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A purely electronic mechanism for superconductivity in disordered Fermi systems is given. It is based

on long-time-tail sects in electronic correlations, is strongest in two-dimensional systems, and leads to
spin-triplet even-parity pairing. Estimates are given for the mean-field transition temperature to the su-

perconducting state. The superconducting state is discussed in detail. In particular, the superconduct-

ing gap function, the tunneling density of states in the superconducting phase, and the low-temperature

specific heat are computed. We compare and contrast these results with those for conventional super-

conductors. We also discuss which classes of materials might provide an experimental realization of the

superconducting state discussed here.

I. INTRODUCTION

In recent years there has been substantial interest in

purely electronic mechanisms for superconductivity (SC}
and in unconventional SC states. The reason is in large
part due to high-temperature superconductivity where it
is suspected that models closely related to the single-band
repulsive Hubbard model contain the relevant physics. '

For these systems it is currently unclear what the pairing
mechanism for the SC is and whether they indeed
represent a new type of SC with both a novel SC mecha-
nism and state. Heavy-fermion systems are a better un-

derstood example of systems with unconventional SC. In
some of these the pairing occurs in a spin-triplet state
that is caused by an exchange of magnetic excitations.
Similarly, in He the Cooper pairs are in a spin-triplet
state and the effective attraction between helium atoms is,
at least in part, of magnetic nature.

In a recent work, we have presented an electronic
mechanism for SC in a disordered electronic system. To
describe this work we first recall some general features of
the effective interaction that leads to a SC instability in a
BCS-like theory. I.et us consider the particle-particle
(p-p) vertex, which we denote by K(12,34). The indices1:—(x„to&), etc., comprise space and Matsubara frequen-

cy. According to the Pauli principle, the total effective
interaction, including the spin degrees of freedom, must
be antisymmetric under interchanges of two particles.
The spin state of the pairs therefore puts restrictions on
the symmetry of the vertex E. If the two quasiparticles
(QP's) are in a spin singlet, the effective interaction
K(12,34) must be symmetric under interchanges of 1 and
2 or 3 and 4. If the QP's are in a spin-triplet state, then E
must be antisymmetric. For singlet pairing, one can thus
use a constant model potential. For triplet pairing, the
Pauli principle is usually enforced by means of a
frequency-independent interaction with an odd relative
angular momentum. The triplet superconductivity that
results from such an odd-parity interaction is strongly

suppressed by nonmagnetic impurities. This feature is in
contrast to the case of conventional s-wave superconduc-
tivity, and it is believed to be one of the reasons why trip-
let superconductivity is not more prevalent. Alternative-

ly, one can satisfy the antisymmetry requirement by con-
sidering a E which is even under interchange of x& and

x2, and odd under interchange of ~& and co2. However,
since the interaction will then be an odd function of fre-

quency, in a three-dimensional system this leads to extra
powers of temperature in the T, equation which also

suppresses the triplet superconducting state.
In the first part of the present paper we review and ex-

plain in detail our previous work where we showed that
the latter conclusion above can be avoided in the case of
a two-dimensional (2D), disordered system with a strong
QP interaction. In such a system we find a mechanism
for triplet even-parity pairing which is of purely electron-
ic origin. The relevant temperature scale should there-
fore be related to the Fermi temperature. A simple phys-
ical picture of our mechanism is as follows. Consider a
Fermi liquid with a pointlike, static, repulsive interac-
tion. We characterize the interaction with respect to the
transferred momentum and the total spin. The triplet
and singlet interaction amplitudes in the particle-hole
channel we denote by I(, and K„respectively. The sin-

glet amplitude in the p p(Cooper) cha-nnel we denote by

E,. The symmetry arguments given above show that
there is no triplet amplitude in the p-p channel due to the
Pauli principle. A QP will charge polarize its environ-
ment by means of K, (by repelling the like charges of the
other QP's), and it will spin polarize it by means of K, (by

repelling unlike spins, the short-ranged nature of the in-
teraction will not allow it to repel like spins because of
the Pauli principle}. In a clean Fermi liquid these polar-
ization clouds are short lived. They decay exponentially
with time and therefore essentially stay with the QP
creating them. This gives rise to the renormalization of
the effective mass, spin susceptibility, etc., in Fermi-
liquid theory. In the presence of disorder, however, the
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decay of the polarization clouds is much slower. The
corresponding correlation functions display a long-time
tail and go for large times like t . The polarization
cloud will therefore still be present after the QP that
caused it has diffused away. A second QP will then see
the spin and charge Quctuations left behind by the first
one. It will be attracted by the charge-polarization cloud
regardless of its spin. It will be attracted or repelled by
the spin-polarization cloud if the two QP s form a relative
spin singlet or spin triplet, respectively. We conclude
that, in the p-p channel, there should be an attractive
triplet interaction amplitude which increases with in-
creasing disorder, K, and E, . Notice that, in the triplet
channel, there is no bare interaction, so the net effective
interaction will always be attractive. The singlet ampli-
tude will acquire a repulsive component due to E„an at-
tractive one due to E„and, in addition, a renormaliza-
tion of the bare repulsion E, . Its net effect will therefore
be repulsive. The attractive triplet interaction will be
particularly effective in 2D. A t 1ong-time tail corre-
sponds to an co

' singularity in frequency space. For
D =2 we have a=1, and the effect should extend all the
way to zero frequency or temperature. (Actually, the
asymptotic limit T~O or co~0 in D =2 is presently not
understood, but the preasymptotic behavior can be
worked out. We will come back to this. ) This is a mani-
festation of the strong fluctuations present in a low-
dimensional system. We therefore expect a generic 2D,
disordered Fermi liquid to be an even-parity spin-triplet
superconductor at sufFiciently low temperatures.

The argument given above for the SC instability sug-
gests a superconducting state due to the peculiar frequen-
cy dependence and symmetry of the effective interaction.
In the second part of this paper we discuss various
features of this SC state in detail. The generic interesting
feature of the even-parity spin-triplet SC state is that the
zero-temperature gap function [and the single-particle
density of states (DOS)] vanishes continuously as the fre-
quency, co, tends to zero. Among other things, this im-

plies that the experimental tunneling DOS and optical
conductivity are nonzero for co+0. In this sense, the SC
is "gapless, " in contrast to conventional superconductors.
In addition, the SC state will have thermal properties
which vary as a power law rather than exponentially with
temperature.

We stress that many aspects of the SC state discussed
here are independent of the particular pairing potential
which we will derive, and, consequently, many of our re-
sults can be expected to be generic features of an even-
parity spin-triplet SC state.

The plan of this paper is as follows. In Sec. II we first
review the field-theoretic description of disordered in-
teracting electronic systems, and give the Gaussian prop-
agators for the field theory. We then do a one-loop re-
normalization of the theory and show that the combina-
tion of disorder and electron-electron interaction induces
an attractive interaction in the particle-particle (Cooper)
triplet channel. As mentioned above, the induced attrac-
tive interaction naturally separates into a contribution
due to charge fluctuations and into a contribution due to
spin fluctuations. In Sec. III, the mean-field gap equation

for the even-parity spin-triplet SC state is derived. In
Sec. IV (V), the charge (spin) fiuctuation contribution to
the effective potential is considered. We first derive an
expression for the critical temperature, T„ for the mean-
field SC phase transition. We then solve the zero-
temperature gap equation and discuss the 1ow-
temperature behavior of the single-particle density of
states and the specific heat. In Sec. VI, we discuss our
results and some open problems related to them. We also
discuss their experimental relevance and suggest some ex-
periments to test our predictions. Let us finally mention
that readers who find the physical argument for the ex-
istence of the triplet pairing given above convincing, and
who are not interested in the technical derivation of the
pairing potential, can skip Secs. I and III A and go direct-
ly to Sec. III B.

II. THE EFFECTIVE INTERACTION

In this section we first review the basic field-theoretic
description of disordered interacting electronic systems,
and give the Gaussian propagator of the field theory. We
then do a one-loop renormalization of the theory and
show that the renormalization process generates an at-
tractive interaction in the particle-particle triplet chan-
nel. Note that, once the pairing potential has been estab-
lished, the field-theoretic method is not needed and con-
ventional SC theory can be used.

A. The model

For an arbitrary Fermi system, the partition function
can be written as

Z= D D exp S (2.1a)

H'(r)= f dx Vg'(x, r) VP'(x, r)1

2m

+ [ V(x) —p]g'(x, r)1t'(x, r) '

+ —f dxdy u(x —y)f'(x, r)P(y, r)

X P(y, r)P'(x, r) . (2.2a)

Here m is the particle mass, p is the chemical poten-
tial, and u(x —y) is the electron-electron interaction po-
tential. We assume that V(x) is 5 correlated and obeys a

where the functional integration measure is with respect
to anticommuting Grassman fields P and P, and S is the
action

S= f 'dr f dx f'(x, r)B,Q'(x, r) f d&H'—(r) . (2.1b)
0 0

Here II (r) is the Hamiltonian in imaginary-time repre-
sentation, P=T ' is the inverse temperature, i(=1,2)
denotes spin labels, and summation over repeated spin in-
dices is implied. Throughout the paper we use units such
that 4=k~ =1, except where otherwise stated. Our basic
model is an electron fluid moving in a static random po-
tential, V(x),
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Gaussian distribution with second moment

«(.)V(y})= 1

lT FT
(2.2b)

N

Z = D D exp S
a=1

(2.3a}

with

2

S = g fdxQ„'(x) ip„+ +p —V(x) g~'(x)
ll

fdx dy tt (x—y)P'(x)tt„'J(y)
l l 8283

where the angular brackets denote the disorder average,
NF is the bare density of states per spin at the Fermi en-

ergy, and v. is the bare elastic mean free time.
All physical {thermodynamic and transport) quantities

can be obtained from Eq. (2.1) by adding appropriate
source terms to the action. The quenched disorder aver-
ages are conveniently performed by means of the replica
trick. One introduces N replicas of the system

a,P and on Matsubara frequency indices n, m. Tr in Eq.
(2.5) denotes a trace over all discrete degrees of freedom
while tr in Eq. (2.4) denotes a trace over both discrete and
continuous degrees of freedom. The matrix Q in Eq. (2.5)
is subject to the constraints

Q =1, TrQ=O, Q+=C Q C=Q . (2.6)

The last condition is the hermiticity and charge-
conjugation requirement. The matrix C has elements
r)8 o2 H.ere and in the following we denote by ['r, j
(r =0, 1,2, 3) the quaternion basis and by [tr, j
(i =0, 1,2, 3} the Pauli matrices. Qg =5„5&roeooto„
with co„=2m.Tn is a bosonic frequency matrix. If we ex-

pand Q in the spin-quaternion basis,

g is=a gp& '~, & (2.7}

we can use Eq. (2.6} to derive symmetry properties of
,"Q„~. In Eq. (2.7), r=0, 3 and r=1,2 denotes the
difusion or particle-hole and the Cooperon or particle-
particle degrees of freedom, respectively, while i =0
denotes spin singlet and i =1,2, 3 denotes spin triplet.
The diffusion degrees of freedom satisfy

Xtt'„' (y)P„'+n n (x) . (2.3b) rgaP —
( )rS rgb (r 0 3) (2.8a}

Here p„=nT(2n+1}, n=O, +1,. . ., is a fermionic
Matsubara frequency. After calculations, the limit %~0
is considered.

It has been shown how the field theory for (Z ) can
be mapped onto a nonlinear cr-model-like field

theory. ' '" The basic idea is to assume that all of the
relevant physics can be expressed in terms of long-
wavelength and low-frequency fluctuations of the number
density, the spin density, and the single-particle spectral
density. Technically this is achieved by repeatedly mak-

ing long-wavelength approximations and by introducing
composite variables that are related to the above fluctua-
tions.

The Hamiltonian, H[Q], for the composite variable-
field theory is

H[Q]= trQ —trinal '+H;„,[Q], (2.4a)

where

C '=in+ +p, I+ ' g—=C"' '+ ' g.2' " 27 27

(2.4b)
Here I is the unit matrix and a caret denotes a matrix
quantity. In the long-wavelength limit, Eq. (2.4a) reduces
to

H[Q]= fdx[Tr[VQ(x)] —4HG Tr[QQ(x)]j
1

with SO=1, S123 —1. For the Cooperon degrees of
freedom we have

,"gg =S,gt'„(r =1,2) . {2.8b)

XTr(r+oog„„)+(r+~r }],
(2. ioa)

[Q.g]t —g n, +n, ,n, +n,

These symmetry relations are a direct consequence of the
commutation properties of the underlying Grassman
fields and reflect the Pauli principle. %e will come back
to them later.

The interaction part of the Hamiltonian consist of
three parts, '

mTK„
H;„,[Q]=g fdx[Q(x) Q(x}]„

V

(v=s, t, c ), (2.9)

where the K„are the three bare interaction amplitudes
discussed in Sec. I. The "products" Q Q can be written

[Q Q]s —X n, +n, , n, +n,
1l l l12

n3n4

X g [Tr(r+oog~ „}

+H;„,[Q] . (2.5)

Here G =4/~o. , with 0 the bare conductivity, is the dis-
order parameter and H is a frequency coupling parameter
whose bare value is mN~/2. Q in Eqs. (2.4) and (2.5) is an
infinite matrix whose matrix elements Qg are 4X4 ma-
trices (spin quaternions) which depend on replica indices

nln2
n3n4

3

X g g [Tr(r+cr, g„„}
a i=1

XTr(r~o; Q„„)
+(r+~r )], (2.10b)
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[Q Q ]c= g 5n]+n2, n&+n4
nl n2

n3n4

X g [Tr(~+]]|]o.oQ„„~ g o oQ„„)

model given by Eq. (2.6). For future reference we note,
however, that the expansion coefBcients ";q~ of the ma-

trix q do not obey obvious symmetry relations in contrast
to,'Q„i'.

+(~+~r )], (2.10c)
B. The Gaussian theory

m&0

(1 + )1/2

m(0
n~0

q

+q )1/2 (2.11)

This parametrization eliminates the constraints of the o

where ~~=(~o+ii3)/2. From Eq. (2.10c) we see explicit-

ly that the symmetry given by Eq. (2.8b) (i.e., the Pauli
principle) does not allow for a bare p-p triplet interaction
amplitude (if the bare interaction potential is frequency
independent).

In order to develop a loop expansion, we use the same
parametrization of the matrix Q as before, '

To obtain the Gaussian theory, we expand Eq. (2.5) in

powers of q using Eq. (2.11},

H[Q]=H' '+H' '+H' '+ (2.12)

where the basis of Eq. (2.7) has been used for the small q's

also. In Eq. (2.13a), f = Jdp/(2n) and 1=(n ]a )],

etc. The matrix M in Eq. (2.13a}is

where H'"' is of order q". We first concentrate on the
Gaussian part of the effective Hamiltonian:

4H'"[q]=
G g g lq»(p} ";M»,34(p),"q34( —p»

& r, i 1,2
3,4

(2.13a)

i M]2 34(P)=S„5]—2 3 4I5»524[P +GH(can O]n
—)]+5a a 5a a 2]rTGK„] (2.13b)

with vo =s, v, 2 3
= t, S,= 1, and S,= —1. For the Cooperon degrees of freedo~,

i M]2, 34(p} ~v 51+2,3+4I513524[P +GH(n] n )]+5i05a a 5a a ~TGKc] (2.13c]

The matrix M is easily inverted. The inverse, which
determines the Gaussian propagators, reads

f„(p)= g 5„+„„8(n] n, )D—„„(p)
n&n2

(2.15c)

i 12,34(p ) ~v. 51—2, 3 —4 513524Dn] —n] (P )

5
bD„' „(p)

n] n2

(2.14a)

and

M]2, 34(P} . 5]+2,3+4 5]3524D — (P)

„,(p)D„, „,(p)

k,
X 1+k,f„+„(p)

(2.14b}

Here we have introduced the diffusion propagator

with e(x) the step function. We note that, with unre-
stricted frequency sums, f„(p) diverges logarithmically in

the ultraviolet (UV) for all p and n and in the infrared
(IR) for p, n~0. The UV divergence is due to our un-

physical treatment of the high-frequency behavior and
should be cut o5' by a large cutoff, N, while the low-

frequency singularity is the usual divergence one obtains
in the p-p channel [for K, &0, Eq. (2.14b) displays the
usual Cooper instability]. These singularities are in-

dependent of dimensionality and any loop expansion and
should not be renormalized. In addition, we are, in gen-
eral, interested only in logarithmic singularities that lead
to infinities and not zero. Consequently, at the end of our
calculations we let f„(p )~ ao and thereby neglect terms
that are logarithmically small. %e must not, however,
neglect the second term in Eq. (2.14b) immediately, since
the calculation will produce additional factors of f„(p}
that appear in the numerator. This renormalization pro-
cedure is different from that used in the previous litera-
ture.

D„(p)= [p +GHo]„]

and the singlet and triplet propagators

D„"(p)= [p + G(H+K, , )o]„]

In Eqs. (2.14), hD„"=D„" D„, k, =G2m TK„—and

(2.15a)

(2.15b)

C. One-looy renormaHxation

Our strategy is now as follows. We use Eq. (2.12) to
obtain the contribution to H[Q] of order q, q, etc.
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This leads to a loop or disorder expansion. %'e can then
use standard techniques to obtain renormalizations of the
coupling constants 6, H, E, t, The calculation proceeds
along the lines of our earlier work' and is straightfor-
ward. The result shows that, in addition to providing re-
normalizations of the bare coupling constants, the pertur-

bation theory generates a new term in the triplet Coop-
eron channel. It is the purpose of this paper to investi-
gate this new disorder-generated term. For complete-
ness, and because we will want to use the results else-
where, we also give the one-loop renormalization of E,.
We obtain,

i™i2,3E P =
v,. 1+2,3+4[&i3 24[7 (1+GING}+GH(ro n ~ n)(1+G&rr)]+5«5«2n'TGK„„

where RG and RH determine the renormalizations of G and H which have been given elsewhere, ' and

E" „=E—— E D' q
—3ED' q +ED n q 1 —GE co„—u„D~„„~q

G

(2.16a)

3K,D—„„(q)[1—GK, [co„—r0„[Dt„„~(q) ] J (2.16b)

and

Jt c, t
n

1 n2' 3n4

G
~n ~n Dn —n q +s Dn —n q + +t Dn —n q

+ ~co„co„~D—„„(q)[(K,) Df„„~(q)+(K,) DI„„~(q)]) . (2.16c)

In giving these results we have set the external momen-
tum p equal to zero. Power counting shows that the in-
tegrals in Eqs. (2.16b) and (2.16c) go as n' '~, where n

is some frequency index. This is the long-time-tail behav-
ior mentioned in Sec. I. Finally, we mention that we
have derived identical results using a different parame-
trization of Q„~„.'5

The frequency dependence of E"'deserves some com-
ment. K" (K") as given by Eqs. (2.16) is not antisym-
metric (symmetric) under interchange of n i and n2 or n3
and n4. This does not violate the Pauli principle since
Eqs. (2.16) have been derived as couplings in the q formu-
lation of the model only. In the Q formulation, the prop-
er symmetry can be built in by symmetrization (cf.,
below).

As already mentioned, we focus here on E"in D =2.
Integration gives

I

screened Coulomb interactions, a compressibility sum
rule fixes y, = —1 and, consequently, g in Eq. (2.17)

S

does not exist. To correctly evaluate Eq. (2.16c) for the
long-range case, one should (in D') replace H+K, by'

D —i

(2.18)
1+F0 1+(q/rr)

where I'0 is a Fermi-liquid parameter and
K =cd e (Bn /Bp) gives the inverse screening length, K,

with cz =2rr, c3 =4m, and (Bn /Bp) is the thermodynamic
compressibility. For this case, the singlet contribution toE"in two dimensions to leading logarithmic accuracy is

r

sKc, ~ GH F GH
~n2'n3n4 16

' 2
K

Iro„—ro„
i—6

n, n, n, n4 16 sgy
nz —n4

)le )le

nz —n4

n3 lip

GH ln2 n4I
xF

CO CO

s c, t t c, t
n

1 n2 n3n4 n ) n2, n3n4 (2.17a)
(2.19a)

where y, , =K, , /H, 6=GSd /(2') with Sd the surface
area of a d-dimensional unit sphere, and,

gr(x)= [(x—1)ln(1+y) —yx lnx] .I

where

and

F(x }= [lnx nx'~ ]—.1

1+x (2.19b)

(2.17b) a=a(1+F0) . (2.19c)

The second equality in Eq. (2.17a) gives K"as a sum of a
charge or singlet fluctuation contribution and a spin or
triplet fluctuation contribution.

For real electronic systems interacting through

iii. THE GAP EQUATiON

In the 6rst part of this section we discuss some general
features of the saddle-point structure of the 6eld theory
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presented in Sec. II. We point out some dubious points
in Finkelshtein's treatment" and we discuss how to prop-
erly solve the problem. We then derive the imaginary
axis gap equation for the triplet even-parity SC state.
The gap equation is then transformed to the real frequen-
cy axis and we comment on the causality and symmetry
properties of the new SC state.

Equation (3.3b) in Eq. (3.3a) gives

K, QQ(p )
F m

(3.3c)

A. Saddle-point solutions of the field theory

5H[Q]
5"Q ~(x)

(3.1)

It is obvious that the functional derivatives of the first
and the third terms on the right-hand side of Eq. (2.4a)
are proportional to Q. Differentiation of the second term
yields

Let us first discuss the saddle point (SP) solution of the
field theory given by Eq. (2.4) with Eqs. (2.9) and (2.10).
The SP condition is

with g&=p —p /2m. To illustrate a point, we solve Eq.
(3.3b) by sumnung over n using +„=2N with N as high-

frequency cutoff. We obtain

Q(p„)= f ip„+gp+ Q(p„)
mXF p

p 2r

2mrTK, i 1

N~2 p [ip„+(,+(i/2~)Q(p )]
'

(3.4a)

where

tr lnC '=,"G~„(x)
5,"Qg (x)

E,
[ I +4&T(NK, /N~ ) ]

(3.4b)

5„05,0G' „'~ (x)+O(Q) . (3.2a)

Here G'o' is the bare Green's function [cf., Eq. (2.4b)] and
we have used the expansion

GQ~ g PGGsT V (3.2b)

We see that the derivative of tr in' ' is the only term in

the SP equation which can provide an inhomogeneity
(viz. , the bare Green's function). Consequently, if either
r %0 or i %0, then the self-energy, which is given by
iQ/2r, can be nonzero only if there is a broken symme-

try. In that case, , 23QAO describes magnetism, and

'OQAO describes singlet superconductivity. Assuming

the latter, one indeed recovers BCS-Gorkov theory'
from Eq. (3.1). In the absence of a broken symmetry,
only OQ„~ is relevant, and [Q Q], and [Q.Q], in Eq.
(2.9) can be neglected. In this case, Eq. (3.1) yields

OQnm

OG ~(xx) n'TK5 p g 5 + + OQ
n3n4

(3.3a)

,"Q„(x)=5„05;O5P~ ~ Q(p„} . (3.3b)

In Finkelshtein's treatment of the SP problem, he
neglects the last or interaction term in Eq. (3.3a). The
Q's are composite variables for a product of annihilation
and creation operators and the SP value is an expectation
value of these operators. For the Fermi-liquid phase, this
suggests an ansatz

We next comment on the structure of Eqs. (3.4). First,
the renormalization of K, by Eq. (3.4b} is somewhat un-

physical (although it is of no real consequence as we will

see). To understand the meaning of this renormalization,
we note that in the derivation of Eq. (2.4) similar terms
proportional to TvN have been neglected. As a conse-
quence, only terms linear in E were kept in the action.
Finkelshtein argued that these terms are negligible in the
limit T~&(1. To be consistent, one should then neglect
the correction in the denominator of Eq. (3.4b) as well.

In order to justify this, one must make the cutoff
suf5ciently small that ~TN &(1. In general, this can be
done within a long-wavelength theory designed to de-
scribe critical behavior because the precise values of the
bare coupling constants are irrelevant and because cutoffs
can be chosen arbitrarily small without changing the
relevant physics. If one is not satisfied with this argu-
ment, one can go back to the original derivation and re-

tain the neglected terms. We have performed this calcu-
lation and found that the disordered SP value of Q is then

given by Eq. (3.4a) with K, replaced by K, . We conclude

that Finkelshtein's approximation is unnecessary, and
that the problem discussed above is an artifact. With

K, ~K„one obtains the expected result for the SP in a
disordered Fermi liquid: Eq. (3.4a) has the structure of a
disordered Hartree-Fock theory for the electronic self-

energy.
Now the SP problem for the triplet even-parity SC

state is considered. It leads to the BCS-Gorkov theory
for this SC state. We note that our results could be de-

rived in a number of ways given the pairing potential.
We begin by neglecting normal-state self-energies for sim-

plicity and we consider the triplet even-parity SC state by
replacing H;„,[Q] in Eq. (2.4a} by

3

H,.„,[Q]= f dx g K„"„„„5„+„„+„+g [Tr(r+ea, Q„„ro;Q„.„) ( +p~r~ )],
1 2

n3n4

(3.5a)
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with EC'*' given by

gC, t —] [/C, t —E"
nl n2 n3n4 4 nf n2 n3n4 n2n] n3n4

KnIn&, n4n3 +Kn&n], n4n3 ] (3.5b)

and creation operator and that "Q (r =1,2) is related to a
product of two annihilation or two creation operators,
one looks for solutions of the form

(3.7a)

Here we have antisymmetrized the potential for use in
the Q formulation, and K" are given by Eqs. (2.16c),
(2.17), and (2.19).

Assuming a SP diagonal in the replica indices the SP
condition yields

O~Q. ...=5]„,],„Q'(p., »

;G„„=5~ ~ G;"(p„) (r =1,2),
2 n

1 it2

,"Q„,„,=5~ ~ Q;"(p„) (r =1,2) .

(3.7b)

(3.7c)

(3.7d)

0 n&n2 ~ 0
7T

and (r =1,2; i =1,2, 3),

i' l PG
&Qtl]Ng ~ i n]n&

p

(3.6a)
Equations (3.7) in Eqs. (3.6) give

Q (p„,)= Go(p„), (3.8a)

27TT7 gg g

n&n2, n3n4 n&+n2, n3+n4 i n3n4 '
F n3n4

(3.6b)

Using that Q is related to a product of an annihilation

I

where

n3

Q;"(p„,) = G,"(p„)

(3.8b)

;'G„=—tr~, o; nx iQ+p+ + Q
r & +

2' 27
(3.8c)

and

(t) C, tK (p„,p„)=K„' (3.8d)

F»lowing the same arguments as given below Eq. (3.4), we can replace Eq. (3.8b) by

Q "(p.
,
)=

&
G (p, ,

)+ gK'"(p„,p„)G (p„) .
n3

In this paper we restrict ourselves to a triplet even-parity SC state where

Q I %0, Qq =Q3 =0

and

2 p

(3.8e)

(3.9a)

(3.9b)

More complicated states are possible, but here we consider the above case for simplicity. De5ning a gap function 6 by

Q] 21

l

Eqs. (3.8) and (3.9) give

[p„, g~+(1—/2~)Q'(p„, )]
Q'(p„, ) =

']r+E P [[p„+(1/2r)Q (p„)] +f p+6 (p„)]

(3.10)

(3.11a)

and

1 Z(p„, )

&(p„)=
2~&E'r ] [[p„+(1/2r)Q (p„)]'+g' g+& (p„, )]

7TT E(p„)
+ g K(p„,p„)

&p „, ' ' n [[p„+(1/2r)Q (p„)] +g ~+6 (p„)j
(3.11b)
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In deriving Eqs. (3.11),we have used the symmetry conditions

Q ( —p„)=—Q (p„),
&( —p„)= —E(p„),

(3.12a)

(3.12b)

and we have used that Q can be taken to be purely real. The symmetry given by Eq. (3.12b) is just Eq. (2.8b) and is a
required symmetry in the even-parity triplet SC state.

Finally, the disorder dependence of the gap equation can be eliminated in the same way as in BCS-Gorkov theory for
even-parity singlet SC (Ref. 17}(where the result is known as Anderson's theorem' ). We define a gap function, 6, by

&(p„, ) =&(p„)+P(p„)

with

1 E(p„, )

P(p„, ) =
2mNJ;r n [[p„+(I/2r)Q (p„)] +g 2+5, (p„)]

(3.13a)

(3.13b)

It is now easily shown that 5 satisfies the gap equation

&(p„, )

6(p„)=mTQK.'"(p„,p„)Jdg p2 +(2++2(p )

(3.14)

Equation (3.14}has the structure of a clean SC gap equa-
tion in the presence of the pairing potential K'"(p„,p„).

1 2

For later reference, we note that, for p„,p„&0, we have
1 2

&(co)= . f dQE'"(co, Q)F„(Q) .
l 7T' 0

(3.16)

Here k'"(co, Q) is the real frequency pairing potential
which can be written

B. Real frequency gap equation and causality properties

Using standard techniques, the imaginary frequency

gap equation given by Eq. (3.14} can be transformed to
real frequencies. We will use this equation only at zero
temperature where it reads, for u ~ 0,

K'"(p„,p„)=K,'"(p„,p„)+K,'"(p„,p„),
where

(3.15a)
k'"(co Q)=k'"(co Q)+k'"(co Q)

where, for co, Q &0,

k,'"(ro, Q) =K,'"( iso, i Q—)—,
k,'"(co,Q ) =K,'"( i ro, i—Q ), —

(3.17a)

(3.17b)

(3.17c)

K with i =exp[ —in I2]—'In E.q. (3.16), F„ is a retarded
function given by

Pn, Pn,

P. ,
+P.,

GH Ip, -p, I'
XF

2 Ip. , +p., I

F,(Q)=F(z=Q+i5), (5—+0+),

with F(z ) the Gorkov function,

F(z)= dg
g2+b, (z}—z

For later use we note that Eq. (3.12b) implies

h(z)= —b, ( —z) .

(3.18a)

(3.18b)

(3.19)

with F given by Eq. (2.19b),

(3.15b) We next examine the symmetry and causality proper-
ties of the triplet even-parity SC state. In general, F(z)
will have a spectral representation

K (t)(p p )
6 Pn, +Pn2

16 nl n2

(3.15c) F( ) I+ da) F"( )ro
VT CO Z

(3.20a)

and g& given by Eq. (2.17b).
In Secs. IV and V, we will use Eqs. (3.14) and (3.15) to

determine the SC transition temperature. Identical re-
suIts can be obtained by examining the stability of the
normal state to the existence of E'". This further corro-
borates the validity of replacing Eq. (3.8b) by Eq. (3.8e}.

with spectrum

F"(co)= [F(co+i 5) F(ro i 5)]— —
22

(3.20b)

Causality of the ditfusive propagators that lead to k'" in

Eq. (3.16) should also imply that b,(ro) is a causal function
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F"(c0)=F"( —co),

b,"(c0)=b,"(—c0),

F'(co) = F'( ——co),

&'(~)= —&'( —co),

where F' and 6' are determined by

F(a)+i 5 )+F(co i 5)—
2

(3.21a)

(3.21b)

and an analogous expression for 5'. Finally, using that
the imaginary axis quantities, F(ip„) and lL(ip„), are real,
Eqs. (3.20) imply that F', F", b, ', and b," are all purely
imaginary in the triplet even-parity SC state. We also
note that 5 (and F}satisfies the Kramers-Kronig relations

with spectral representation

f +so dco 6 co
(3.20c)

For the kernel k,'" in the limit y, ~ oo, we have checked
the causality of 5 by direct calculation. Equations (3.19)
and (3.20}imply

IV. THE SINGLET
OR CHARGE FLUCTUATION MECHANISM

In this section we investigate the SC state induced by
the charge fiuctuation contribution E,'"(p„,p„) to

E'"(p„,p„). In principle, one should treat E,'" and K,'"
1 2

together to compute physical quantities like T„ the tun-

neling DOS, and the specific-heat coefficient. However,
we will eventually find that the singlet or charge fluctua-
tion contribution to K'" is numerically insignificant for
typical parameter values and can be neglected whenever
spin fluctuations are present. Nevertheless, we investi-
gate its effects in detail for several reasons. First, we will
see that it is easier to derive definite numerical values for
observables from this contribution than from the triplet
or spin fluctuation contribution. This is partly due to the
fact that this contribution does not depend on the
Fermi-liquid parameter Fo, and that there is an ultravio-
let length scale given by the screening length, ~ '. Final-
ly, the triplet mechanism involves a renormalization pro-
cess whose validity is not clear (cf., Sec. V). The corre-
sponding renormalization process for the singlet mecha-
nism is neglected here for simplicity.

b, "(co)= ——f des'6'(co')P
77 00 CO CO

6'(co)=—f d co'5"(co')P
77 CO CO

(3.22a)

(3.22b)

A. T, equation

Here we use the linearized gap equation to determine
T, from K, . With the definition

where P denotes the principal part. The symmetry prop-
erties given above also imply that the Gorkov function
for this SC state is an odd function of real or imaginary
time.

GH2m. T,
Tc K2(1+FS )2

(4.1)

the linearized gap equation for T, is given by Eq. (3.14}
with K'"—+K,'" and can be written

h(n }= g ™I
[m[T, (n+rn+ I )]'~ —lnT, (n+m+1)]

32m. e 2m+1 1+T,(n+m+1)

in —mi

(n+m+1)[1+T, in rn i
l(n+m—+1)]

1/2
T, in m I'—
n+m+1

—ln[T, in —m i l(n+m+1)] (4.2)

We compute T, to leading logarithmic accuracy, for
T, +0, by replacing E—q. (4.2) with

)
6 — " h(m) in —mi

32m. '
0 2m+1 n+m+1

(4.3) or

G — f dx il —xi
64m. '

0 x 1+x

(ln2)(ln T, )
6

(4.4a)

In the limit T, ~O, we can further replace the sum in
Eq. (4.3) by an integral according to 2n T g "
= J 0"dp . Then 6 is independent of frequency for posi-
tive frequencies. The resulting T, equation is

s2( 1 +Fs }2

p
16m

6 ln2
(4.4b)

The prefactor in Eq. (4.4b) is given by the diffusive energy
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scale DP /2m with D =1/GH the thermal diffusion con-
stant. In a two-dimensional system, conductivity and
conductance are the same, and we have

scale related to the critical temperature or the gap at zero
frequency. A second scale, co2, also exists in Eq. (4.8).
As in conventional SC, it separates high and low frequen-
cies and is given by the equation

(4.5a)
co& =h(i co2 ) . (4.9b)

where

R~ R~
g/e 2 4108Q

277 K
DK =

kF
(4.5b)

with kz the Femi wave number and TF the Fermi tem-
perature. The T, formula can then be written as

is the dimensionless resistance per square. The Einstein
relation allows us to write

For weak coupling, A. «1, we can determine co& analyti-
cally. From the imaginary-axis gap equation, Eq. (3.14)
with E,'" as a kernel, one finds, by asymptotic analysis,

b(ico~0) =Aco lnco ln(coe )+O(co),

restoring the frequency scale co&, we have

(4.9c)

C02
—

CO~ 8 (4.9d)

From Eq. (4.9c), the asymptotic solution on the real axis
is obtained by analytic continuation

b(co~0) = i A co—(lnco) Aco—(3i +m. )lnco+ O(co) .

(i/kF )
Tc TF

4n /In2
exp

CI

B. The gap equation at T=O

(4.6)

(4. loa)

We have also determined the asymptotic solution of Eqs.
(4.8) directly and found the same result. Asymptotic
analysis also yields the high-frequency solution

Scaling the frequency and gap with the di6'usive energy
scale, DK,

h(co~ ~ ) =c lnco i —2—+—O(co ),—5/2

N
(4.10b)

0—+QDK

A~hDK

leads to a zero-temperature gap equation given by

(4.7a)

(4.7b)

K'"( Q) = —
A, f(Q+ )

— f0+OP 0+OP

b,(co)=f "dQ Ec"(co,Q) .
Q —b, (Q)

Here E,'"(co,Q) is the effective scaled potential due to
charge fluctuations,

where c is an undetermined constant.
We have used Eqs. (4.10) to construct trial solutions

which serve as input for an iterative numerical solution of
Eqs. (4.8). For small A, (A. ~ 0.2), we found good conver-
gence for almost any trial solution. For A, larger than a
critical value A,,+ =0.2, the iteration failed to converge.
We have found that this is not due to a failure of the
iteration procedure, but rather signalizes the absence of
causal solutions of the gap equation. The mathematical
reason for this is as follows. From Eq. (4.10a) we see that
the reactive and dissipative parts of the gap, 5' and 6",
respectively, at small frequencies read

where

(4.8b) 6'(co —+0)= i lco(lnco—),
b "(co~0)=ink, co lnco . '

(4.1 la)

(4.11b)

and

f(x)= 1

1 —ix

' 1/2
l& X+n.(1 i)—
2 2

(4.8c)
One easily checks that Eqs. (4.11a) and (4.11b) are indeed
related by Kramers-Kronig relations, Eqs. (3.22). The ar-
gument of the square root in Eq. (4.8a) can be written

f(co) =co b(co) =co + [ib, '(co—)] —[id,"(co)]

m2
(4.8d)

We next examine the structure of Eqs. (4.8) and point
out some of its important features. First there are two
frequency scales. The first one is

CO)
—DK (4.9a)

and it is analogous to the Debye frequency in convention-
al SC. co& sets the scale for the frequency and the gap,
and it has been scaled out of the equations by means of
Eq. (4.7). In conventional SC there is a second frequency

2i b'(co)b "(co) . — (4.12)

For sufficiently small frequencies ~ib, '(co)~ &&~ib "(co)~,
and the real part of f(co) is positive. With increasing fre-

quency, the Kramers-Kronig relations will force b, '(co) to
decrease and go through zero (there must be anomalous
dispersion in a region where 6" is substantially nonzero).
Since ~h"(co~0)

~
))co, this zero will occur in the region

where ~b, "(co)~ &co if only A, is large enough. Therefore,
one will cross the cut of the square root in Eq. (4.8a) if X

is larger than some k,+. We have been unable to find a
physical solution in the region A, )A,,+.
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with

3—
yo= (5.1b)

-3
-4
-5
-6—

30

where y,o=E, /H. The logarithmic singularity in Eq.
(5.1a) at n =m is an artifact of the y, ~ oo limit and ln oo

for n =m should be replaced by 1n(1+y, ). This singular-
ity will be irrelevant for our low-T estimate of T, .

If we replace the sum in Eq. (5.1) by an integral, we see
that 6 is again independent of frequency for positive fre-
quencies. The resulting condition for criticality is

FIG. 1. Real and imaginary parts of the gap function 6 vs

frequency co for the charge fluctuation mechanism induced by
E,'". 5 and co are measured in units of cu&, and the coupling
constant is A. =O. 1.

In Sec. VI, we will come back to possible physical im-
plications of this. For now we ignore this problem and
consider only the case A, (A,,+. The choice A, =0.1 pro-
duces a representative result. Figure 1 shows the real and
imaginary parts of 5 for this coupling. For co~0 and
co~ 00, the numerical solution reproduces the analytical
results given in Eqs. (4.10). We will further discuss this
result in Sec. VI.

V. THE TRIPLET
OR SPIN FLUCTUATION MECHANISM

In this section we investigate the SC state induced by
the triplet or spin fluctuation contribution to
E'"(p„,p„), which we denoted by K,'(p„,p„). As for

the singlet contribution to E'", we first use the linearized
gap equation to compute T, from E,'". We expect JC,'"
to, in general, lead to a much higher T, than E,'". The
reason is that renormalization-group (RG) calculations in
D=2 suggest that the renormalized triplet interaction
amplitude, k„becomes large as T~O."' ' Because the
spin fluctuation contribution to E,'" is proportional to k„
this, in principle, can lead to a high T, . We then discuss
the SC state induced by E,'", breaking up the discussion
into three steps. First we treat the problem by ignoring
the renormalization of k, . Then the model with k, renor-
malized perturbatively will be considered. Physically this
should be appropriate for moderate temperatures. Final-
ly, we examine the SC state assuming that k, or the mag-
netic susceptibility diverges as a power law as co~O. The
motivation for this ansatz will be discussed.

J'o " b(m)
1

n m++1hn = ln
16 o 2m+1 n —m

(S.la)

A. T, equation

For simplicity we consider the linearized gap equation
in the y, —+ Oo limit. We will self-consistently verify that
the renormalized y, is indeed large near T, . In this limit,
Eqs. (3.14) and (3.15) give

3'o dx x+1
ln

32 0 x' x-1
go 17

64
(5.2)

Equation (5.2) seems to imply a threshold value which
the coupling strength yo has to exceed in order for the
system to become superconducting. We have to
remember, however, that so far we have been working
strictly in perturbation theory, so the bare coupling con-
stant yo appears in Eq. (5.2). Since we know that the cou-
pling constants become strongly scale dependent due to
disorder renormalization, we should replace yo in Eq.
(5.2} by its scale-dependent counterpart, y(T}. This will
determine the critical temperature. In Ref. 21 we have
considered the RG flow of y in d=2. We showed that,
for sumciently small RG length rescaling factors b, the
disorder is not renormalized, g(b )—:go =2k&/n. , where

go=yo/y, o. The regime where this holds can be divided
into two regions, the boundary between which can be
written as goy, lny, =1, where y, is the scale-dependent
or renormalized counterpart of y~o For goytlny~ +1
the frequency or temperature rescaling factor H is not re-
normalized, and b is related to the temperature by
b =f' ', where f'=T/To with To a microscopic tem-
perature scale on the order of the Fermi temperature TF.
With the help of the explicit flow equation for y„'"' ' one
can express the condition for the two regions and the y
flow in them as '

dy y
dx 4

which holds if

(5.3a)

yo yo
ln &&1,

1 —yox /4 1 —yox /4
(5.3b)

and

y 2

dx

which holds if

(5.3c)

yo 7 to
lnl-y.-' l-y.- »1. (5.3d)

In Eqs. (5.3), x =lnb, and we have used the explicit flow
equations to rewrite the conditions goy, lny, ((I ( »1).
In the regime intermediate between Eqs. (5.3b) and (5.3d),
the beta function interpolates between Eqs. (5.3a) and
(5.3c).
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y(T)=
1 —(yo/2)lnf'

(5.4)

With yo~y( T) in Eq. (5.2), we obtain an equation for T, :

Vp

y, [1—(yo l2)ln( To lT, ) ]
{5.5a)

At this point, let us mention two important unsolved
problems. (1) The RG fiow equations given by Eqs. (5.3}
break down for T~O, or at T=0, for b ~ oo. Equations
(5.3) show that there are two intermediate length or tem-
perature scales, awhile the behavior at still larger scales is
unknown. Indeed, the problem of determining the
correct asymptotic Sow is very complicated. We call this
the 2D ground-state problem (in the absence of SC), and
we will come back to it later. (2) It has not been proven
that the field theory, Eq. (2.5), describing disordered elec-
tronic systems is renormalizable. In fact, we have shown
here that the disorder generates a new interaction ampli-
tude, K", which was not in the bare theory. However,
our use of RG ideas has been very limited. Equations
(3.5) only use the well-established fact that, on intermedi-
ate length scales in d =2, the dominant effect is a rapid
increase of y, with increasing b."' ' On larger scales
the renormalization of the disorder becomes important,
the relationship between b and f'becomes more compli-
cated, and the question of renormalizability must be ad-
dressed. This means that we cannot trust our results if
the scale b corresponding to our critical temperature is
too close to exp(1/yo).

With b = f' ', we obtain, from Eq. (5.3c),

Comparing Eqs. (5.8) and (S.5), it is clear that T, given

by Eq. (5.8a) is much less than that given by Eq. (5.5b).
A discussion of numerical results will be given in Sec. VI.

b, (co)=A.f "dQ ln+0' —b, '(0)
(5.9a)

with

Vp'
32

(5.9b)

A, (or yo) should actually be renormalized just as in the
previous subsection. It is useful, however, to first ignore
this effect and to study Eq. (5.9a) for a constant A, .

We first note that Eq. (5.9a) does not have an ultravio-
let scale analogous to the one given in Eq. (4.9a) for the
singlet contribution to EC'". One expects a scale related
to Tp of the previous subsection to appear. Indeed, this
scale can be built into the theory by imposing an UV
cutoff on the order of the Fermi wave number on the
momentum integrals in Eqs. (2.16) that leads to K'". We
ignore this effect here because it only modifies the high-
frequency behavior of the gap function which is physical-
ly not very relevant and depends on details of the model.
Nevertheless, it should be remembered that effects or
structure at the frequency scale

B. The gay equation at T=o

In the y, ~ ~ limit discussed in the previous subsec-
tion, the zero-temperature gap equation is

or
Tp (S.loa)

2 Vp
Tc = Tpexp 1 (5.5b)

where y, =64/n. . With this result the condition given
after Eq. (5.3d) is

—
& /'y,

2

Pz (( y, e
2

(5.6}

dh 3hV

dx 4
(5.7)

The value on the rhs of the inequality (5.6) is quite large.
However, one should keep in mind that the exact Aow in
2D is not known and our estimates are rather crude.

If Eq. (5.6) is not satisfied, then Eq. (5.3a) must be used.
In addition, the relationship between x =lnb and 1' is
more complicated and is determined by f'=[ho/h(b )b ]
with"

is being neglected. This scale would also appear if a dis-
order renormalized A, was used. As in the previous sec-
tion there is, in addition, a second frequency scale, co&,

that separates high- and low-frequency behavior and is
given by

co~ =b, (icoz) . (5.10b)

We now proceed as in the previous section. Asymptotic
analysis for the imaginary axis gap equation yields

b,(ico~O) = —2A, co lnco+O(co) . (5.10c)

From this we find

—1/2A,
Q)2 —

CO~ e (5.10d)

The small-frequency solution on the real axis we can
again obtain either by analytically continuing Eq. (5.10c)
or by direct solution of the real-axis gap equation. Either
way we find

Equations (5.3a) and (5.7) give
3

Vp
T, =Tp 1 — x exp

L

with x =x{T, ) given by

Vp Vc

8 Vp

b,(co~0)=2i Aco lnco+0(co, ) . (S.l la)

For large frequencies, we find

A(co~ oo )=C,sin(s )neo)+Cocos(s lnco)O(co ),
(S.1 lb)

Tp Vp
x(T, )=—,'ln + —', ln 1 — x(T, )c 2 T 2 4

(5.8b) where C& and C2 are undetermined constants. s in Eq.
(5.lib) is determined by the transcendental equation
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%$
s =m.A, tanh

2
(5.11c)

ln ~2—O(Q —co)+2—O(co —0) . (5.12)
N+0 co 0
a) —0 0 N

With Eq. (5.12) in Eq. (5.9a), the integral equation is
equivalent to the differential equation

d b(co) + 1 dh(co)
co dco

b, (co) 4AA(co)

co+co 5 {co}

We note several features of Eqs. (5.9) and (5.11). First,
the problem discussed below Eq. (4.10) for Eq. (4.8) also
holds for Eq. (5.9). This implies the existence of a critical
value of A, which we denote by A,,+. We consider only the
case A, &A,,+(=0.5}.Second, Eq. (5.11c) leads to a com-
plex s for A, &2/n =A,, (or yo&y, =64/m ). From Eq.
(5.2} we see that this was to be expected: Because we
have not used a renormalized A, , the SC state exists only if
A, &2/H. We further note that, even in the physical re-
gion, k, &A, &A.,+, the gap function does not decay for
co~ 00. This unphysical result can be eliminated by us-

in~ an UV cutoff on the momentum integrals that lead to
K,". As already mentioned, we ignore this problem here.

We have attempted to solve Eq. (5.9) by the same itera-
tive technique we used in the previous section and failed
to find convergence. We believe that this refiects a failure
of the solution technique and that Eq. (5.9a) does have a
physical solution for A,, & A, &I, To verify or argue this
we have solved Eq. (5.9a) with the logarithmic kernel re-
placed by a simpler kernel which has the same high- and
low-frequency limits:

and the Kramers-Kronig relations given by Eq. (3.22) to
be satisfied in the m~O limit.

In Fig. 2, we show the real and imaginary parts of 5
for a typical value of A, =0.375. For co~0 and co~ao,
the exact analytic results given by Eqs. (5.11) are
recovered in the numerical solution given in Fig. 2. We
note that, for intermediate frequencies, the approxima-
tion given by Eqs. (5.12) violates Eqs. (3.22}. We have
performed a Kramers-Kronig check and found that the
solution of Eq. (5.13) qualitatively still has the behavior
of a causal function. We will further discuss this result in
Sec. VI.

So far we have ignored the fact that A, in Eq. (5.9} is
dramatically renormalized by disorder as co~0 (or as
T~O at co=0). Neglecting this effect has two conse-
quences. First, a lower critical disorder parameter, A, ,
has appeared. This implies that a critical amount of dis-
order is needed to induce the SC at T=O. As we have
shown in the previous subsection this is not correct if re-
normalization effects in A, are taken into account, i.e.,
A,, =0. Second, low-frequency singularities in A, modify
the low-frequency or low-temperature result given by Eq.
(5.11a). Indeed it is the logarithmic singularity in K,'"
that leads to the extra logarithmic factors in Eq. (4.10a}
as compared with Eq. (5.1 la).

To correctly build in the frequency dependence of A, is
difBcult. We shall see, however, that scaling or power-
law dependencies are insensitive to the precise way in
which A, is renormalized. We first note that the RG equa-
tions given in the previous subsection apply to the T=O,
co%0 case if, in these equations, we replace T by co. For
example, Eq. (5.4) gives

(5.13)
3'oy(~)=

1 —(yc/2)ln( To/co)
(5.14)

Equation (5.13) can be easily solved. Analytically the
high- and low-frequency solutions are given by Eqs.
(5.11), i.e., the differential equation with the inodel kernel
is equivalent to the integral equation with the logarithmic
kernel in these limits. For other frequencies we have
solved Eq. (5.13) numerically using a Runge-Kutta
method. For boundary conditions we require Eq. (5.11a}

This result, however, breaks down when
[1—(yo/2}lnTO/co] —+0 and, consequently, cannot be
used as co~0. The precise behavior of y(co~0) is not
known and we previously referred to this as the 2D
ground-state problem. However, all work suggests that
y(co~0) is divergent in the absence of SC. It is therefore
of interest to examine the properties of an even-parity
spin-triplet SC state with (A, -y ),

y(co~0) = c
(5.15)

0

where c is a constant and p is an unknown positive ex-
ponent. The picture that emerges for A. or y is as follows.
For high frequencies (co »T )A0,(co) is not appreciably
modified by disorder and is given (for small disorder) by
Eq. (5.9b): with decreasing frequency Eq. (5.16) implies,
for co~ To,

FIG. 2. Real and imaginary parts of the gap function 5 vs
frequency co for the spin fluctuation mechanism induced by E,'".
6 and co are measured in units of co&, and the coupling constant
ss k=0.375.

A, (co » To) =A,o=
3'o

32 '

Pro
A, (co & To ) =

1 —(yo/2)ln( To/co)

=Ao 1+ ln
~o To

2 co

(5.16a}

(5.16b)



D. BELITZ AND T. R. KIRKPATRICK

For very low frequencies, co « To, Eq. (5.15) gives

k(co « To ) =
co"

(5.16c)

b, ( co~0)—co' (5.17)

Note that A, in Eq. (5.9a) should depend on both exter-
nal, co, and internal, 0, frequencies: A, ~A(Q, co). For
our considerations this point is irrelevant. For intermedi-
ate frequencies, Eq. (5.16b) implies that, for decreasing
frequencies, the gap function, 5, will resemble the result
discussed in Sec. IV due to the extra logarithmic singular-
ity in k. Alternatively, one expects at low but finite tem-
peratures that E,'" and K,'" will lead to similar SC states.
At zero temperature, Eq. (5.16c) can be used to determine
the low-frequency scaling properties of 5, p, and C. One
finds

mal. Finally, one should keep in mind that estimating T,
from many-body theory is notoriously dificult, with the
history of the theory of He providing an infamous exam-
ple. If we proceed nevertheless, we should be careful not
to assign too high a value to R~, R =m. —2m. (i.e., R
about one-half to one times the Mott number) seems the
largest reasonable choice. A typical carrier density
for this resistance is N, = 5 X 10" cm, which
yields TF=35 K, ~=1.25X10 cm ', and
kF=1.25X10 cm '. For this carrier concentration, a
reasonable value for the Fermi-liquid parameter I'~ is
—0.9.' Then we obtain T, = 15—640 pK for
A ~ =m

—2m. An observation of superconductivity in this
temperature regime does not appear absolutely hopeless.

We now turn to the spin fluctuation mechanism. From
Eq. (5.5b) we obtain

VI. DISCUSSION

—1/k
T, =T ec 0

with

(6.2a)

In this paper we have presented a superconducting
state of 2D systems which is characterized by spin-triplet
pairing and a gap function which has even parity and is
an odd function of complex frequency. In this last sec-
tion we further discuss our results and estimate numerical
values for various observables.

A. Possible values for T,

(a./k~)
T, =TF ~ k d

exp
F

—4m /ln2
(6.1)

For thin metal films, typical numbers are P~ & 1,
TF-—5X10 K, vr/kFd =1, and a/kF- 1. The result—ing

T, is unobservably small. The problem is that the achiev-
able resistance values in thin films are not high enough.
This is different in the inversion layer in a Si metal-
oxide-semiconductor field-efFect transistor (MOSFET)
which can be driven through a metal-insulator transi-
tion. These systems are truly two dimensional, so Eq.
(4.6) applies. If we take our result at face value, T, /TF
will reach a maximum of 6X 10 (a /kF ) for
k& =4' /1n2=57=9RM I(e /A), where R M2me /A
=25.8kQ is the Mott resistance. Several caveats are in
order, however. First, we have restricted ourselves to a
one-loop approximation. Starting at two-loop order, one
would expect to find T, -degradation effects of the kind
that occur in conventional super conductors. These
effects mill bring down the maximum T, /TF, and shift it
to smaller values of Pz. Second, the experimentally con-
trollable parameter in a MOSFET is the carrier density

N, . P~ increases with decreasing N„while T~ decreases,
making the absolute T, quite small where T, /TF is maxi-

In Eq. (4.6) we have given T, due to the charge fluctua-
tion mechanism for a truly 2D system. In a real quasi-2D
system, say a thin metal film of thickness d, the DOS per
spin at the Fermi level is N~=kFdm /2~, the diffusion
constant is D=kF w/3m, and the sheet resistance is

Rz =p/d= 1 /2NFD, when p is the bulk resistivity. The
T, equation for such a system reads

=2jef ~HYto 1 16~o) t0 (6.2b)

It seems that T, given by Eqs. (2.6) can be an appreciable
fraction to T0 ~ We must keep in mind, however, that all
the caveats mentioned above in connection with the
charge fluctuation mechanism apply here as well. Also, if
Eq. (5.6) is not satisfied we should apply Eqs. (5.8) which
yield a much lower T, . We conclude that T, due to the
spin fluctuation mechanism is most likely a very rapidly
varying function of both disorder and y, o (or Fo), and
might be observable only in a narrow region in parameter
space. Moderate values of disorder and large values of
y,0 should be most favorable.

B. The gap function, the tunneling density of states,
and the speci5c heat

We now turn to the solutions of the gap equation
which we found in Secs. IVB and VB. The solution,
b, (co), directly determines the single-particle or tunneling
DOS, p(co), via

CO

p(~) F '
p p ]/p[co —5 (co) j

(6.3)

Let us first discuss the implications of the upper critical
coupling strength A,,+ which we found in Secs. IV and V.
As discussed after Eq. (4.12) for A, & A.,+, there is a fre-

quency co & 0 where Imb, (co)=0, while Reh(co) & co. This
implies that p(co) vanishes at this frequency. Further-
more, with the choice of Riemann sheets that guarantees
a causal Gorkov function, p(co) will become negative
for larger co. We have also considered the possibility that
p(co) =0 for a range of frequencies, but again were unable
to construct a causal solution with this property. It
seems likely that the present theory has indeed no causal
solution for k) A,,+. We offer two suggestions for what

physically happens at stronger coupling. (1) The triplet
SC state may be unstable against some other collective
state still to be identified, or (2) building the SC self-
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FIG. 3. Single-particle density of states, p, vs frequency ~ for
the gap function shown in Fig. 1. p is measured in units of N+,
and m in units of co~ .

FIG. 5. Single-particle density of states, p, vs frequency ~ for
the gap function shown in Fig. 2. p is measured in units of NF,
and co in units of co& .

consistently into the pairing potential may effectively
prevent A, from ever being larger than A,,+. In this context
we note that our pairing potential has been constructed
from correlation functions in the normal state, while any
theory of a purely electronic SC mechanism should, in
principle, self-consistently consider the effects of SC on
the pairing mechanism. This remains to be investigated
in the future.

For iL, (A,,+, our solutions for b, (co) determine the tun-
neling DOS via Eq. (6.3). Using Eq. (4.10a) in Eq. (6.3),
we see that the charge fluctuation mechanism leads to a
DOS which vanishes for small frequencies as

NF
p(~) = (6.4)

A, [ln[D(~ /co)] j

The numerical solution for all frequencies and A, =0.1 is
shown in Fig. 3. Compared to conventional SC, there are
several interesting features to note in Fig. 3. First, there
is no gap, and p(co) vanishes only very slowly as co~0.
We note that experimentally it is common practice to
define a "gap energy" as the position of the first peak in
p(co}. Adopting this convention here one would find

C(T)= J deep(a))co exp[ —Pco] .
g2 0

Analytically, Eqs. (6.4) and (6.6}give

2NFC(T~O)=
[ln(Da /T)]

(6.6)

(6.7)

For the spin fluctuation mechanism, Eq. (5.10c) in Eq.
(6.4) yields, for small frequencies,

NF

2A, ln( To/co)
(6.g)

Second, the curvature of the DOS in Fig. 3 is very
different from what one is used to in conventional super-
conductors. In particular, we point out the pronounced
shoulder of the DOS in Fig. 3. The only experimental
tunneling data we are aware of which bear some resem-
blance to Fig. 3 are those by Gurvitch et al. on YBCO.2s

We do not know whether this is a coincidence.
In Fig. 4 we show the specific heat as a function of

temperature for A, =O. 1. We have used the formula, valid
at low temperatures,

bs,&
—-(6X 10 )Da' (6.5)

1.0

5—

o 4—
0.5

0

104 T
00 0.25 0.50

FIG. 4. Specific heat, C, vs temperature T for the density of
states shown in Fig. 3. C is measured in units of NFL, , and T in
units of co& .

FIG. 6. Specific heat, C, vs temperature T for the density of
states shown in Fig. 5. C is measured in units of N+~&, and T in
units of co&*.
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Figure 5 shows the DOS for all frequencies at X=0.375.
Notice that the result for the spin fluctuation mechanism
is qualitatively similar to that for the charge fluctuation
mechanism, Fig. 3. In Fig. 6, we also show the specific
heat for the spin fluctuation mechanism. Analytically,
we have from Eqs. (6.8) and (6.6) for low temperatures

p(co~0) ~ co",

C( T~0) ~ T'+" .
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NF T
ln( To /T )
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