependent but also a running variable in the MC
simulations since E, changes with configurations.

Typically, the diffusion constants are extracted from
runs up to 600 MC steps, using 60X60 or 30X30 sys-
tems. However, a large number (10 —10 ) of
configuration averages is required to obtain accurate
data. The independence of initial configurations, which
must be carefully equilibrated, is achieved by randomiz-
ing the configurations using long multisite diffusion
jumps for the adatoms.

A. Tracer difFusion

We shall first describe the results for the coverage
dependence of the tracer-diffusion tensor O'. At the tem-
perature T=1.5, according to the phase diagram in Fig.
3(b), the adsorbate will form a (2X 1) [or (1 X2)] ordered
phase around c =

—,
' and a (2 X 2) phase around c =—,'. In

Figs. 4(a) and 4(b) we present results for D„'„, D', and
D„' as a function of coverage at T=1.5. The first feature
to note is that the diffusion constants drop off much more
rapidly as a function of coverage compared with the
hard-core interaction case in II. This is because of the
fact that, besides the blocking factor which increases as
the coverage increases, a well-ordered local environment
for the diffusing adatom means that any jump leading to
a different configuration will necessarily involve a large
activation energy, hence leading to a smaller diffusion
constant. Using this simple argument, we also expect the
diffusion constants D„'„and D' to show a local minimum
at c =

—,
' and c =

—,', which correspond to the maximal or-
dering of the (2X1) and (2X2) phases, respectively.
This is precisely the case as seen in Figs. 4(a) and 4(b).
The behavior of the off-diagonal component of the
diffusion tensor D' on the other hand is rather different.
It is zero at most values of the coverage but becomes
finite around c=—,

' where it displays a local maximum.
The reason for this is that D'„ is a measure of the symme-
try of the diffusion behavior. For the disordered phase
and the (2X2) phase, the principal axes of diffusion are
just along the x and y axes of the lattice. However, in the
(2 X 1) or the (1 X 2) phase, diffusion is obviously taking
place mainly along the direction of the occupied rows, as
shown schematically in Fig. 5. Thus the nonzero value of
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FIG. 4. (a) Coverage dependence of D„'„(squares), Dyy (circles), and Dzy (crosses) for the model of H/W(110) at T=1.5, in units of
2a v, b v, and b v, respectively, where 2a =b and v is an arbitrary rate constant (cf. Refs. 23 and 24). (b) Details for intermediate
coverages. Lines are only guides to the eye. (c) and (d) Coverage dependence of D„'„(squares) and D„'y (circles) for the model of
H/W(110) at T=2.2. D„y is now virtually zero, as the global order is very weak. (e) Tracer diffusion anisotropy corresponding to (a);
(f) Tracer-difFusion anisotropy corresponding to (c).
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('Ix2j

FIG. 5. Figure showing, schematically, how in a fully or-
dered (1 X 2) [(2 X 1)] phase the particles (filled circles) can only
move diagonally along the empty rows of adsorption sites (open
circles). This leads to a rotation of the principal axes for
diffusion and a 6nite D„~, as discussed in the text.

weak dependence of the collective diffusion tensor on the
coverage. The second major difference is that the collec-
tive diffusion rises to a local maximum instead of a
minimum at c =

—,
' and c =

—,
' where the adlayer is in the

(2X1) [or (1X2)] and (2X2) phases, respectively. This
can be seen clearly in the case where T=1.5. For
T=2.2, the local maximum persists at c =

—,
' but disap-

pears at c =
—,'. This is again due to the disordering of the

(2X2) phase at this higher temperature. The reason for
this behavior can be best understood from the phenome-
nological expression relating the collective diffusion to an
effective jump frequency v(c ) of single particles: '

(3.3)

Dzy around c =
—,
' simp ly indicates that the principal axes

of diffusion at those coverages are rotated from their
original direction.

At a higher temperature T=2.2, the phase diagram in
Fig. 3(b) indicates that there are no more ordered phases
at any coverages. However, this result is for the infinite
size limit, as obtained from finite-size-scaling studies.
For the actual 30X30 system studied here, the adsorbate
layer is still in a weakly ordered (2X 1) [or (1 X2)] phase
around c =

—,'. Thus the diffusion constants D' and Dyy
still have weak local maxima at c =

—,
' as shown in Figs.

4(c) and 4(d). The local maximum at c =
—,', however, has

almost completely disappeared because the (2X2) phase
is disordered at this temperature.

In Figs. 4(e) and 4(f) we show the anisotropy ratios
D~~/D„'„ for these two temperatures. As expected from
the above discussions, the result for T=2.2 is very simi-
lar to the case of hard-core interactions only, except for
the peak at c =

—,
' arising from the weak remnant of the

(2X1) [or (1X2)] phase. For the lower temperature of
T=1.5, the ratio rises rapidly towards the asymptotic
value of 2 for c &0.5. This is due to the large activation
energies in the ordered phases for the intercell jumps, as
opposed to intracell jumps which are controlled only by
the intrinsic saddle-point barrier. The effective branching
ratio r therefore rises rapidly. Since the anisotropy ratio
becomes two in the limit where r approaches infinity, this
gives rise to the observed behavior of the rapid rise of the
anisotropy ratio as a function of coverage at lower tem-
peratures.

B. Collective diffusion

The collective diffusion tensor D' is evaluated by study-
ing the long time decay of the density-density correlation
functions as done in I ~ Again we show results for the two
temperatures T=1.5 [Figs. (6(a) and 6(b)] and T=2.2

[Fig. 6(c)]. There are two major qualitative differences
when compared with the corresponding results for the
tracer diffusion. First, the collective diffusion falls off
much more slowly as a function of coverage. This is not
unexpected because the success rate of a single adatom
jump event is not the sole factor in determining the rate
of collective diffusion. In fact, the results in I for the sim-

ple hard-core interaction model already indicate a very

where p is the density and ~ is the adlayer compressibili-
ty. In this expression, the numerator is obviously mini-
mized at c =

—,
' and c =

—,
' because the single adatom jump

success rate is lowest for the fully ordered (2X1) [or
(1X2)] and (2X2) phases. However, the denominator
contains the compressibility v, which displays a minimum
at the fully ordered phases of the adlayer. Thus, there is
a competition between these two factors. For the model
system studied here, the compressibility is the dominant
factor and thus the diffusion constants acquire a max-
imum at c=—,

' and c=—,'. This kind of behavior has
indeed been observed experimentally in such systems as
Li/W(110) and Ba/Mo(011). For other systems, the sit-
uation could be reversed. For example, in the simula-
tion studies of Sadiq and Binder, they observe a
minimum instead of a maximum for the collective
diffusion at a fully ordered phase.

The off-diagonal element D' shows a behavior similar
to the tracer-diffusion case. This is to be expected be-
cause the principal axes of the collective diffusion tensor
should be identical to those of the tracer-diffusion tensor.
Finally, the anisotropy ratio D'„/D' for low coverages
is similar to that for tracer diffusion, as can be seen in
Fig. 6(d). In the higher tetnperature of T=2.2, the ratio
again displays a weak peak around c =

—,', beyond which it

drops off before rising to its eventual limit of
D' /D„'„=2.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have complemented our previous
theoretical studies of diffusion in a lattice-gas model
of a deformable lattice, by considering the influence of
finite adatom interactions. Because of the lack of an ana-
lytic theory, we have resorted to Monte Carlo simulations
to study the coverage dependence of D' and D'. To more
realistically incorporate the role of saddle points control-
ling diffusion, we have used a form of the transition prob-
abilities within the Monte Carlo method. Using this ap-
proach, we have performed extensive simulations of both
tracer and collective diffusion in a model of H/W(110)
with full interaction parameters. Our results demon-
strate clearly the influence of the ordered adlayer phases
to diffusion, and also delineate the fundamentally
different nature of tracer and collective diffusion in in-
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teracting systems. Most strikingly, for our model, tracer
diffusion shows pronounced minima for maximal order-
ing as a function of coverage while the collective diffusion
displays local maxima for the same values of c. This
difference can be qualitatively explained by the difference
between adatom mobilities and the compressibility of the
adlayer.

Despite the well-known fact that Monte Carlo studies
cannot be used to quantitatively estimate diffusion
coefficients in real interacting systems, we believe that at
least the qualitative features of our model should apply to
H/W(110) for c & 0.5. Most importantly, our work
demonstrates that the diffusion anisotropy ratios D' /D„'„
and D' /D,'„behave in a very similar fashion and are
mostly determined by the global symmetry of the adlayer.
The anisotropy is also rather sensitive to the degree of lo-
cal ordering, as demonstrated by our high-temperature

results in Sec. III. The temperature dependence of the
anisotropy is also sensitive to the ratio of the intracell
barrier 61 to the intercell barrier A~. In this work we
have set 51/AM=1 for lack of microscopic informa-
tion. Within the model, the diffusion anisotropies are
always less than 2, except at low temperatures where
long-range order in the adlayer emerges. These results
are consistent with the current experiments ' on the
anisotropy of collective diffusion in H/W(110).
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